organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4′-bromo-2,3,5,6-tetra­fluoro­bi­phenyl-4-carbo­nitrile

aInstitut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany, and bDepartment of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
*Correspondence e-mail: anke.schwarzer@chemie.tu-freiberg.de

Edited by W. Imhof, University Koblenz-Landau, Germany (Received 16 April 2015; accepted 21 April 2015; online 25 April 2015)

The title compound, C13H4BrF4N, synthesized from 1,4′-bromo­iodo­benzene and 4-bromo-2,3,5,6-tetra­fluoro­benzo­nitrile in a coupling reaction was found to crystallize in the ortho­rhom­bic space group P212121. The two phenyl rings are rotated with respect to each other by 40.6 (6)°. The mol­ecules inter­act via aryl–perfluoroaryl stacking [3.796 (2) and 3.773 (2) Å], resulting in inter­molecular chains along the a-axis direction. C—H⋯F contacts of about 2.45 Å connect these chains. In contrast to the structure of the parent compound 4′-bromo­biphenyl-4-carbo­nitrile, CN⋯Br contacts that could have given rise to a linear arrangement of the biphenyl mol­ecules desirable for non-linear optical (NLO) materials are not observed in the packing. Instead, several Br⋯F [3.2405 (17) and 3.2777 (18) Å] and F⋯F [2.894 (2) Å] contacts of side-on type II form an inter­molecular network of zigzag chains. The crystal studied was refined as an inversion twin.

1. Related literature

For crystal structures of 4-cyano-4′-halogene substituted bi­phenyls, see: Gleason et al. (1991[Gleason, W. B., Brostrom, M., Etter, M. C. & Johnson, R. B. (1991). Acta Cryst. C47, 2131-2134.]) for fluorine, Kronebusch et al. (1976[Kronebusch, P., Gleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 17-20.]) for bromine, Britton & Gleason (1991[Britton, D. & Gleason, W. B. (1991). Acta Cryst. C47, 2127-2131.]) for iodine. For halogen inter­actions in mol­ecular crystal structures, see: Ramasubbu et al. (1986[Ramasubbu, N., Parthasarathy, R. & Murray-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308-4314.]), Awwadi et al. (2006[Awwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952-8960.]), Brammer et al. (2001[Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277-290.]) and Metrangolo et al. (2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105-136. Berlin, Heidelberg: Springer.]). For inter­actions of halogens with cyano groups, see: Desiraju & Harlow (1989[Desiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757-6764.]), Süss et al. (2005[Süss, H. I., Neels, A. & Hulliger, J. (2005). CrystEngComm, 7, 370-373.]) and Mukherjee et al. (2014[Mukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514-2524.]). For fluorine involved into these inter­actions, see: Schwarzer et al. (2010[Schwarzer, A., Bombicz, P. & Weber, E. (2010). J. Fluor. Chem. 131, 345-356.]), Merz & Vasylyeva (2010[Merz, K. & Vasylyeva, V. (2010). CrystEngComm, 12, 3989-4002.]), Schwarzer & Weber (2008[Schwarzer, A. & Weber, E. (2008). Cryst. Growth Des. 8, 2862-2874.]) and Reichenbächer et al. (2005[Reichenbächer, K., Süss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22-30.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H4BrF4N

  • Mr = 330.08

  • Orthorhombic, P 21 21 21

  • a = 7.3560 (15) Å

  • b = 12.107 (2) Å

  • c = 12.723 (3) Å

  • V = 1133.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.66 mm−1

  • T = 93 K

  • 0.49 × 0.13 × 0.10 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012) Tmin = 0.486, Tmax = 0.718

  • 18347 measured reflections

  • 3234 independent reflections

  • 2930 reflections with I > 2σ(I)

  • Rint = 0.053

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.052

  • S = 0.99

  • 3234 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: refined as an inversion twin.

  • Absolute structure parameter: 0.011 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯F2 0.95 2.47 2.882 (4) 106
C13—H13⋯F3 0.95 2.45 2.865 (3) 107

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Synthesis and crystallization top

Under inert conditions, 1-bromo-4-iodo­benzene (22.6 g, 80 mmol) in THF (90 mL) was added dropwise to magnesium shaving (1.8 g, 75 mmol. The reaction mixture was refluxed for 90 min. After cooling to room temperature, CuBr (25.8 g, 180 mmol) was added and the mixture was stirred for 1 h at this temperature. Then 15 ml of 1,4-dioxane was added and the mixture was stirred for an hour followed by dropwise addition of a solution of 4-bromo-2,3,5,6-tetra­fluoro­benzo­nitrile (6.4 g, 25 mmol) in toluene (50 ml). After refluxing for 2 d, the mixture was cooled to room temperature, filtered over Celite and freed from solvents removed under reduced pressure. The residue was dissolved in toluene and washed with 3M HCl followed by aqueous NaOH solution. The organic phases were collected, dried over Na2SO4 and evaporated. The raw product was purified by column chromatography (SiO2; eluent: CH2Cl2/n-hexane, 2/1 v/v to yield 1.00 g (12 %) of the title compound. Single crystals suitable for X-ray diffraction were obtained from acetone solution at room temperature. Data for (I): M.p. 133-134 °C. 1H NMR(400 MHz; acetone-d6): δH = 7.57 (d, 3JHH = 8.9, 2H, H-9, H-13), 7.82 (d, 3JHH = 8.9, 2H, H-10, H12) ppm. 13C NMR (100 MHz; acetone-d6): δC = 94.30 (d, 2JCF = 17.4, C-2), 108.62 (t, 3JCF = -3.7, C-1), 125.52, 126.32 (s, C-8, C11), 127.04 (t, 2JCF = 17.4, C-5), 133.05 (t, 4JCF = 2.5, C-9), 133.32 (s, C-10), 143.39, 146.69 (d, 1JCF = -147.2, C-4), 147.01, 150.43 (d, 1JCF = -265.5, C-3) ppm. 19F NMR(376 MHz; acetone-d6): δF = -136.15 (F-1, d, 3JFF = 9.3 ), -142.53 (F-2, d, 3JFF = 9.3) ppm. GC—MS (m/z) 329 [M]+, 250 [M—Br]+, 231 [-F]+, 200 [-CF]+, 125, 99, 74, 50.

Refinement details top

The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.95 Å for aryl H atoms, with [Uiso(H) = 1.2Ueq(C)].

Related literature top

For crystal structures of 4-cyano-4'-halogene substituted biphenyls, see: Gleason et al. (1991) for fluorine, Kronebusch et al. (1976) for bromine, Britton & Gleason (1991) for iodine. For halogen interactions in molecular crystal structures, see: Ramasubbu et al. (1986), Awwadi et al. (2006), Brammer et al. (2001) and Metrangolo et al. (2008). For interactions of halogens with cyano groups, see: Desiraju & Harlow (1989), Süss et al. (2005) and Mukherjee et al. (2014). For fluorine involved into these interactions, see: Schwarzer et al. (2010), Merz & Vasylyeva (2010), Schwarzer & Weber (2008) and Reichenbächer et al. (2005).

Structure description top

For crystal structures of 4-cyano-4'-halogene substituted biphenyls, see: Gleason et al. (1991) for fluorine, Kronebusch et al. (1976) for bromine, Britton & Gleason (1991) for iodine. For halogen interactions in molecular crystal structures, see: Ramasubbu et al. (1986), Awwadi et al. (2006), Brammer et al. (2001) and Metrangolo et al. (2008). For interactions of halogens with cyano groups, see: Desiraju & Harlow (1989), Süss et al. (2005) and Mukherjee et al. (2014). For fluorine involved into these interactions, see: Schwarzer et al. (2010), Merz & Vasylyeva (2010), Schwarzer & Weber (2008) and Reichenbächer et al. (2005).

Synthesis and crystallization top

Under inert conditions, 1-bromo-4-iodo­benzene (22.6 g, 80 mmol) in THF (90 mL) was added dropwise to magnesium shaving (1.8 g, 75 mmol. The reaction mixture was refluxed for 90 min. After cooling to room temperature, CuBr (25.8 g, 180 mmol) was added and the mixture was stirred for 1 h at this temperature. Then 15 ml of 1,4-dioxane was added and the mixture was stirred for an hour followed by dropwise addition of a solution of 4-bromo-2,3,5,6-tetra­fluoro­benzo­nitrile (6.4 g, 25 mmol) in toluene (50 ml). After refluxing for 2 d, the mixture was cooled to room temperature, filtered over Celite and freed from solvents removed under reduced pressure. The residue was dissolved in toluene and washed with 3M HCl followed by aqueous NaOH solution. The organic phases were collected, dried over Na2SO4 and evaporated. The raw product was purified by column chromatography (SiO2; eluent: CH2Cl2/n-hexane, 2/1 v/v to yield 1.00 g (12 %) of the title compound. Single crystals suitable for X-ray diffraction were obtained from acetone solution at room temperature. Data for (I): M.p. 133-134 °C. 1H NMR(400 MHz; acetone-d6): δH = 7.57 (d, 3JHH = 8.9, 2H, H-9, H-13), 7.82 (d, 3JHH = 8.9, 2H, H-10, H12) ppm. 13C NMR (100 MHz; acetone-d6): δC = 94.30 (d, 2JCF = 17.4, C-2), 108.62 (t, 3JCF = -3.7, C-1), 125.52, 126.32 (s, C-8, C11), 127.04 (t, 2JCF = 17.4, C-5), 133.05 (t, 4JCF = 2.5, C-9), 133.32 (s, C-10), 143.39, 146.69 (d, 1JCF = -147.2, C-4), 147.01, 150.43 (d, 1JCF = -265.5, C-3) ppm. 19F NMR(376 MHz; acetone-d6): δF = -136.15 (F-1, d, 3JFF = 9.3 ), -142.53 (F-2, d, 3JFF = 9.3) ppm. GC—MS (m/z) 329 [M]+, 250 [M—Br]+, 231 [-F]+, 200 [-CF]+, 125, 99, 74, 50.

Refinement details top

The C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms: C–H = 0.95 Å for aryl H atoms, with [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and SHELXLE (Hübschle et al., 2011).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule including atom labelling. Displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound showing the stacking interactions along [100].
4'-Bromo-2,3,5,6-tetrafluorobiphenyl-4-carbonitrile top
Crystal data top
C13H4BrF4NDx = 1.935 Mg m3
Mr = 330.08Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4750 reflections
a = 7.3560 (15) Åθ = 3.2–28.4°
b = 12.107 (2) ŵ = 3.66 mm1
c = 12.723 (3) ÅT = 93 K
V = 1133.1 (4) Å3Splitter, colorless
Z = 40.49 × 0.13 × 0.10 mm
F(000) = 640
Data collection top
Bruker SMART CCD area-detector
diffractometer
2930 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
phi and ω scansθmax = 29.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1010
Tmin = 0.486, Tmax = 0.718k = 1616
18347 measured reflectionsl = 1717
3234 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0144P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.052(Δ/σ)max = 0.001
S = 0.99Δρmax = 0.46 e Å3
3234 reflectionsΔρmin = 0.31 e Å3
173 parametersAbsolute structure: Refined as an inversion twin.
0 restraintsAbsolute structure parameter: 0.011 (9)
Crystal data top
C13H4BrF4NV = 1133.1 (4) Å3
Mr = 330.08Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3560 (15) ŵ = 3.66 mm1
b = 12.107 (2) ÅT = 93 K
c = 12.723 (3) Å0.49 × 0.13 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3234 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
2930 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.718Rint = 0.053
18347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.46 e Å3
S = 0.99Δρmin = 0.31 e Å3
3234 reflectionsAbsolute structure: Refined as an inversion twin.
173 parametersAbsolute structure parameter: 0.011 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.89811 (4)0.35795 (3)0.37922 (2)0.01853 (8)
F10.7744 (2)1.00596 (16)0.75920 (12)0.0196 (4)
F20.7639 (2)0.79698 (15)0.69387 (12)0.0179 (4)
F31.0359 (2)0.90632 (14)0.37137 (13)0.0163 (4)
F41.0323 (2)1.11450 (14)0.43493 (13)0.0196 (4)
N10.9005 (4)1.2681 (2)0.66563 (19)0.0208 (6)
C10.9026 (4)1.1790 (2)0.6343 (2)0.0161 (6)
C20.9029 (5)1.0664 (2)0.5984 (2)0.0153 (6)
C30.8371 (4)0.9812 (3)0.6627 (2)0.0154 (7)
C40.8354 (4)0.8729 (3)0.6295 (2)0.0147 (6)
C50.9004 (4)0.8418 (2)0.5296 (2)0.0131 (6)
C60.9650 (4)0.9283 (3)0.4667 (2)0.0129 (6)
C70.9665 (4)1.0369 (3)0.4992 (2)0.0144 (6)
C80.8998 (5)0.7249 (2)0.4938 (2)0.0133 (6)
C90.9476 (4)0.6389 (3)0.5620 (2)0.0145 (6)
H90.98070.65550.63240.017*
C100.9474 (4)0.5302 (3)0.5286 (2)0.0161 (7)
H100.97950.47250.57560.019*
C110.8997 (5)0.5065 (2)0.4254 (2)0.0148 (6)
C120.8517 (4)0.5894 (3)0.3554 (2)0.0153 (7)
H120.81910.57200.28510.018*
C130.8520 (4)0.6986 (3)0.3898 (2)0.0142 (6)
H130.81960.75600.34240.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02368 (15)0.01300 (14)0.01890 (13)0.00129 (14)0.00259 (14)0.00242 (13)
F10.0229 (10)0.0218 (10)0.0141 (8)0.0003 (8)0.0031 (7)0.0022 (7)
F20.0213 (10)0.0185 (10)0.0138 (8)0.0028 (8)0.0029 (7)0.0034 (7)
F30.0201 (9)0.0163 (9)0.0125 (7)0.0014 (7)0.0034 (7)0.0004 (8)
F40.0265 (10)0.0143 (10)0.0179 (8)0.0015 (7)0.0042 (7)0.0030 (7)
N10.0216 (14)0.0193 (15)0.0215 (12)0.0015 (14)0.0011 (13)0.0013 (11)
C10.0153 (14)0.0200 (15)0.0130 (13)0.0011 (13)0.0005 (14)0.0010 (11)
C20.0156 (13)0.0137 (14)0.0165 (13)0.0012 (14)0.0020 (13)0.0026 (11)
C30.0133 (15)0.0204 (18)0.0125 (13)0.0020 (13)0.0003 (11)0.0034 (12)
C40.0121 (13)0.0149 (16)0.0169 (13)0.0017 (11)0.0013 (12)0.0049 (14)
C50.0112 (12)0.0144 (15)0.0136 (11)0.0014 (14)0.0040 (12)0.0006 (11)
C60.0110 (14)0.0162 (16)0.0116 (13)0.0024 (12)0.0007 (11)0.0012 (12)
C70.0136 (14)0.0138 (16)0.0160 (14)0.0003 (12)0.0008 (11)0.0035 (12)
C80.0101 (13)0.0134 (15)0.0164 (12)0.0001 (13)0.0009 (13)0.0013 (11)
C90.0117 (14)0.0187 (16)0.0133 (12)0.0030 (13)0.0021 (10)0.0017 (14)
C100.0155 (17)0.0149 (16)0.0178 (14)0.0010 (12)0.0008 (12)0.0033 (13)
C110.0125 (13)0.0136 (15)0.0183 (13)0.0029 (14)0.0017 (14)0.0048 (11)
C120.0147 (16)0.0191 (17)0.0120 (14)0.0006 (12)0.0002 (10)0.0025 (12)
C130.0136 (15)0.0151 (15)0.0137 (13)0.0018 (11)0.0005 (11)0.0045 (12)
Geometric parameters (Å, º) top
Br1—C111.892 (3)C5—C81.487 (4)
F1—C31.346 (3)C6—C71.379 (4)
F2—C41.339 (3)C8—C91.400 (4)
F3—C61.347 (3)C8—C131.406 (4)
F4—C71.336 (3)C9—C101.383 (4)
N1—C11.150 (4)C9—H90.9500
C1—C21.438 (4)C10—C111.389 (4)
C2—C71.393 (4)C10—H100.9500
C2—C31.402 (4)C11—C121.388 (4)
C3—C41.377 (4)C12—C131.392 (4)
C4—C51.409 (4)C12—H120.9500
C5—C61.401 (4)C13—H130.9500
N1—C1—C2178.1 (3)C9—C8—C13118.6 (3)
C7—C2—C3117.1 (3)C9—C8—C5121.2 (2)
C7—C2—C1122.1 (3)C13—C8—C5120.3 (3)
C3—C2—C1120.8 (2)C10—C9—C8121.1 (3)
F1—C3—C4119.3 (3)C10—C9—H9119.4
F1—C3—C2119.1 (3)C8—C9—H9119.4
C4—C3—C2121.6 (3)C9—C10—C11119.2 (3)
F2—C4—C3118.0 (3)C9—C10—H10120.4
F2—C4—C5120.1 (3)C11—C10—H10120.4
C3—C4—C5121.9 (3)C12—C11—C10121.4 (3)
C6—C5—C4115.5 (3)C12—C11—Br1119.1 (2)
C6—C5—C8122.5 (2)C10—C11—Br1119.5 (2)
C4—C5—C8122.0 (3)C11—C12—C13119.0 (3)
F3—C6—C7117.1 (3)C11—C12—H12120.5
F3—C6—C5119.8 (3)C13—C12—H12120.5
C7—C6—C5123.0 (3)C12—C13—C8120.7 (3)
F4—C7—C6119.3 (3)C12—C13—H13119.6
F4—C7—C2119.8 (3)C8—C13—H13119.6
C6—C7—C2120.9 (3)
C7—C2—C3—F1179.9 (3)C5—C6—C7—C20.2 (5)
C1—C2—C3—F10.5 (4)C3—C2—C7—F4179.4 (3)
C7—C2—C3—C40.1 (5)C1—C2—C7—F41.0 (5)
C1—C2—C3—C4179.7 (3)C3—C2—C7—C60.3 (4)
F1—C3—C4—F22.6 (4)C1—C2—C7—C6179.9 (3)
C2—C3—C4—F2177.5 (3)C6—C5—C8—C9139.2 (3)
F1—C3—C4—C5179.5 (3)C4—C5—C8—C940.8 (4)
C2—C3—C4—C50.3 (5)C6—C5—C8—C1340.4 (5)
F2—C4—C5—C6177.3 (3)C4—C5—C8—C13139.6 (3)
C3—C4—C5—C60.5 (4)C13—C8—C9—C100.3 (4)
F2—C4—C5—C82.6 (4)C5—C8—C9—C10179.9 (3)
C3—C4—C5—C8179.6 (3)C8—C9—C10—C110.3 (4)
C4—C5—C6—F3177.6 (2)C9—C10—C11—C120.2 (5)
C8—C5—C6—F32.4 (4)C9—C10—C11—Br1179.8 (2)
C4—C5—C6—C70.2 (4)C10—C11—C12—C130.1 (5)
C8—C5—C6—C7179.8 (3)Br1—C11—C12—C13179.7 (2)
F3—C6—C7—F41.8 (4)C11—C12—C13—C80.1 (4)
C5—C6—C7—F4179.3 (3)C9—C8—C13—C120.2 (4)
F3—C6—C7—C2177.3 (3)C5—C8—C13—C12179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···F20.952.472.882 (4)106
C13—H13···F30.952.452.865 (3)107
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···F20.952.472.882 (4)106.3
C13—H13···F30.952.452.865 (3)106.6
 

References

First citationAwwadi, F. F., Willett, R. D., Peterson, K. A. & Twamley, B. (2006). Chem. Eur. J. 12, 8952–8960.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.  Web of Science CrossRef CAS Google Scholar
First citationBritton, D. & Gleason, W. B. (1991). Acta Cryst. C47, 2127–2131.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2007). SMART, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Harlow, R. L. (1989). J. Am. Chem. Soc. 111, 6757–6764.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGleason, W. B., Brostrom, M., Etter, M. C. & Johnson, R. B. (1991). Acta Cryst. C47, 2131–2134.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKronebusch, P., Gleason, W. B. & Britton, D. (1976). Cryst. Struct. Commun. 5, 17–20.  CAS Google Scholar
First citationMerz, K. & Vasylyeva, V. (2010). CrystEngComm, 12, 3989–4002.  Web of Science CrossRef CAS Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Halogen Bonding, Structure and Bonding, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105–136. Berlin, Heidelberg: Springer.  Google Scholar
First citationMukherjee, A., Tothadi, S. & Desiraju, G. R. (2014). Acc. Chem. Res. 47, 2514–2524.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRamasubbu, N., Parthasarathy, R. & Murray-Rust, P. (1986). J. Am. Chem. Soc. 108, 4308–4314.  CrossRef CAS Web of Science Google Scholar
First citationReichenbächer, K., Süss, H. I. & Hulliger, J. (2005). Chem. Soc. Rev. 34, 22–30.  Web of Science CrossRef PubMed Google Scholar
First citationSchwarzer, A., Bombicz, P. & Weber, E. (2010). J. Fluor. Chem. 131, 345–356.  CSD CrossRef CAS Google Scholar
First citationSchwarzer, A. & Weber, E. (2008). Cryst. Growth Des. 8, 2862–2874.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSüss, H. I., Neels, A. & Hulliger, J. (2005). CrystEngComm, 7, 370–373.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds