organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of methyl 2-hy­dr­oxy-5-[(4-oxo-4,5-di­hydro-1,3-thia­zol-2-yl)amino]benzoate

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, 71515 Assiut, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 26 March 2015; accepted 30 March 2015; online 9 April 2015)

The title compound, C11H10N2O4S, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. They differ primarily in the rotational orientation of the five-membered heterocyclic ring. In mol­ecule A this ring is inclined to the benzene ring by 48.17 (8)°, while in mol­ecule B the same dihedral angle is 23.07 (8)°. In each mol­ecule there is an intra­molecular O—H⋯O hydrogen bond involving the adjacent hydroxyl group and the ester carbonyl O atom. In the crystal, the A mol­ecules are linked via pairs of N—H⋯N hydrogen bonds, forming inversion dimers. These dimers are linked to the B mol­ecules via N—H.·O, C—H⋯O and C—H⋯S hydrogen bonds forming corrugated sheets lying parallel to (102).

1. Related literature

For pharmaceutical and chemotherapeutic properties of amino salicylic acid derivatives, see: Abdel-Alim et al. (2005[Abdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Moty, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637-647.]); Abdu-Allah et al. (2005[Abdu-Allah, H. H. M., Abdel-Alim, A. M., Abdel-Moty, S. G. & El-Shorbagi, A. A. (2005). Bull. Pharm. Sci. Assiut Univ. 28, 237-253.]); Koelink et al. (2010[Koelink, P. J., Mieremet-Ooms, M. A., Corver, W. E., Wolanin, K., Hommes, D. W., Lamers, C. B. & Verspaget, H. W. (2010). Inflamm. Bowel Dis. 16, 379-389.]). For general biological activities of thia­zolidinone scaffold compounds, see: Tripathi et al. (2014[Tripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A. & Saraf, S. K. (2014). Eur. J. Med. Chem. 72, 52-77.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H10N2O4S

  • Mr = 266.27

  • Monoclinic, P 21 /c

  • a = 4.7787 (1) Å

  • b = 25.4128 (7) Å

  • c = 18.9599 (5) Å

  • β = 90.841 (1)°

  • V = 2302.24 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 2.62 mm−1

  • T = 150 K

  • 0.16 × 0.12 × 0.09 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.76, Tmax = 0.80

  • 17982 measured reflections

  • 4582 independent reflections

  • 3972 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.089

  • S = 1.04

  • 4582 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.84 1.87 2.6287 (18) 150
O5—H5A⋯O6 0.84 1.92 2.6619 (18) 147
N1—H1N⋯N2i 0.91 1.96 2.8624 (19) 175
N3—H3N⋯O4ii 0.91 1.97 2.8703 (18) 170
C11—H11A⋯O8iii 0.99 2.39 3.371 (2) 171
C5—H5⋯S2iv 0.95 2.71 3.5043 (18) 141
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) [x-1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

5-Aminosalicylic acid (5-ASA) is a prototype drug that is commonly described for treatment of inflammatory bowel diseases (Abdel-Alim, et al., 2005; Abdu-Allah, et al., 2005). It was shown that 5-ASA has,also, chemopreventive and chemotherapeutic properties (Koelink, et al., 2010). On the other hand 4-thiazolidinone derivatives have attracted continuing interest over the years because of their diverse biological activities, such as anti-inflammatory, anti-proliferative, antiviral, anticonvulsant, anti-diabetic, anti-hyperlipidemic, cardiovascular, anti-tubercular, antifungal, and antibacterial (Tripathi, et al., 2014). Based in these findings, we were interested in the synthesis of hybrid molecules that combine both pharmacophores, therefore we report in this study the synthesis and crystal structure of the title compound.

The title compound contains two independent molecules in the asymmetric unit which differ primarily in the rotational orientation of the 5-membered, heterocyclic ring (Fig. 1). Each molecule contais a strong, intramolecular hydrogen bond (Table 1 and Fig. 1) which determines the orientation of the ester group. The molecules pack in a zigzag fashion (Fig. 3) assembled by intermolecular N—H···O, N—H···N, C—H···O and C—H···S interactions (Table 1 and Fig. 2)

Related literature top

For pharmaceutical and chemotherapeutic properties of amino salicylic acid derivatives, see: Abdel-Alim et al. (2005); Abdu-Allah et al. (2005); Koelink et al. (2010). For general biological activities of thiazolidinone scaffold compounds, see: Tripathi et al. (2014).

Experimental top

A solution of methyl 5-[(chloroacetyl)amino]-2-hydroxybenzoate (2.3 g, 9.5 mmol) and ammonium thiocyanate (1.5 g, 19.7 mmol) in 40 ml ethanol was refluxed for 3 h and allowed to stand overnight. The mixture was evaporated and the residue was washed with water and then recrystallized from ethanol/water to give the title compound (2.13 g, 85% yield); R­­f = 0.25 (hexane:ethyl acetate, 2:1). Mp. 481–482 K.

Refinement top

H-atoms attached to carbon were placed in calculated positions C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map, refined initially to verify their presence and then their parameters adjusted to give N—H = 0.91 Å and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Structure description top

5-Aminosalicylic acid (5-ASA) is a prototype drug that is commonly described for treatment of inflammatory bowel diseases (Abdel-Alim, et al., 2005; Abdu-Allah, et al., 2005). It was shown that 5-ASA has,also, chemopreventive and chemotherapeutic properties (Koelink, et al., 2010). On the other hand 4-thiazolidinone derivatives have attracted continuing interest over the years because of their diverse biological activities, such as anti-inflammatory, anti-proliferative, antiviral, anticonvulsant, anti-diabetic, anti-hyperlipidemic, cardiovascular, anti-tubercular, antifungal, and antibacterial (Tripathi, et al., 2014). Based in these findings, we were interested in the synthesis of hybrid molecules that combine both pharmacophores, therefore we report in this study the synthesis and crystal structure of the title compound.

The title compound contains two independent molecules in the asymmetric unit which differ primarily in the rotational orientation of the 5-membered, heterocyclic ring (Fig. 1). Each molecule contais a strong, intramolecular hydrogen bond (Table 1 and Fig. 1) which determines the orientation of the ester group. The molecules pack in a zigzag fashion (Fig. 3) assembled by intermolecular N—H···O, N—H···N, C—H···O and C—H···S interactions (Table 1 and Fig. 2)

For pharmaceutical and chemotherapeutic properties of amino salicylic acid derivatives, see: Abdel-Alim et al. (2005); Abdu-Allah et al. (2005); Koelink et al. (2010). For general biological activities of thiazolidinone scaffold compounds, see: Tripathi et al. (2014).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit for the title compound with labeling scheme and 50% probability ellipsoids. The intramolecular hydrogen bonds are shown as dotted lines.
[Figure 2] Fig. 2. Packing viewed down the a axis with O—H···O (red) N—H···O (blue), N—H···N (blue), C—H···O (black) and C—H···S (yellow) interactions shown as dotted lines.
[Figure 3] Fig. 3. Packing viewed down the c axis. Key to dotted lines as for Figure 2.
Methyl 2-hydroxy-5-[(4-oxo-4,5-dihydro-1,3-thiazol-2-yl)amino]benzoate top
Crystal data top
C11H10N2O4SF(000) = 1104
Mr = 266.27Dx = 1.536 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 4.7787 (1) ÅCell parameters from 9975 reflections
b = 25.4128 (7) Åθ = 4.2–74.5°
c = 18.9599 (5) ŵ = 2.62 mm1
β = 90.841 (1)°T = 150 K
V = 2302.24 (10) Å3Block, yellow-orange
Z = 80.16 × 0.12 × 0.09 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4582 independent reflections
Radiation source: INCOATEC IµS micro-focus source3972 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 2.9°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 3131
Tmin = 0.76, Tmax = 0.80l = 2123
17982 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: mixed
wR(F2) = 0.089H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.0566P]
where P = (Fo2 + 2Fc2)/3
4582 reflections(Δ/σ)max = 0.001
327 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H10N2O4SV = 2302.24 (10) Å3
Mr = 266.27Z = 8
Monoclinic, P21/cCu Kα radiation
a = 4.7787 (1) ŵ = 2.62 mm1
b = 25.4128 (7) ÅT = 150 K
c = 18.9599 (5) Å0.16 × 0.12 × 0.09 mm
β = 90.841 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4582 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
3972 reflections with I > 2σ(I)
Tmin = 0.76, Tmax = 0.80Rint = 0.031
17982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
4582 reflectionsΔρmin = 0.26 e Å3
327 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger. H-atoms attached to carbon

were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those

attached to nitrogen and oxygen were placed in locations derived from a

difference map, refined initially to verify their presence and then their

parameters adjusted to give N—H = 0.91 Å and O—H = 0.84 Å. All

were included as riding contributions with isotropic displacement

parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20576 (11)0.60092 (2)0.64250 (2)0.03308 (12)
O10.8378 (3)0.39435 (5)0.78252 (7)0.0340 (3)
H1A0.77740.40130.82280.041*
O20.5442 (3)0.43997 (5)0.88146 (6)0.0313 (3)
O30.1993 (3)0.49520 (5)0.84894 (6)0.0296 (3)
O40.2571 (3)0.64326 (5)0.48484 (7)0.0460 (4)
N10.1989 (3)0.50385 (5)0.58425 (7)0.0244 (3)
H1N0.15220.48270.54710.029*
N20.0532 (3)0.56801 (5)0.52659 (7)0.0263 (3)
C10.3659 (4)0.48031 (6)0.63838 (8)0.0234 (3)
C20.3104 (3)0.48582 (6)0.70909 (8)0.0235 (3)
H20.16410.50850.72370.028*
C30.4698 (3)0.45798 (6)0.75962 (8)0.0224 (3)
C40.6808 (4)0.42367 (6)0.73737 (9)0.0253 (3)
C50.7330 (4)0.41851 (7)0.66549 (9)0.0295 (4)
H50.87720.39570.65010.035*
C60.5769 (4)0.44630 (7)0.61680 (9)0.0264 (3)
H60.61310.44230.56800.032*
C70.4110 (4)0.46286 (6)0.83537 (9)0.0244 (3)
C80.1382 (4)0.50350 (7)0.92288 (9)0.0341 (4)
H8A0.10740.46950.94580.051*
H8B0.03040.52520.92690.051*
H8C0.29640.52150.94590.051*
C90.1095 (4)0.55291 (6)0.58058 (8)0.0235 (3)
C100.1141 (4)0.62053 (7)0.52919 (9)0.0303 (4)
C110.0118 (4)0.64938 (7)0.59232 (10)0.0337 (4)
H11A0.13760.66500.62130.040*
H11B0.13740.67790.57650.040*
S20.79895 (10)0.68556 (2)0.30469 (2)0.03288 (12)
O50.1163 (3)0.86366 (5)0.57459 (6)0.0311 (3)
H5A0.23960.87880.55000.037*
O60.3730 (3)0.89682 (5)0.45724 (7)0.0315 (3)
O70.2248 (3)0.86409 (5)0.35416 (6)0.0359 (3)
O80.4930 (3)0.78782 (5)0.17658 (7)0.0369 (3)
N30.4978 (3)0.72813 (5)0.40544 (7)0.0266 (3)
H3N0.59570.70340.43030.032*
N40.4467 (3)0.76550 (5)0.29297 (7)0.0273 (3)
C120.3322 (3)0.76357 (6)0.44516 (9)0.0244 (3)
C130.1336 (3)0.79618 (6)0.41508 (9)0.0242 (3)
H130.10020.79520.36560.029*
C140.0191 (3)0.83065 (6)0.45723 (8)0.0232 (3)
C150.0258 (3)0.83183 (6)0.53042 (9)0.0249 (3)
C160.2281 (4)0.79875 (7)0.55986 (9)0.0284 (4)
H160.26170.79930.60940.034*
C170.3800 (4)0.76519 (7)0.51822 (9)0.0276 (4)
H170.51810.74300.53910.033*
C180.2245 (4)0.86683 (6)0.42429 (9)0.0261 (3)
C190.4239 (5)0.89664 (8)0.31670 (11)0.0464 (5)
H19A0.61060.89130.33610.070*
H19B0.42600.88710.26660.070*
H19C0.37040.93370.32190.070*
C200.5553 (3)0.73108 (6)0.33708 (9)0.0250 (3)
C210.5600 (4)0.76067 (7)0.22716 (9)0.0283 (4)
C220.7842 (4)0.71821 (7)0.22087 (9)0.0330 (4)
H22A0.96750.73420.21000.040*
H22B0.73380.69300.18290.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0490 (3)0.0229 (2)0.0269 (2)0.00344 (17)0.01520 (19)0.00436 (15)
O10.0388 (7)0.0389 (7)0.0241 (6)0.0151 (5)0.0018 (5)0.0060 (5)
O20.0332 (7)0.0394 (7)0.0213 (6)0.0014 (5)0.0020 (5)0.0078 (5)
O30.0397 (7)0.0296 (6)0.0195 (6)0.0054 (5)0.0023 (5)0.0006 (5)
O40.0700 (10)0.0286 (7)0.0385 (8)0.0144 (6)0.0250 (7)0.0000 (6)
N10.0338 (8)0.0220 (6)0.0172 (6)0.0042 (5)0.0053 (5)0.0024 (5)
N20.0373 (8)0.0222 (6)0.0193 (7)0.0057 (6)0.0067 (6)0.0019 (5)
C10.0280 (9)0.0206 (7)0.0213 (8)0.0010 (6)0.0042 (6)0.0018 (6)
C20.0275 (9)0.0209 (7)0.0220 (8)0.0015 (6)0.0007 (6)0.0007 (6)
C30.0254 (8)0.0219 (7)0.0200 (8)0.0018 (6)0.0013 (6)0.0014 (6)
C40.0271 (9)0.0251 (8)0.0236 (8)0.0019 (6)0.0029 (6)0.0040 (6)
C50.0310 (9)0.0315 (9)0.0262 (9)0.0087 (7)0.0010 (7)0.0005 (7)
C60.0317 (9)0.0291 (8)0.0185 (8)0.0032 (7)0.0010 (6)0.0006 (6)
C70.0271 (9)0.0231 (7)0.0231 (8)0.0051 (6)0.0005 (6)0.0013 (6)
C80.0461 (11)0.0347 (9)0.0216 (9)0.0007 (8)0.0059 (8)0.0030 (7)
C90.0301 (9)0.0228 (7)0.0175 (7)0.0012 (6)0.0018 (6)0.0013 (6)
C100.0413 (10)0.0240 (8)0.0253 (9)0.0047 (7)0.0066 (7)0.0003 (7)
C110.0498 (12)0.0216 (8)0.0293 (9)0.0050 (7)0.0116 (8)0.0010 (7)
S20.0378 (3)0.0296 (2)0.0314 (2)0.01298 (17)0.00235 (18)0.00021 (17)
O50.0353 (7)0.0344 (6)0.0237 (6)0.0065 (5)0.0015 (5)0.0028 (5)
O60.0347 (7)0.0282 (6)0.0317 (7)0.0084 (5)0.0001 (5)0.0025 (5)
O70.0455 (8)0.0370 (7)0.0250 (6)0.0180 (6)0.0089 (5)0.0021 (5)
O80.0466 (8)0.0390 (7)0.0250 (6)0.0061 (6)0.0015 (5)0.0053 (5)
N30.0309 (8)0.0236 (7)0.0253 (7)0.0076 (6)0.0014 (6)0.0039 (5)
N40.0316 (8)0.0259 (7)0.0242 (7)0.0052 (6)0.0002 (6)0.0011 (5)
C120.0265 (9)0.0217 (7)0.0250 (8)0.0011 (6)0.0018 (6)0.0017 (6)
C130.0264 (9)0.0244 (8)0.0218 (8)0.0001 (6)0.0022 (6)0.0003 (6)
C140.0242 (8)0.0220 (7)0.0233 (8)0.0011 (6)0.0016 (6)0.0008 (6)
C150.0262 (9)0.0244 (8)0.0241 (8)0.0024 (6)0.0017 (6)0.0001 (6)
C160.0316 (9)0.0330 (9)0.0206 (8)0.0009 (7)0.0015 (7)0.0027 (6)
C170.0280 (9)0.0289 (8)0.0257 (9)0.0023 (7)0.0016 (7)0.0070 (7)
C180.0288 (9)0.0230 (8)0.0265 (9)0.0004 (6)0.0028 (7)0.0017 (6)
C190.0601 (14)0.0448 (12)0.0338 (11)0.0248 (10)0.0156 (9)0.0000 (8)
C200.0255 (8)0.0212 (7)0.0282 (9)0.0025 (6)0.0003 (6)0.0017 (6)
C210.0317 (9)0.0272 (8)0.0260 (9)0.0015 (7)0.0026 (7)0.0026 (7)
C220.0344 (10)0.0375 (10)0.0272 (9)0.0069 (8)0.0002 (7)0.0032 (7)
Geometric parameters (Å, º) top
S1—C91.7500 (16)S2—C201.7585 (16)
S1—C111.8043 (17)S2—C221.7933 (19)
O1—C41.353 (2)O5—C151.354 (2)
O1—H1A0.8400O5—H5A0.8400
O2—C71.221 (2)O6—C181.220 (2)
O3—C71.331 (2)O7—C181.331 (2)
O3—C81.452 (2)O7—C191.440 (2)
O4—C101.221 (2)O8—C211.220 (2)
N1—C91.319 (2)N3—C201.331 (2)
N1—C11.422 (2)N3—C121.422 (2)
N1—H1N0.9099N3—H3N0.9098
N2—C91.333 (2)N4—C201.312 (2)
N2—C101.367 (2)N4—C211.373 (2)
C1—C21.378 (2)C12—C131.377 (2)
C1—C61.394 (2)C12—C171.401 (2)
C2—C31.406 (2)C13—C141.398 (2)
C2—H20.9500C13—H130.9500
C3—C41.403 (2)C14—C151.401 (2)
C3—C71.473 (2)C14—C181.477 (2)
C4—C51.395 (2)C15—C161.392 (2)
C5—C61.374 (2)C16—C171.377 (2)
C5—H50.9500C16—H160.9500
C6—H60.9500C17—H170.9500
C8—H8A0.9800C19—H19A0.9800
C8—H8B0.9800C19—H19B0.9800
C8—H8C0.9800C19—H19C0.9800
C10—C111.520 (2)C21—C221.526 (2)
C11—H11A0.9900C22—H22A0.9900
C11—H11B0.9900C22—H22B0.9900
C9—S1—C1189.67 (8)C20—S2—C2289.28 (8)
C4—O1—H1A105.4C15—O5—H5A106.6
C7—O3—C8116.14 (13)C18—O7—C19116.99 (14)
C9—N1—C1127.82 (14)C20—N3—C12127.20 (14)
C9—N1—H1N116.1C20—N3—H3N115.5
C1—N1—H1N116.0C12—N3—H3N116.7
C9—N2—C10112.07 (14)C20—N4—C21111.24 (14)
C2—C1—C6119.94 (15)C13—C12—C17119.54 (15)
C2—C1—N1123.06 (15)C13—C12—N3123.18 (15)
C6—C1—N1116.70 (14)C17—C12—N3117.27 (14)
C1—C2—C3120.12 (15)C12—C13—C14120.16 (15)
C1—C2—H2119.9C12—C13—H13119.9
C3—C2—H2119.9C14—C13—H13119.9
C4—C3—C2119.52 (15)C13—C14—C15120.37 (15)
C4—C3—C7119.59 (14)C13—C14—C18119.84 (15)
C2—C3—C7120.85 (15)C15—C14—C18119.78 (15)
O1—C4—C5117.43 (15)O5—C15—C16117.68 (15)
O1—C4—C3123.12 (15)O5—C15—C14123.66 (15)
C5—C4—C3119.44 (15)C16—C15—C14118.66 (15)
C6—C5—C4120.33 (16)C17—C16—C15120.89 (16)
C6—C5—H5119.8C17—C16—H16119.6
C4—C5—H5119.8C15—C16—H16119.6
C5—C6—C1120.63 (15)C16—C17—C12120.36 (16)
C5—C6—H6119.7C16—C17—H17119.8
C1—C6—H6119.7C12—C17—H17119.8
O2—C7—O3123.05 (15)O6—C18—O7123.49 (15)
O2—C7—C3123.57 (16)O6—C18—C14124.10 (15)
O3—C7—C3113.38 (14)O7—C18—C14112.39 (14)
O3—C8—H8A109.5O7—C19—H19A109.5
O3—C8—H8B109.5O7—C19—H19B109.5
H8A—C8—H8B109.5H19A—C19—H19B109.5
O3—C8—H8C109.5O7—C19—H19C109.5
H8A—C8—H8C109.5H19A—C19—H19C109.5
H8B—C8—H8C109.5H19B—C19—H19C109.5
N1—C9—N2119.84 (14)N4—C20—N3124.96 (15)
N1—C9—S1122.80 (12)N4—C20—S2118.27 (13)
N2—C9—S1117.33 (12)N3—C20—S2116.77 (12)
O4—C10—N2123.68 (16)O8—C21—N4124.13 (17)
O4—C10—C11121.66 (15)O8—C21—C22120.97 (16)
N2—C10—C11114.66 (14)N4—C21—C22114.89 (15)
C10—C11—S1106.27 (11)C21—C22—S2106.04 (12)
C10—C11—H11A110.5C21—C22—H22A110.5
S1—C11—H11A110.5S2—C22—H22A110.5
C10—C11—H11B110.5C21—C22—H22B110.5
S1—C11—H11B110.5S2—C22—H22B110.5
H11A—C11—H11B108.7H22A—C22—H22B108.7
C9—N1—C1—C247.7 (3)C20—N3—C12—C1322.3 (3)
C9—N1—C1—C6138.67 (18)C20—N3—C12—C17156.84 (17)
C6—C1—C2—C31.2 (2)C17—C12—C13—C140.0 (2)
N1—C1—C2—C3174.71 (15)N3—C12—C13—C14179.07 (15)
C1—C2—C3—C41.5 (2)C12—C13—C14—C150.9 (2)
C1—C2—C3—C7179.19 (15)C12—C13—C14—C18177.82 (15)
C2—C3—C4—O1178.04 (15)C13—C14—C15—O5179.17 (15)
C7—C3—C4—O10.3 (2)C18—C14—C15—O52.1 (2)
C2—C3—C4—C51.3 (2)C13—C14—C15—C161.1 (2)
C7—C3—C4—C5178.98 (15)C18—C14—C15—C16177.59 (15)
O1—C4—C5—C6178.58 (16)O5—C15—C16—C17179.77 (15)
C3—C4—C5—C60.8 (3)C14—C15—C16—C170.5 (3)
C4—C5—C6—C10.5 (3)C15—C16—C17—C120.4 (3)
C2—C1—C6—C50.7 (3)C13—C12—C17—C160.6 (3)
N1—C1—C6—C5174.61 (16)N3—C12—C17—C16179.74 (15)
C8—O3—C7—O21.9 (2)C19—O7—C18—O63.5 (3)
C8—O3—C7—C3177.46 (14)C19—O7—C18—C14178.15 (16)
C4—C3—C7—O23.0 (2)C13—C14—C18—O6177.39 (16)
C2—C3—C7—O2179.34 (16)C15—C14—C18—O63.9 (3)
C4—C3—C7—O3177.66 (14)C13—C14—C18—O74.2 (2)
C2—C3—C7—O30.0 (2)C15—C14—C18—O7174.46 (15)
C1—N1—C9—N2178.03 (16)C21—N4—C20—N3176.22 (16)
C1—N1—C9—S14.4 (3)C21—N4—C20—S23.0 (2)
C10—N2—C9—N1176.80 (16)C12—N3—C20—N46.2 (3)
C10—N2—C9—S10.9 (2)C12—N3—C20—S2172.97 (13)
C11—S1—C9—N1176.98 (16)C22—S2—C20—N44.75 (15)
C11—S1—C9—N20.60 (15)C22—S2—C20—N3174.50 (14)
C9—N2—C10—O4179.11 (19)C20—N4—C21—O8179.46 (17)
C9—N2—C10—C110.7 (2)C20—N4—C21—C221.1 (2)
O4—C10—C11—S1179.56 (17)O8—C21—C22—S2176.26 (15)
N2—C10—C11—S10.3 (2)N4—C21—C22—S24.23 (19)
C9—S1—C11—C100.17 (14)C20—S2—C22—C214.54 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.841.872.6287 (18)150
O5—H5A···O60.841.922.6619 (18)147
N1—H1N···N2i0.911.962.8624 (19)175
N3—H3N···O4ii0.911.972.8703 (18)170
C11—H11A···O8iii0.992.393.371 (2)171
C5—H5···S2iv0.952.713.5043 (18)141
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x1, y+3/2, z+1/2; (iv) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.841.872.6287 (18)150
O5—H5A···O60.841.922.6619 (18)147
N1—H1N···N2i0.911.962.8624 (19)175
N3—H3N···O4ii0.911.972.8703 (18)170
C11—H11A···O8iii0.992.393.371 (2)171
C5—H5···S2iv0.952.713.5043 (18)141
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x1, y+3/2, z+1/2; (iv) x+2, y+1, z+1.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbdel-Alim, A. M., El-Shorbagi, A. A., Abdel-Moty, S. G. & Abdel-Allah, H. H. M. (2005). Arch. Pharm. Res. 28, 637–647.  Web of Science PubMed CAS Google Scholar
First citationAbdu-Allah, H. H. M., Abdel-Alim, A. M., Abdel-Moty, S. G. & El-Shorbagi, A. A. (2005). Bull. Pharm. Sci. Assiut Univ. 28, 237–253.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoelink, P. J., Mieremet-Ooms, M. A., Corver, W. E., Wolanin, K., Hommes, D. W., Lamers, C. B. & Verspaget, H. W. (2010). Inflamm. Bowel Dis. 16, 379–389.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTripathi, A. C., Gupta, S. J., Fatima, G. N., Sonar, P. K., Verma, A. & Saraf, S. K. (2014). Eur. J. Med. Chem. 72, 52–77.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds