research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Packing polymorphism in the crystal structure of 4,5-dimeth­­oxy-2-nitro­benzyl acetate

aDepartment of Materials Science, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan, and bRigaku Corporation 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
*Correspondence e-mail: kazu@kanagawa-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 4 March 2015; accepted 3 April 2015; online 11 April 2015)

The title compound, C11H13NO6, shows two polymorphs, orange and yellow forms, both of which crystallize in the space group P21/c. The mol­ecular structures in the two polymorphs are essentially similar and adopt a planar structure, the maximum deviations for the non-H atoms being 0.1836 (13) and 0.1276 (13) Å, respectively, for the orange and yellow forms. In the orange crystal, mol­ecules are linked by an inter­molecular C—H⋯O inter­action into a helical chain along the b-axis direction. The chains are stacked along the c axis through a ππ inter­action [centroid–centroid distance = 3.6087 (11) Å], forming a layer parallel to the bc plane. In the yellow crystal, mol­ecules are connected through C—H⋯O inter­actions into a sheet structure parallel to (-302). No significant ππ inter­action is observed. The unit-cell volume of the orange crystal is larger than that of the yellow one, and this accounts for the predominant growth of the yellow crystal.

1. Chemical context

Polymorphism is of inter­est in crystallization, phase transition, material synthesis and the pharmaceutical industry because differences in the crystal packing and/or conformation of compounds with the same formula can change the chemical and physical properties, including solubility, bioavailability and so forth (Moulton & Zaworotko, 2001[Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.]; Matsuo & Matsuoka, 2007[Matsuo, K. & Matsuoka, M. (2007). Cryst. Growth Des. 7, 411-415.]; Yu, 2010[Yu, L. (2010). Acc. Chem. Res. 43, 1257-1266.]). We have been investigating silane coupling agents and thiols with distal functional groups protected by photolabile 2-nitro­benzyl groups (Edagawa et al., 2012[Edagawa, Y., Nakanishi, J., Yamaguchi, K. & Takeda, N. (2012). Colloids Surf. B Biointerfaces, 99, 20-26.]). During the course of photoremoval studies of these materials, we found that the simple ester, 4,5-dimeth­oxy-2-nitro­benzyl acetate, which releases acetic acid on photo-irradiation, forms two different types of crystals, orange rods and yellow needles. Here, we report the crystal structures of these two polymorphs of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the two crystals are approximately planar and almost identical, as shown in Fig. 1[link]. The C2—C1—C7—O3, C9—C8—O3—C7, C5—C4—O5—C10 and C4—C5—O6—C11 torsion angles in the two crystals are approximately 180°. The dihedral angles between the benzene ring (C1–C6) and the nitro group (O1/N1/O2) are 9.54 (11) and 4.15 (7)° for the orange and yellow polymorphs, respectively.

[Figure 1]
Figure 1
The mol­ecular structures of the title compound polymorphs, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Although the two crystals crystallize in the same space group (P21/c) with Z′ = 1, their packing modes are different. In the orange crystal, the mol­ecules are connected by an inter­molecular C—H⋯O inter­action [C11—H11B⋯O4i; symmetry code: (i) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; Table 1[link]] between the meth­oxy group and the carbonyl group, forming a helical chain along the b axis as shown in Fig. 2[link], left. In addition, a ππ inter­action between the benzene rings with a centroid–centroid distance of 3.6087 (11) Å links the chains to be stacked along the c axis. In the yellow crystal, the mol­ecules located in the plane perpendicular to the ac plane are connected by C—H⋯O inter­actions (Table 2[link]) between meth­oxy groups [C10—H10B⋯O6ii; symmetry code: (ii) 1 − x, 1 − y, 2 − z] and between acetyl groups [C9—H9B⋯O4iii; symmetry code: (iii) −x, −[{1\over 2}] + y, [{1\over 2}] − z], forming a sheet structure parallel to ([\overline{3}]02) (Fig. 2[link], right).

Table 1
Hydrogen-bond geometry (Å, °) for orange[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11B⋯O4i 0.98 2.50 3.369 (2) 147
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °) for yellow[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯O4iii 0.98 2.40 3.375 (2) 174
C10—H10B⋯O6ii 0.98 2.51 3.472 (2) 169
Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Inter­molecular C—H⋯O (black dashed lines) and ππ (red dashed lines) inter­actions in the orange crystal (left), and inter­molecular C—H⋯O inter­actions (black dashed lines) between meth­oxy groups and between acetyl groups in the yellow crystal (right). [Symmetry codes: (i) 1 − x, −[{1\over 2}] + y, [{3\over 2}] − z; (ii) 1 − x, 1 − y, 2 − z; (iii) −x, −[{1\over 2}] + y, [{1\over 2}] − z.]

In the orange crystal, the mol­ecules are stacked in columnar structures via ππ inter­actions along the c axis (Fig. 3[link], left). In contrast, no ππ inter­actions are observed in the yellow crystal. The mol­ecules are therefore terraced along the diagonal line of the a and c axes as shown in Fig. 3[link], right. As a result of these packing differences, the volume of the unit cell of the orange crystal is larger than that of the yellow one, i.e., the orange crystal contains slightly more void space than the yellow one. This would account for the predominant growth of the yellow crystals.

[Figure 3]
Figure 3
Side views of space-filling models of mol­ecular packing of the orange (left) and yellow (right) crystals.

4. Synthesis and crystallization

4,5-Dimeth­oxy-2-nitro­benzyl alcohol (0.714 g, 3.35 mmol), acetic anhydride (0.63 ml, 6.66 mmol), Et3N (1 ml) and CH2Cl2 (20 ml) were placed in a 100 mL flask, and the mixture was stirred at ambient temperature overnight. The mixture was extracted with CH2Cl2 (20 ml × 3), washed with brine, dried over MgSO4, and evaporated to give a yellow solid (0.773 g, 90% yield). The solid was crystallized by slow evaporation from a mixed solution of ethyl acetate and hexane (1:1). Orange crystals were occasionally obtained in small amounts, but the yellow crystals grew predominantly.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located geometrically and refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methyl­ene H atoms, C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Table 3
Experimental details

  orange yellow
Crystal data
Chemical formula C11H13NO6 C11H13NO6
Mr 255.22 255.22
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 93 93
a, b, c (Å) 8.8751 (13), 19.555 (2), 6.8688 (9) 10.476 (3), 10.714 (3), 10.266 (3)
β (°) 106.298 (6) 105.077 (10)
V3) 1144.2 (3) 1112.6 (6)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.12 0.13
Crystal size (mm) 0.45 × 0.42 × 0.39 0.56 × 0.54 × 0.25
 
Data collection
Diffractometer Rigaku Mercury375R Rigaku Mercury375R
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.960, 0.970 0.797, 0.970
No. of measured, independent and observed [I > 2σ(I)] reflections 11495, 2612, 2098 9498, 2058, 1769
Rint 0.047 0.033
(sin θ/λ)max−1) 0.649 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.132, 1.11 0.049, 0.130, 1.13
No. of reflections 2612 2058
No. of parameters 166 166
H-atom treatment H-atom parameters not refined H-atom parameters not refined
Δρmax, Δρmin (e Å−3) 0.39, −0.30 0.38, −0.35
Computer programs: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.jp/k-wakita/yadokari]).

Supporting information


Computing details top

For both compounds, data collection: CrystalClear-SM Expert (Rigaku, 2011). Cell refinement: CrystalClear-SM Expert (Rigaku, 2011) for orange; CrystalClear-SM Expert for yellow. Data reduction: CrystalClear-SM Expert (Rigaku, 2011) for orange; CrystalClear-SM Expert for yellow. For both compounds, program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Yadokari-XG (Wakita, 2001).

(orange) 4,5-Dimethoxy-2-nitrobenzyl acetate top
Crystal data top
C11H13NO6F(000) = 536
Mr = 255.22Dx = 1.48 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2655 reflections
a = 8.8751 (13) Åθ = 3.1–27.5°
b = 19.555 (2) ŵ = 0.12 mm1
c = 6.8688 (9) ÅT = 93 K
β = 106.298 (6)°Platelet, orange
V = 1144.2 (3) Å30.45 × 0.42 × 0.39 mm
Z = 4
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2612 independent reflections
Radiation source: fine-focus sealed tube2098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
profile data from ω–scansh = 1111
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 2525
Tmin = 0.960, Tmax = 0.970l = 88
11495 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters not refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.5862P]
where P = (Fo2 + 2Fc2)/3
2612 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.30 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.19328 (19)0.29434 (8)0.7664 (2)0.0124 (3)
C20.04911 (19)0.26435 (9)0.7614 (3)0.0139 (3)
C30.02606 (19)0.19342 (8)0.7577 (3)0.0140 (3)
H30.07390.17520.75410.017*
C40.1487 (2)0.15013 (8)0.7593 (3)0.0139 (3)
C50.29755 (19)0.17865 (8)0.7678 (2)0.0125 (3)
C60.31701 (19)0.24911 (8)0.7700 (2)0.0128 (3)
H60.41710.26730.77400.015*
C70.22141 (19)0.37064 (8)0.7674 (3)0.0138 (3)
H7A0.15020.39190.64500.017*
H7B0.20100.39160.88870.017*
C80.4225 (2)0.44786 (9)0.7575 (3)0.0155 (4)
C90.5882 (2)0.45412 (9)0.7490 (3)0.0218 (4)
H9A0.59380.44250.61240.033*
H9B0.65500.42270.84750.033*
H9C0.62470.50120.78160.033*
C100.0084 (2)0.05009 (9)0.7387 (3)0.0200 (4)
H10A0.04360.06320.85650.030*
H10B0.00070.00020.73440.030*
H10C0.08480.06600.61440.030*
C110.5657 (2)0.15867 (9)0.7809 (3)0.0187 (4)
H11A0.55980.18830.66390.028*
H11B0.63700.12050.78030.028*
H11C0.60510.18500.90630.028*
N10.08677 (17)0.30611 (7)0.7608 (2)0.0154 (3)
O10.08009 (15)0.36827 (7)0.7379 (2)0.0252 (3)
O20.20491 (15)0.27751 (7)0.7846 (2)0.0236 (3)
O30.38271 (14)0.38139 (6)0.7701 (2)0.0154 (3)
O40.33181 (16)0.49408 (7)0.7520 (2)0.0257 (3)
O50.14161 (14)0.08062 (6)0.7543 (2)0.0176 (3)
O60.41110 (14)0.13243 (6)0.7695 (2)0.0164 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0128 (8)0.0155 (8)0.0088 (8)0.0001 (6)0.0027 (6)0.0011 (6)
C20.0112 (8)0.0174 (8)0.0137 (8)0.0022 (6)0.0046 (6)0.0009 (6)
C30.0121 (8)0.0174 (8)0.0127 (8)0.0021 (6)0.0037 (6)0.0004 (6)
C40.0147 (8)0.0137 (8)0.0133 (8)0.0031 (6)0.0040 (6)0.0003 (6)
C50.0134 (8)0.0152 (8)0.0095 (8)0.0014 (6)0.0041 (6)0.0001 (6)
C60.0113 (8)0.0160 (8)0.0117 (8)0.0008 (6)0.0043 (6)0.0002 (6)
C70.0105 (8)0.0147 (8)0.0177 (9)0.0003 (6)0.0065 (6)0.0002 (6)
C80.0161 (8)0.0149 (8)0.0164 (9)0.0025 (6)0.0063 (7)0.0006 (6)
C90.0140 (8)0.0182 (9)0.0347 (11)0.0021 (7)0.0094 (8)0.0009 (8)
C100.0173 (9)0.0163 (8)0.0271 (10)0.0074 (7)0.0075 (7)0.0016 (7)
C110.0120 (8)0.0170 (8)0.0277 (10)0.0006 (6)0.0065 (7)0.0011 (7)
N10.0113 (7)0.0171 (7)0.0177 (8)0.0005 (5)0.0041 (6)0.0007 (5)
O10.0179 (7)0.0159 (6)0.0437 (9)0.0031 (5)0.0119 (6)0.0037 (6)
O20.0133 (6)0.0236 (7)0.0364 (8)0.0016 (5)0.0111 (6)0.0010 (6)
O30.0114 (6)0.0131 (6)0.0227 (7)0.0011 (4)0.0063 (5)0.0000 (5)
O40.0203 (7)0.0141 (6)0.0461 (9)0.0008 (5)0.0147 (6)0.0018 (6)
O50.0160 (6)0.0120 (6)0.0264 (7)0.0022 (5)0.0085 (5)0.0001 (5)
O60.0124 (6)0.0137 (6)0.0244 (7)0.0013 (5)0.0071 (5)0.0005 (5)
Geometric parameters (Å, º) top
C1—C21.399 (2)C8—O31.356 (2)
C1—C61.405 (2)C8—C91.494 (2)
C1—C71.512 (2)C9—H9A0.9800
C2—C31.401 (2)C9—H9B0.9800
C2—N11.456 (2)C9—H9C0.9800
C3—C41.377 (2)C10—O51.436 (2)
C3—H30.9500C10—H10A0.9800
C4—O51.361 (2)C10—H10B0.9800
C4—C51.420 (2)C10—H10C0.9800
C5—O61.351 (2)C11—O61.446 (2)
C5—C61.388 (2)C11—H11A0.9800
C6—H60.9500C11—H11B0.9800
C7—O31.4419 (19)C11—H11C0.9800
C7—H7A0.9900N1—O11.229 (2)
C7—H7B0.9900N1—O21.2390 (19)
C8—O41.204 (2)
C2—C1—C6116.20 (15)O3—C8—C9110.96 (15)
C2—C1—C7124.21 (15)C8—C9—H9A109.5
C6—C1—C7119.59 (15)C8—C9—H9B109.5
C1—C2—C3122.90 (15)H9A—C9—H9B109.5
C1—C2—N1121.08 (15)C8—C9—H9C109.5
C3—C2—N1116.02 (15)H9A—C9—H9C109.5
C4—C3—C2119.83 (15)H9B—C9—H9C109.5
C4—C3—H3120.1O5—C10—H10A109.5
C2—C3—H3120.1O5—C10—H10B109.5
O5—C4—C3125.67 (15)H10A—C10—H10B109.5
O5—C4—C5115.43 (15)O5—C10—H10C109.5
C3—C4—C5118.90 (15)H10A—C10—H10C109.5
O6—C5—C6125.00 (15)H10B—C10—H10C109.5
O6—C5—C4114.87 (15)O6—C11—H11A109.5
C6—C5—C4120.12 (15)O6—C11—H11B109.5
C5—C6—C1122.03 (15)H11A—C11—H11B109.5
C5—C6—H6119.0O6—C11—H11C109.5
C1—C6—H6119.0H11A—C11—H11C109.5
O3—C7—C1107.82 (13)H11B—C11—H11C109.5
O3—C7—H7A110.1O1—N1—O2122.43 (15)
C1—C7—H7A110.1O1—N1—C2119.04 (14)
O3—C7—H7B110.1O2—N1—C2118.53 (14)
C1—C7—H7B110.1C8—O3—C7114.47 (13)
H7A—C7—H7B108.5C4—O5—C10116.93 (13)
O4—C8—O3122.58 (16)C5—O6—C11117.20 (13)
O4—C8—C9126.45 (16)
C6—C1—C2—C30.7 (2)C7—C1—C6—C5179.55 (15)
C7—C1—C2—C3179.08 (16)C2—C1—C7—O3179.18 (15)
C6—C1—C2—N1178.95 (15)C6—C1—C7—O30.6 (2)
C7—C1—C2—N11.2 (3)C1—C2—N1—O19.5 (2)
C1—C2—C3—C40.1 (3)C3—C2—N1—O1170.83 (16)
N1—C2—C3—C4179.59 (15)C1—C2—N1—O2170.13 (16)
C2—C3—C4—O5179.39 (16)C3—C2—N1—O29.6 (2)
C2—C3—C4—C51.0 (2)O4—C8—O3—C72.5 (2)
O5—C4—C5—O60.1 (2)C9—C8—O3—C7176.69 (15)
C3—C4—C5—O6179.78 (15)C1—C7—O3—C8175.79 (14)
O5—C4—C5—C6178.91 (14)C3—C4—O5—C102.4 (3)
C3—C4—C5—C61.4 (2)C5—C4—O5—C10177.96 (15)
O6—C5—C6—C1179.47 (15)C6—C5—O6—C112.1 (2)
C4—C5—C6—C10.8 (2)C4—C5—O6—C11179.17 (15)
C2—C1—C6—C50.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O4i0.982.503.369 (2)147
Symmetry code: (i) x+1, y1/2, z+3/2.
(yellow) 4,5-Dimethoxy-2-nitrobenzyl Acetate top
Crystal data top
C11H13NO6F(000) = 536
Mr = 255.22Dx = 1.52 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2424 reflections
a = 10.476 (3) Åθ = 3.1–27.5°
b = 10.714 (3) ŵ = 0.13 mm1
c = 10.266 (3) ÅT = 93 K
β = 105.077 (10)°Neecle, yellow
V = 1112.6 (6) Å30.56 × 0.54 × 0.25 mm
Z = 4
Data collection top
Rigaku Mercury375R (2x2 bin mode)
diffractometer
2058 independent reflections
Radiation source: fine-focus sealed tube1769 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 13.6612 pixels mm-1θmax = 25.5°, θmin = 3.1°
profile data from ω–scanh = 1212
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 1212
Tmin = 0.797, Tmax = 0.970l = 1212
9498 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters not refined
S = 1.13 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.4454P]
where P = (Fo2 + 2Fc2)/3
2058 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Experimental. Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.22297 (15)0.82305 (16)0.58154 (16)0.0158 (4)
C20.29963 (16)0.88543 (15)0.69423 (17)0.0154 (4)
C30.37895 (16)0.82230 (16)0.80564 (16)0.0168 (4)
H30.43070.86810.88010.020*
C40.38181 (16)0.69396 (16)0.80717 (16)0.0167 (4)
C50.30317 (15)0.62775 (16)0.69555 (17)0.0154 (4)
C60.22676 (16)0.69258 (16)0.58567 (16)0.0158 (4)
H60.17540.64690.51090.019*
C70.13844 (16)0.88840 (15)0.45857 (17)0.0166 (4)
H7A0.07540.94560.48520.020*
H7B0.19480.93790.41400.020*
C80.01205 (16)0.83679 (16)0.25084 (16)0.0175 (4)
C90.08377 (18)0.73342 (16)0.16403 (18)0.0216 (4)
H9A0.17810.73780.16030.032*
H9B0.04810.65290.20220.032*
H9C0.07210.74180.07280.032*
C100.53711 (16)0.68572 (16)1.02246 (16)0.0186 (4)
H10A0.60260.73540.99230.028*
H10B0.58260.62451.08950.028*
H10C0.48340.74091.06300.028*
C110.22990 (18)0.43083 (16)0.59702 (17)0.0211 (4)
H11A0.13680.45380.58320.032*
H11B0.24100.34170.61850.032*
H11C0.25740.44800.51460.032*
O10.23683 (12)1.08224 (11)0.60592 (12)0.0219 (3)
O20.36433 (12)1.07109 (11)0.80903 (12)0.0228 (3)
O30.06713 (11)0.79354 (11)0.36698 (12)0.0186 (3)
O40.02320 (12)0.94638 (11)0.22241 (12)0.0229 (3)
O50.45330 (11)0.62196 (11)0.90924 (12)0.0183 (3)
O60.30975 (12)0.50251 (11)0.70663 (12)0.0187 (3)
N10.30069 (14)1.02142 (14)0.70366 (14)0.0175 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0163 (8)0.0161 (8)0.0155 (8)0.0025 (6)0.0052 (7)0.0004 (6)
C20.0196 (8)0.0084 (8)0.0189 (9)0.0000 (6)0.0064 (7)0.0011 (6)
C30.0179 (8)0.0159 (8)0.0154 (8)0.0026 (7)0.0023 (7)0.0015 (6)
C40.0189 (8)0.0155 (9)0.0149 (8)0.0008 (7)0.0031 (7)0.0008 (6)
C50.0163 (8)0.0136 (9)0.0158 (8)0.0006 (6)0.0033 (7)0.0002 (6)
C60.0177 (8)0.0137 (9)0.0153 (8)0.0009 (6)0.0033 (7)0.0023 (6)
C70.0193 (8)0.0115 (8)0.0163 (8)0.0006 (6)0.0000 (7)0.0022 (6)
C80.0169 (8)0.0188 (9)0.0148 (8)0.0001 (7)0.0006 (7)0.0014 (7)
C90.0233 (9)0.0158 (9)0.0212 (9)0.0007 (7)0.0025 (7)0.0003 (7)
C100.0199 (8)0.0181 (9)0.0144 (8)0.0017 (7)0.0018 (7)0.0009 (7)
C110.0278 (9)0.0134 (9)0.0188 (9)0.0016 (7)0.0000 (7)0.0029 (6)
O10.0277 (7)0.0145 (6)0.0204 (7)0.0032 (5)0.0009 (5)0.0035 (5)
O20.0307 (7)0.0153 (7)0.0189 (7)0.0016 (5)0.0001 (5)0.0052 (5)
O30.0215 (6)0.0127 (6)0.0173 (6)0.0004 (5)0.0027 (5)0.0002 (5)
O40.0277 (7)0.0140 (6)0.0229 (7)0.0001 (5)0.0008 (5)0.0031 (5)
O50.0222 (6)0.0131 (6)0.0146 (6)0.0007 (5)0.0040 (5)0.0008 (5)
O60.0245 (6)0.0095 (6)0.0183 (6)0.0001 (5)0.0013 (5)0.0001 (4)
N10.0195 (7)0.0153 (8)0.0168 (7)0.0007 (6)0.0029 (6)0.0007 (6)
Geometric parameters (Å, º) top
C1—C21.395 (2)C8—O31.345 (2)
C1—C61.399 (2)C8—C91.496 (2)
C1—C71.512 (2)C9—H9A0.9800
C2—C31.401 (2)C9—H9B0.9800
C2—N11.460 (2)C9—H9C0.9800
C3—C41.375 (3)C10—O51.4344 (19)
C3—H30.9500C10—H10A0.9800
C4—O51.359 (2)C10—H10B0.9800
C4—C51.416 (2)C10—H10C0.9800
C5—O61.347 (2)C11—O61.437 (2)
C5—C61.388 (2)C11—H11A0.9800
C6—H60.9500C11—H11B0.9800
C7—O31.4524 (19)C11—H11C0.9800
C7—H7A0.9900O1—N11.2368 (19)
C7—H7B0.9900O2—N11.2339 (19)
C8—O41.208 (2)
C2—C1—C6116.61 (15)O3—C8—C9111.81 (14)
C2—C1—C7123.79 (16)C8—C9—H9A109.5
C6—C1—C7119.60 (14)C8—C9—H9B109.5
C1—C2—C3122.48 (16)H9A—C9—H9B109.5
C1—C2—N1121.72 (15)C8—C9—H9C109.5
C3—C2—N1115.79 (15)H9A—C9—H9C109.5
C4—C3—C2119.91 (15)H9B—C9—H9C109.5
C4—C3—H3120.0O5—C10—H10A109.5
C2—C3—H3120.0O5—C10—H10B109.5
O5—C4—C3125.62 (15)H10A—C10—H10B109.5
O5—C4—C5115.33 (15)O5—C10—H10C109.5
C3—C4—C5119.04 (15)H10A—C10—H10C109.5
O6—C5—C6124.98 (15)H10B—C10—H10C109.5
O6—C5—C4115.13 (14)O6—C11—H11A109.5
C6—C5—C4119.89 (16)O6—C11—H11B109.5
C5—C6—C1122.05 (15)H11A—C11—H11B109.5
C5—C6—H6119.0O6—C11—H11C109.5
C1—C6—H6119.0H11A—C11—H11C109.5
O3—C7—C1107.90 (13)H11B—C11—H11C109.5
O3—C7—H7A110.1C8—O3—C7115.31 (13)
C1—C7—H7A110.1C4—O5—C10116.94 (13)
O3—C7—H7B110.1C5—O6—C11117.37 (13)
C1—C7—H7B110.1O2—N1—O1122.61 (15)
H7A—C7—H7B108.4O2—N1—C2118.78 (14)
O4—C8—O3123.19 (15)O1—N1—C2118.60 (13)
O4—C8—C9125.01 (15)
C6—C1—C2—C31.2 (2)C7—C1—C6—C5179.61 (14)
C7—C1—C2—C3178.75 (15)C2—C1—C7—O3176.32 (14)
C6—C1—C2—N1178.07 (14)C6—C1—C7—O33.7 (2)
C7—C1—C2—N12.0 (2)O4—C8—O3—C70.8 (2)
C1—C2—C3—C40.8 (2)C9—C8—O3—C7178.75 (13)
N1—C2—C3—C4178.48 (15)C1—C7—O3—C8179.24 (13)
C2—C3—C4—O5179.33 (14)C3—C4—O5—C102.8 (2)
C2—C3—C4—C50.4 (2)C5—C4—O5—C10178.28 (13)
O5—C4—C5—O60.4 (2)C6—C5—O6—C111.0 (2)
C3—C4—C5—O6178.65 (15)C4—C5—O6—C11178.91 (13)
O5—C4—C5—C6179.73 (14)C1—C2—N1—O2175.79 (14)
C3—C4—C5—C61.3 (2)C3—C2—N1—O23.5 (2)
O6—C5—C6—C1179.03 (15)C1—C2—N1—O13.7 (2)
C4—C5—C6—C10.9 (2)C3—C2—N1—O1177.02 (14)
C2—C1—C6—C50.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O4i0.982.403.375 (2)174
C10—H10B···O6ii0.982.513.472 (2)169
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1, z+2.
 

Acknowledgements

We thank Kanagawa University for the general support of our studies.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdagawa, Y., Nakanishi, J., Yamaguchi, K. & Takeda, N. (2012). Colloids Surf. B Biointerfaces, 99, 20–26.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMatsuo, K. & Matsuoka, M. (2007). Cryst. Growth Des. 7, 411–415.  Web of Science CrossRef CAS Google Scholar
First citationMoulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.jp/k-wakita/yadokari  Google Scholar
First citationYu, L. (2010). Acc. Chem. Res. 43, 1257–1266.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds