organic compounds
of ({4-[(4-bromophenyl)ethynyl]-3,5-diethylphenyl}ethynyl)triisopropylsilane
aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China, and bResearch School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
*Correspondence e-mail: Graeme.Moxey@anu.edu.au
The title compound, C29H37BrSi, was synthesized by the Sonogashira coupling of [(3,5-diethyl-4-ethynylphenyl)ethynyl]triisopropylsilane with 4-bromo-1-iodobenzene. In the structure, the two phenyl rings are nearly parallel to each other with a dihedral angle of 4.27 (4)°. In the crystal, π–π interactions between the terminal and central phenyl rings of adjacent molecules link them in the a-axis direction [perpendicular distance = 3.5135 (14); centroid–centroid distance = 3.7393 (11) Å]. In addition, there are weak C—H⋯π interactions between the isopropyl H atoms and the phenyl rings of adjacent molecules.
CCDC reference: 1059001
1. Related literature
For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980). For the use of related oligo(phenyleneethynylene)s in the construction of metal alkynyl complexes exhibiting non-linear optical properties, see: Garcia et al. (2002); Hurst et al. (2002; 2003); McDonagh et al. (2003). For the synthesis of [(3,5-diethyl-4-iodophenyl)ethynyl]triisopropylsilane, see: Ehlers et al. (2011). For related structures, see: Lehnherr et al. (2008, 2009); Błaszczyk et al. (2007).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
2.3. Refinement
|
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1059001
https://doi.org/10.1107/S2056989015007252/hg5438sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015007252/hg5438Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015007252/hg5438Isup3.cml
As described herein, the title compound was prepared in three steps from ((3,5-diethyl-4-iodophenyl)ethynyl)triisopropylsilane; the synthesis of ((3,5-diethyl-4-iodophenyl)ethynyl)triisopropylsilane is described in: Ehlers et al. (2011).
1. Synthesis of ((2,6-diethyl-4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)trimethylsilane
((3,5-Diethyl-4-iodophenyl)ethynyl)triisopropylsilane (325 mg, 0.740 mmol) was added to triethylamine (15 mL) and the solvent was deoxygenated. Triisopropylsilylacetylene (0.2 mL, 1.45 mmol) was then added, followed by Pd(PPh3)4 (30 mg, 0.025 mmol) and CuI (5.0 mg, 0.025 mmol) and the mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure and the residue was purified using
on silica, eluting with petrol. The solvent was removed from the to give((2,6-diethyl-4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)trimethylsilane as a pale yellow liquid (0.194 g, 64%). 1H NMR (δ, 400MHz, CDCl3): 0.26 (s, 9H, H(Si(CH3)3), 1.13 (s, 21H, H21, H22), 1.23 (t, JHH = 7.5Hz, 6H, H16), 2.77 (q, JHH = 7.5Hz, 4H, H15), 7.14 (s, 2H, H11). 13C NMR (δ, 101MHz, CDCl3): 146.9 (C10), 128.9 (C11), 123.1 (C9), 121.9 (C12), 107.4 (C19), 103.6 (C8), 102.0 (C7), 91.4 (C20), 28.0 (C15), 18.8 (C22), 14.5 (C16), 11.4 (C21), 0.12 (C(SiCH3)3). MS—EI: m/z (fragment, relative intensity): 410.2 ([M]+, 8).
2. Synthesis of ((3,5-diethyl-4-ethynylphenyl)ethynyl)triisopropylsilane
((2,6-Diethyl-4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)trimethylsilane (0.947 g, 2.31 mmol) was added to a mixture of THF and ethanol (1:1, 50 mL). An aqueous solution of NaOH (2.5 mL, 0.1 M) was then added, and the mixture was stirred for 30 min. The solvent was removed under reduced pressure and the residue was purified using δ, 400MHz, CDCl3): 1.13 (s, 21H, H21, H22), 1.24 (t, JHH = 7.5Hz, 6H, H16), 2.80 (q, JHH = 7.5Hz, 4H, H15), 3.50 (s, 1H, H7), 7.17 (s, 2H, H11). 13C NMR (δ, 101MHz, CDCl3): 147.2 (C10), 128.9 (C11), 123.5 (C9), 120.7 (C12), 107.2 (C19), 91.6 (C20), 85.8 (C7), 80.3 (C8), 27.8 (C15), 18.7 (C22), 14.7 (C16), 11.4 (C21). MS—EI: m/z (fragment, relative intensity): 338.3 ([M]+, 26).
on silica, eluting with petrol. The solvent was removed to give ((3,5-diethyl-4-ethynylphenyl)ethynyl)triisopropylsilane as a pale yellow liquid (0.706 g, 90%). 1H NMR (3. Synthesis of ((4-((4-bromophenyl)ethynyl)-3,5-diethylphenyl)ethynyl)triisopropylsilane
((3,5-Diethyl-4-ethynylphenyl)ethynyl)triisopropylsilane (0.140 g, 0.415 mmol) and 4-bromo-1-iodobenzene (0.139 g, 0.491 mmol) was added to deoxygenated triethylamine (40 mL). PdCl2(PPh3)2 (9.0 mg, 0.12 mmol) and CuI (4 mg, 0.02 mmol) were then added, and the resultant solution was stirred at room temperature for 16 h. The solvent was then removed under vacuum and the residue was passed through a silica column, eluting with petrol. The solvent was reduced in volume to give ((4-((4-bromophenyl)ethynyl)-3,5-diethylphenyl)ethynyl)triisopropylsilane as a white solid (0.192 g, 96%). Anal. Calc. for C29H37BrSi: C, 70.57; H, 7.56. Found: C, 70.53; H, 7.61%. 1H NMR (δ, 400MHz, CDCl3): 1.14 (s, 21H, H21, H22), 1.28 (t, JHH = 7.5Hz, 6H, H16), 2.84 (q, JHH = 7.5Hz, 4H, H15), 7.20 (s, 2H, H11), 7.37 (d, JHH = 7.5Hz, 2H, H3), 7.49 (d, JHH = 7.5Hz, 2H, H2). 13C NMR (δ, 101MHz, CDCl3): 146.9 (C10), 132.8 (C3), 131.8 (C2), 128.9 (C11), 123.1 (C9), 122.8 (C1 or 4), 122.6 (C1 or 4), 121.9 (C12), 107.4 (C19), 97.2 (C7), 91.9 (C20), 87.8 (C8), 28.1 (C15), 18.8 (C22), 14.8 (C16), 11.5 (C21). MS—EI: m/z (fragment, relative intensity): 494.2 ([M]+, 10). Colorless crystals of the title compound were obtained by slow evaporation of a hexane solution at room temperature.
For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980). For the use of related oligo(phenyleneethynylene)s in the construction of metal alkynyl complexes exhibiting non-linear optical properties, see: Garcia et al. (2002); Hurst et al. (2002); Hurst et al. (2003); McDonagh et al. (2003). For the synthesis of [(3,5-diethyl-4-iodophenyl)ethynyl]triisopropylsilane, see: Ehlers et al. (2011). For related structures, see: Lehnherr et al. (2008, 2009); Błaszczyk et al. (2007).
As described herein, the title compound was prepared in three steps from ((3,5-diethyl-4-iodophenyl)ethynyl)triisopropylsilane; the synthesis of ((3,5-diethyl-4-iodophenyl)ethynyl)triisopropylsilane is described in: Ehlers et al. (2011).
1. Synthesis of ((2,6-diethyl-4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)trimethylsilane
((3,5-Diethyl-4-iodophenyl)ethynyl)triisopropylsilane (325 mg, 0.740 mmol) was added to triethylamine (15 mL) and the solvent was deoxygenated. Triisopropylsilylacetylene (0.2 mL, 1.45 mmol) was then added, followed by Pd(PPh3)4 (30 mg, 0.025 mmol) and CuI (5.0 mg, 0.025 mmol) and the mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure and the residue was purified using
on silica, eluting with petrol. The solvent was removed from the to give((2,6-diethyl-4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)trimethylsilane as a pale yellow liquid (0.194 g, 64%). 1H NMR (δ, 400MHz, CDCl3): 0.26 (s, 9H, H(Si(CH3)3), 1.13 (s, 21H, H21, H22), 1.23 (t, JHH = 7.5Hz, 6H, H16), 2.77 (q, JHH = 7.5Hz, 4H, H15), 7.14 (s, 2H, H11). 13C NMR (δ, 101MHz, CDCl3): 146.9 (C10), 128.9 (C11), 123.1 (C9), 121.9 (C12), 107.4 (C19), 103.6 (C8), 102.0 (C7), 91.4 (C20), 28.0 (C15), 18.8 (C22), 14.5 (C16), 11.4 (C21), 0.12 (C(SiCH3)3). MS—EI: m/z (fragment, relative intensity): 410.2 ([M]+, 8).
2. Synthesis of ((3,5-diethyl-4-ethynylphenyl)ethynyl)triisopropylsilane
((2,6-Diethyl-4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)trimethylsilane (0.947 g, 2.31 mmol) was added to a mixture of THF and ethanol (1:1, 50 mL). An aqueous solution of NaOH (2.5 mL, 0.1 M) was then added, and the mixture was stirred for 30 min. The solvent was removed under reduced pressure and the residue was purified using δ, 400MHz, CDCl3): 1.13 (s, 21H, H21, H22), 1.24 (t, JHH = 7.5Hz, 6H, H16), 2.80 (q, JHH = 7.5Hz, 4H, H15), 3.50 (s, 1H, H7), 7.17 (s, 2H, H11). 13C NMR (δ, 101MHz, CDCl3): 147.2 (C10), 128.9 (C11), 123.5 (C9), 120.7 (C12), 107.2 (C19), 91.6 (C20), 85.8 (C7), 80.3 (C8), 27.8 (C15), 18.7 (C22), 14.7 (C16), 11.4 (C21). MS—EI: m/z (fragment, relative intensity): 338.3 ([M]+, 26).
on silica, eluting with petrol. The solvent was removed to give ((3,5-diethyl-4-ethynylphenyl)ethynyl)triisopropylsilane as a pale yellow liquid (0.706 g, 90%). 1H NMR (3. Synthesis of ((4-((4-bromophenyl)ethynyl)-3,5-diethylphenyl)ethynyl)triisopropylsilane
((3,5-Diethyl-4-ethynylphenyl)ethynyl)triisopropylsilane (0.140 g, 0.415 mmol) and 4-bromo-1-iodobenzene (0.139 g, 0.491 mmol) was added to deoxygenated triethylamine (40 mL). PdCl2(PPh3)2 (9.0 mg, 0.12 mmol) and CuI (4 mg, 0.02 mmol) were then added, and the resultant solution was stirred at room temperature for 16 h. The solvent was then removed under vacuum and the residue was passed through a silica column, eluting with petrol. The solvent was reduced in volume to give ((4-((4-bromophenyl)ethynyl)-3,5-diethylphenyl)ethynyl)triisopropylsilane as a white solid (0.192 g, 96%). Anal. Calc. for C29H37BrSi: C, 70.57; H, 7.56. Found: C, 70.53; H, 7.61%. 1H NMR (δ, 400MHz, CDCl3): 1.14 (s, 21H, H21, H22), 1.28 (t, JHH = 7.5Hz, 6H, H16), 2.84 (q, JHH = 7.5Hz, 4H, H15), 7.20 (s, 2H, H11), 7.37 (d, JHH = 7.5Hz, 2H, H3), 7.49 (d, JHH = 7.5Hz, 2H, H2). 13C NMR (δ, 101MHz, CDCl3): 146.9 (C10), 132.8 (C3), 131.8 (C2), 128.9 (C11), 123.1 (C9), 122.8 (C1 or 4), 122.6 (C1 or 4), 121.9 (C12), 107.4 (C19), 97.2 (C7), 91.9 (C20), 87.8 (C8), 28.1 (C15), 18.8 (C22), 14.8 (C16), 11.5 (C21). MS—EI: m/z (fragment, relative intensity): 494.2 ([M]+, 10). Colorless crystals of the title compound were obtained by slow evaporation of a hexane solution at room temperature.
detailsCrystal data, data collection and structure
details are summarized below.Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C29H37BrSi | F(000) = 1040 |
Mr = 493.58 | Dx = 1.205 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 14.9043 (2) Å | Cell parameters from 7858 reflections |
b = 8.50185 (11) Å | θ = 3.1–72.1° |
c = 22.6111 (3) Å | µ = 2.56 mm−1 |
β = 108.2791 (16)° | T = 150 K |
V = 2720.56 (7) Å3 | Needle, colorless |
Z = 4 | 0.19 × 0.06 × 0.05 mm |
Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer | 5355 independent reflections |
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source | 4677 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 8.1297 pixels mm-1 | θmax = 72.3°, θmin = 4.1° |
ω scans | h = −17→18 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] | k = −10→8 |
Tmin = 0.910, Tmax = 0.973 | l = −26→27 |
17549 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0487P)2 + 0.7988P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
5355 reflections | Δρmax = 0.44 e Å−3 |
288 parameters | Δρmin = −0.64 e Å−3 |
0 restraints |
C29H37BrSi | V = 2720.56 (7) Å3 |
Mr = 493.58 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 14.9043 (2) Å | µ = 2.56 mm−1 |
b = 8.50185 (11) Å | T = 150 K |
c = 22.6111 (3) Å | 0.19 × 0.06 × 0.05 mm |
β = 108.2791 (16)° |
Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer | 5355 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] | 4677 reflections with I > 2σ(I) |
Tmin = 0.910, Tmax = 0.973 | Rint = 0.030 |
17549 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.44 e Å−3 |
5355 reflections | Δρmin = −0.64 e Å−3 |
288 parameters |
Experimental. Absorption correction: CrysAlisPro (Agilent Technologies, 2014) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.59936 (2) | 1.35829 (4) | −0.03406 (2) | 0.06342 (11) | |
C1 | 0.60740 (12) | 1.2473 (2) | 0.04038 (8) | 0.0367 (4) | |
C2 | 0.61900 (13) | 1.3304 (2) | 0.09424 (10) | 0.0391 (4) | |
H2 | 0.6229 | 1.4396 | 0.0944 | 0.047* | |
C3 | 0.62480 (13) | 1.2492 (2) | 0.14846 (8) | 0.0353 (4) | |
H3 | 0.6346 | 1.3043 | 0.1855 | 0.042* | |
C4 | 0.61611 (11) | 1.0861 (2) | 0.14807 (8) | 0.0297 (3) | |
C5 | 0.60401 (13) | 1.0054 (2) | 0.09239 (8) | 0.0351 (4) | |
H5 | 0.5979 | 0.8965 | 0.0914 | 0.042* | |
C6 | 0.60100 (13) | 1.0858 (3) | 0.03850 (8) | 0.0386 (4) | |
H6 | 0.5948 | 1.0316 | 0.0017 | 0.046* | |
C7 | 0.61969 (12) | 1.0040 (2) | 0.20410 (8) | 0.0346 (4) | |
C8 | 0.62174 (12) | 0.9394 (2) | 0.25178 (8) | 0.0340 (3) | |
C9 | 0.62603 (11) | 0.8617 (2) | 0.30887 (7) | 0.0285 (3) | |
C10 | 0.63335 (11) | 0.9506 (2) | 0.36276 (8) | 0.0303 (3) | |
C11 | 0.64252 (11) | 0.8724 (2) | 0.41843 (7) | 0.0296 (3) | |
H11 | 0.6479 | 0.9302 | 0.4543 | 0.036* | |
C12 | 0.64376 (11) | 0.7080 (2) | 0.42108 (7) | 0.0277 (3) | |
C13 | 0.63343 (11) | 0.62185 (19) | 0.36677 (7) | 0.0284 (3) | |
H13 | 0.6324 | 0.5126 | 0.3683 | 0.034* | |
C14 | 0.62465 (11) | 0.6958 (2) | 0.31058 (7) | 0.0287 (3) | |
C15 | 0.63495 (14) | 1.1285 (2) | 0.36204 (10) | 0.0396 (4) | |
H15A | 0.6087 | 1.1683 | 0.3933 | 0.048* | |
H15B | 0.5955 | 1.1657 | 0.3217 | 0.048* | |
C16 | 0.73415 (18) | 1.1921 (3) | 0.37476 (16) | 0.0639 (7) | |
H16A | 0.7619 | 1.1475 | 0.3456 | 0.096* | |
H16B | 0.7717 | 1.1647 | 0.4164 | 0.096* | |
H16C | 0.7318 | 1.3045 | 0.3704 | 0.096* | |
C17 | 0.61268 (14) | 0.5983 (2) | 0.25298 (8) | 0.0384 (4) | |
H17A | 0.6384 | 0.4941 | 0.2652 | 0.046* | |
H17B | 0.6483 | 0.6460 | 0.2284 | 0.046* | |
C18 | 0.51011 (17) | 0.5835 (3) | 0.21337 (10) | 0.0575 (6) | |
H18A | 0.5062 | 0.5266 | 0.1760 | 0.086* | |
H18B | 0.4835 | 0.6865 | 0.2028 | 0.086* | |
H18C | 0.4756 | 0.5281 | 0.2363 | 0.086* | |
C19 | 0.65751 (12) | 0.6270 (2) | 0.47885 (8) | 0.0306 (3) | |
C20 | 0.67199 (12) | 0.5571 (2) | 0.52729 (7) | 0.0318 (3) | |
C21 | 0.68643 (12) | 0.6214 (2) | 0.65936 (8) | 0.0330 (3) | |
H21 | 0.7019 | 0.5752 | 0.7011 | 0.040* | |
C22 | 0.75465 (17) | 0.7576 (3) | 0.66248 (10) | 0.0482 (5) | |
H22A | 0.8184 | 0.7191 | 0.6762 | 0.072* | |
H22B | 0.7469 | 0.8353 | 0.6913 | 0.072* | |
H22C | 0.7415 | 0.8040 | 0.6219 | 0.072* | |
C23 | 0.58501 (15) | 0.6822 (3) | 0.64139 (11) | 0.0497 (5) | |
H23A | 0.5668 | 0.7226 | 0.5996 | 0.075* | |
H23B | 0.5810 | 0.7645 | 0.6695 | 0.075* | |
H23C | 0.5435 | 0.5978 | 0.6437 | 0.075* | |
C24 | 0.61059 (12) | 0.3018 (2) | 0.59826 (8) | 0.0328 (3) | |
H24 | 0.5494 | 0.3552 | 0.5885 | 0.039* | |
C25 | 0.62337 (16) | 0.2156 (3) | 0.65974 (10) | 0.0493 (5) | |
H25A | 0.6800 | 0.1535 | 0.6700 | 0.074* | |
H25B | 0.5700 | 0.1482 | 0.6556 | 0.074* | |
H25C | 0.6281 | 0.2910 | 0.6922 | 0.074* | |
C26 | 0.60039 (18) | 0.1852 (3) | 0.54504 (11) | 0.0554 (5) | |
H26A | 0.5933 | 0.2418 | 0.5071 | 0.083* | |
H26B | 0.5458 | 0.1204 | 0.5402 | 0.083* | |
H26C | 0.6557 | 0.1201 | 0.5544 | 0.083* | |
C27 | 0.82830 (12) | 0.3998 (2) | 0.62548 (8) | 0.0337 (3) | |
H27 | 0.8635 | 0.4924 | 0.6193 | 0.040* | |
C28 | 0.87126 (14) | 0.3534 (3) | 0.69440 (10) | 0.0492 (5) | |
H28A | 0.8649 | 0.4395 | 0.7203 | 0.074* | |
H28B | 0.9370 | 0.3288 | 0.7029 | 0.074* | |
H28C | 0.8387 | 0.2631 | 0.7030 | 0.074* | |
C29 | 0.84528 (15) | 0.2720 (3) | 0.58276 (11) | 0.0511 (5) | |
H29A | 0.8215 | 0.1734 | 0.5923 | 0.077* | |
H29B | 0.9118 | 0.2629 | 0.5890 | 0.077* | |
H29C | 0.8132 | 0.2993 | 0.5402 | 0.077* | |
Si1 | 0.70023 (3) | 0.46269 (5) | 0.60435 (2) | 0.02571 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.05680 (15) | 0.0898 (2) | 0.04728 (14) | 0.00897 (12) | 0.02157 (11) | 0.04038 (12) |
C1 | 0.0294 (8) | 0.0511 (10) | 0.0307 (8) | 0.0024 (7) | 0.0110 (6) | 0.0173 (7) |
C2 | 0.0355 (9) | 0.0348 (8) | 0.0469 (10) | −0.0030 (7) | 0.0126 (8) | 0.0087 (7) |
C3 | 0.0375 (9) | 0.0374 (8) | 0.0305 (8) | −0.0025 (7) | 0.0101 (7) | −0.0016 (7) |
C4 | 0.0252 (7) | 0.0369 (8) | 0.0270 (7) | 0.0022 (6) | 0.0081 (6) | 0.0071 (6) |
C5 | 0.0374 (9) | 0.0331 (8) | 0.0341 (8) | 0.0014 (7) | 0.0103 (7) | 0.0034 (7) |
C6 | 0.0385 (9) | 0.0505 (10) | 0.0259 (8) | 0.0016 (8) | 0.0089 (7) | −0.0008 (7) |
C7 | 0.0304 (8) | 0.0430 (9) | 0.0311 (8) | 0.0053 (7) | 0.0108 (6) | 0.0084 (7) |
C8 | 0.0294 (8) | 0.0423 (9) | 0.0311 (8) | 0.0058 (6) | 0.0106 (6) | 0.0082 (7) |
C9 | 0.0236 (7) | 0.0379 (8) | 0.0251 (7) | 0.0052 (6) | 0.0091 (6) | 0.0076 (6) |
C10 | 0.0253 (7) | 0.0344 (8) | 0.0310 (8) | 0.0034 (6) | 0.0084 (6) | 0.0041 (6) |
C11 | 0.0274 (7) | 0.0367 (8) | 0.0241 (7) | 0.0018 (6) | 0.0071 (6) | −0.0010 (6) |
C12 | 0.0238 (7) | 0.0367 (8) | 0.0223 (7) | 0.0014 (6) | 0.0068 (5) | 0.0042 (6) |
C13 | 0.0266 (7) | 0.0317 (7) | 0.0265 (7) | 0.0019 (6) | 0.0078 (6) | 0.0033 (6) |
C14 | 0.0257 (7) | 0.0376 (8) | 0.0232 (7) | 0.0056 (6) | 0.0080 (6) | 0.0021 (6) |
C15 | 0.0400 (9) | 0.0349 (9) | 0.0448 (10) | 0.0074 (7) | 0.0147 (8) | 0.0049 (7) |
C16 | 0.0482 (12) | 0.0308 (9) | 0.113 (2) | 0.0018 (8) | 0.0260 (13) | 0.0018 (11) |
C17 | 0.0439 (10) | 0.0457 (9) | 0.0265 (8) | 0.0110 (8) | 0.0124 (7) | −0.0001 (7) |
C18 | 0.0504 (12) | 0.0779 (16) | 0.0364 (10) | 0.0063 (11) | 0.0022 (9) | −0.0193 (10) |
C19 | 0.0286 (7) | 0.0383 (8) | 0.0250 (8) | 0.0004 (6) | 0.0084 (6) | 0.0027 (6) |
C20 | 0.0317 (8) | 0.0408 (9) | 0.0226 (7) | 0.0018 (6) | 0.0080 (6) | 0.0030 (6) |
C21 | 0.0332 (8) | 0.0415 (9) | 0.0244 (7) | 0.0021 (7) | 0.0091 (6) | −0.0030 (6) |
C22 | 0.0523 (11) | 0.0461 (10) | 0.0464 (11) | −0.0083 (9) | 0.0159 (9) | −0.0115 (8) |
C23 | 0.0391 (10) | 0.0623 (12) | 0.0471 (11) | 0.0094 (9) | 0.0127 (8) | −0.0152 (9) |
C24 | 0.0288 (8) | 0.0401 (8) | 0.0284 (8) | −0.0024 (6) | 0.0073 (6) | 0.0009 (7) |
C25 | 0.0481 (11) | 0.0572 (12) | 0.0403 (10) | −0.0159 (9) | 0.0107 (8) | 0.0119 (9) |
C26 | 0.0571 (13) | 0.0613 (13) | 0.0480 (11) | −0.0208 (11) | 0.0169 (10) | −0.0201 (10) |
C27 | 0.0272 (7) | 0.0417 (9) | 0.0322 (8) | 0.0025 (6) | 0.0096 (6) | 0.0055 (7) |
C28 | 0.0305 (9) | 0.0717 (14) | 0.0406 (10) | 0.0066 (9) | 0.0043 (8) | 0.0166 (9) |
C29 | 0.0380 (10) | 0.0573 (12) | 0.0595 (13) | 0.0094 (9) | 0.0172 (9) | −0.0093 (10) |
Si1 | 0.0248 (2) | 0.0339 (2) | 0.01806 (18) | 0.00090 (15) | 0.00617 (14) | 0.00271 (15) |
Br1—C1 | 1.9003 (16) | C18—H18B | 0.9600 |
C1—C2 | 1.371 (3) | C18—H18C | 0.9600 |
C1—C6 | 1.376 (3) | C19—C20 | 1.204 (3) |
C2—H2 | 0.9300 | C20—Si1 | 1.8431 (17) |
C2—C3 | 1.386 (3) | C21—H21 | 0.9800 |
C3—H3 | 0.9300 | C21—C22 | 1.528 (3) |
C3—C4 | 1.393 (3) | C21—C23 | 1.527 (3) |
C4—C5 | 1.395 (3) | C21—Si1 | 1.8894 (17) |
C4—C7 | 1.433 (2) | C22—H22A | 0.9600 |
C5—H5 | 0.9300 | C22—H22B | 0.9600 |
C5—C6 | 1.386 (3) | C22—H22C | 0.9600 |
C6—H6 | 0.9300 | C23—H23A | 0.9600 |
C7—C8 | 1.202 (3) | C23—H23B | 0.9600 |
C8—C9 | 1.434 (2) | C23—H23C | 0.9600 |
C9—C10 | 1.409 (2) | C24—H24 | 0.9800 |
C9—C14 | 1.411 (2) | C24—C25 | 1.530 (2) |
C10—C11 | 1.392 (2) | C24—C26 | 1.530 (3) |
C10—C15 | 1.513 (2) | C24—Si1 | 1.8866 (17) |
C11—H11 | 0.9300 | C25—H25A | 0.9600 |
C11—C12 | 1.399 (2) | C25—H25B | 0.9600 |
C12—C13 | 1.396 (2) | C25—H25C | 0.9600 |
C12—C19 | 1.434 (2) | C26—H26A | 0.9600 |
C13—H13 | 0.9300 | C26—H26B | 0.9600 |
C13—C14 | 1.387 (2) | C26—H26C | 0.9600 |
C14—C17 | 1.507 (2) | C27—H27 | 0.9800 |
C15—H15A | 0.9700 | C27—C28 | 1.539 (2) |
C15—H15B | 0.9700 | C27—C29 | 1.527 (3) |
C15—C16 | 1.515 (3) | C27—Si1 | 1.8936 (17) |
C16—H16A | 0.9600 | C28—H28A | 0.9600 |
C16—H16B | 0.9600 | C28—H28B | 0.9600 |
C16—H16C | 0.9600 | C28—H28C | 0.9600 |
C17—H17A | 0.9700 | C29—H29A | 0.9600 |
C17—H17B | 0.9700 | C29—H29B | 0.9600 |
C17—C18 | 1.515 (3) | C29—H29C | 0.9600 |
C18—H18A | 0.9600 | ||
C2—C1—Br1 | 119.11 (15) | C20—C19—C12 | 177.76 (18) |
C2—C1—C6 | 121.98 (16) | C19—C20—Si1 | 175.58 (16) |
C6—C1—Br1 | 118.90 (15) | C22—C21—H21 | 107.8 |
C1—C2—H2 | 120.5 | C22—C21—Si1 | 111.30 (13) |
C1—C2—C3 | 119.02 (17) | C23—C21—H21 | 107.8 |
C3—C2—H2 | 120.5 | C23—C21—C22 | 110.13 (18) |
C2—C3—H3 | 119.7 | C23—C21—Si1 | 111.70 (13) |
C2—C3—C4 | 120.68 (17) | Si1—C21—H21 | 107.8 |
C4—C3—H3 | 119.7 | C21—C22—H22A | 109.5 |
C3—C4—C5 | 118.74 (16) | C21—C22—H22B | 109.5 |
C3—C4—C7 | 120.14 (17) | C21—C22—H22C | 109.5 |
C5—C4—C7 | 121.12 (17) | H22A—C22—H22B | 109.5 |
C4—C5—H5 | 119.7 | H22A—C22—H22C | 109.5 |
C6—C5—C4 | 120.69 (17) | H22B—C22—H22C | 109.5 |
C6—C5—H5 | 119.7 | C21—C23—H23A | 109.5 |
C1—C6—C5 | 118.83 (17) | C21—C23—H23B | 109.5 |
C1—C6—H6 | 120.6 | C21—C23—H23C | 109.5 |
C5—C6—H6 | 120.6 | H23A—C23—H23B | 109.5 |
C8—C7—C4 | 177.9 (2) | H23A—C23—H23C | 109.5 |
C7—C8—C9 | 178.92 (18) | H23B—C23—H23C | 109.5 |
C10—C9—C8 | 120.05 (16) | C25—C24—H24 | 105.5 |
C10—C9—C14 | 120.69 (15) | C25—C24—Si1 | 113.43 (12) |
C14—C9—C8 | 119.24 (16) | C26—C24—H24 | 105.5 |
C9—C10—C15 | 121.63 (16) | C26—C24—C25 | 110.96 (18) |
C11—C10—C9 | 119.01 (15) | C26—C24—Si1 | 114.88 (14) |
C11—C10—C15 | 119.33 (16) | Si1—C24—H24 | 105.5 |
C10—C11—H11 | 119.6 | C24—C25—H25A | 109.5 |
C10—C11—C12 | 120.81 (15) | C24—C25—H25B | 109.5 |
C12—C11—H11 | 119.6 | C24—C25—H25C | 109.5 |
C11—C12—C19 | 121.02 (15) | H25A—C25—H25B | 109.5 |
C13—C12—C11 | 119.35 (15) | H25A—C25—H25C | 109.5 |
C13—C12—C19 | 119.61 (15) | H25B—C25—H25C | 109.5 |
C12—C13—H13 | 119.3 | C24—C26—H26A | 109.5 |
C14—C13—C12 | 121.37 (15) | C24—C26—H26B | 109.5 |
C14—C13—H13 | 119.3 | C24—C26—H26C | 109.5 |
C9—C14—C17 | 121.68 (15) | H26A—C26—H26B | 109.5 |
C13—C14—C9 | 118.71 (15) | H26A—C26—H26C | 109.5 |
C13—C14—C17 | 119.60 (16) | H26B—C26—H26C | 109.5 |
C10—C15—H15A | 109.2 | C28—C27—H27 | 106.2 |
C10—C15—H15B | 109.2 | C28—C27—Si1 | 113.21 (13) |
C10—C15—C16 | 111.88 (16) | C29—C27—H27 | 106.2 |
H15A—C15—H15B | 107.9 | C29—C27—C28 | 111.08 (18) |
C16—C15—H15A | 109.2 | C29—C27—Si1 | 113.30 (13) |
C16—C15—H15B | 109.2 | Si1—C27—H27 | 106.2 |
C15—C16—H16A | 109.5 | C27—C28—H28A | 109.5 |
C15—C16—H16B | 109.5 | C27—C28—H28B | 109.5 |
C15—C16—H16C | 109.5 | C27—C28—H28C | 109.5 |
H16A—C16—H16B | 109.5 | H28A—C28—H28B | 109.5 |
H16A—C16—H16C | 109.5 | H28A—C28—H28C | 109.5 |
H16B—C16—H16C | 109.5 | H28B—C28—H28C | 109.5 |
C14—C17—H17A | 109.1 | C27—C29—H29A | 109.5 |
C14—C17—H17B | 109.1 | C27—C29—H29B | 109.5 |
C14—C17—C18 | 112.37 (16) | C27—C29—H29C | 109.5 |
H17A—C17—H17B | 107.9 | H29A—C29—H29B | 109.5 |
C18—C17—H17A | 109.1 | H29A—C29—H29C | 109.5 |
C18—C17—H17B | 109.1 | H29B—C29—H29C | 109.5 |
C17—C18—H18A | 109.5 | C20—Si1—C21 | 105.76 (8) |
C17—C18—H18B | 109.5 | C20—Si1—C24 | 107.47 (8) |
C17—C18—H18C | 109.5 | C20—Si1—C27 | 105.95 (8) |
H18A—C18—H18B | 109.5 | C21—Si1—C27 | 110.17 (8) |
H18A—C18—H18C | 109.5 | C24—Si1—C21 | 110.17 (8) |
H18B—C18—H18C | 109.5 | C24—Si1—C27 | 116.63 (8) |
Br1—C1—C2—C3 | 179.97 (14) | C12—C13—C14—C17 | −179.40 (15) |
Br1—C1—C6—C5 | −178.08 (14) | C13—C14—C17—C18 | 97.4 (2) |
C1—C2—C3—C4 | −2.0 (3) | C14—C9—C10—C11 | 2.2 (2) |
C2—C1—C6—C5 | 1.7 (3) | C14—C9—C10—C15 | 180.00 (15) |
C2—C3—C4—C5 | 1.7 (3) | C15—C10—C11—C12 | −178.35 (15) |
C2—C3—C4—C7 | −178.31 (17) | C19—C12—C13—C14 | −176.79 (15) |
C3—C4—C5—C6 | 0.2 (3) | C22—C21—Si1—C20 | −61.07 (15) |
C4—C5—C6—C1 | −1.9 (3) | C22—C21—Si1—C24 | −176.92 (13) |
C6—C1—C2—C3 | 0.2 (3) | C22—C21—Si1—C27 | 53.01 (15) |
C7—C4—C5—C6 | −179.76 (16) | C23—C21—Si1—C20 | 62.49 (16) |
C8—C9—C10—C11 | −176.57 (15) | C23—C21—Si1—C24 | −53.36 (17) |
C8—C9—C10—C15 | 1.2 (2) | C23—C21—Si1—C27 | 176.56 (15) |
C8—C9—C14—C13 | 176.92 (15) | C25—C24—Si1—C20 | −178.21 (15) |
C8—C9—C14—C17 | −3.9 (2) | C25—C24—Si1—C21 | −63.44 (17) |
C9—C10—C11—C12 | −0.5 (2) | C25—C24—Si1—C27 | 63.09 (17) |
C9—C10—C15—C16 | −87.6 (2) | C26—C24—Si1—C20 | 52.68 (17) |
C9—C14—C17—C18 | −81.8 (2) | C26—C24—Si1—C21 | 167.46 (15) |
C10—C9—C14—C13 | −1.9 (2) | C26—C24—Si1—C27 | −66.01 (17) |
C10—C9—C14—C17 | 177.33 (15) | C28—C27—Si1—C20 | 166.62 (15) |
C10—C11—C12—C13 | −1.5 (2) | C28—C27—Si1—C21 | 52.66 (17) |
C10—C11—C12—C19 | 177.13 (15) | C28—C27—Si1—C24 | −73.87 (17) |
C11—C10—C15—C16 | 90.2 (2) | C29—C27—Si1—C20 | −65.74 (16) |
C11—C12—C13—C14 | 1.9 (2) | C29—C27—Si1—C21 | −179.69 (15) |
C12—C13—C14—C9 | −0.2 (2) | C29—C27—Si1—C24 | 53.77 (17) |
Cg is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25B···Cgi | 0.96 | 2.98 | 3.699 (3) | 132 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C25—H25B···Cgi | 0.96 | 2.98 | 3.699 (3) | 132 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
We gratefully acknowledge support from the Australian Research Council (LE130100057) to purchase Agilent Technologies SuperNova and XCalibur diffractometers. We thank Professors C. Zhang (Jiangnan University), M. P. Cifuentes (Australian National University) and M. G. Humphrey (Australian National University) for assistance.
References
Agilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Błaszczyk, A., Fischer, M., von Hänisch, C. & Mayor, M. (2007). Eur. J. Org. Chem. 2007, 2630–2642. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ehlers, I., Maity, P., Aubé, J. & König, B. (2011). Eur. J. Org. Chem. 2011, 2474–2490. CrossRef Google Scholar
Garcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107–2118. Web of Science CSD CrossRef CAS Google Scholar
Hurst, S. K., Cifuentes, M. P. & Humphrey, M. G. (2002). Organometallics, 21, 2353–2355. CrossRef CAS Google Scholar
Hurst, S. K., Humphrey, M. G., Morrall, J. P., Cifuentes, M. P., Samoc, M., Luther-Davies, B., Heath, G. A. & Willis, A. C. (2003). J. Organomet. Chem. 670, 56–65. Web of Science CSD CrossRef CAS Google Scholar
Lehnherr, D., McDonald, R. & Tykwinski, R. R. (2008). Org. Lett. 10, 4163–4166. CSD CrossRef PubMed CAS Google Scholar
Lehnherr, D., Murray, A. H., McDonald, R., Ferguson, M. J. & Tykwinski, R. R. (2009). Chem. Eur. J. 15, 12580–12584. CSD CrossRef PubMed CAS Google Scholar
McDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402–1413. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627–630. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.