research communications
Packing
in the of 4,5-dimethoxy-2-nitrobenzyl acetateaDepartment of Materials Science, Faculty of Science, Kanagawa University, Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan, and bRigaku Corporation 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
*Correspondence e-mail: kazu@kanagawa-u.ac.jp
The title compound, C11H13NO6, shows two polymorphs, orange and yellow forms, both of which crystallize in the P21/c. The molecular structures in the two polymorphs are essentially similar and adopt a planar structure, the maximum deviations for the non-H atoms being 0.1836 (13) and 0.1276 (13) Å, respectively, for the orange and yellow forms. In the orange crystal, molecules are linked by an intermolecular C—H⋯O interaction into a helical chain along the b-axis direction. The chains are stacked along the c axis through a π–π interaction [centroid–centroid distance = 3.6087 (11) Å], forming a layer parallel to the bc plane. In the yellow crystal, molecules are connected through C—H⋯O interactions into a sheet structure parallel to (-302). No significant π–π interaction is observed. The unit-cell volume of the orange crystal is larger than that of the yellow one, and this accounts for the predominant growth of the yellow crystal.
1. Chemical context
; Matsuo & Matsuoka, 2007; Yu, 2010). We have been investigating silane coupling agents and with distal functional groups protected by photolabile 2-nitrobenzyl groups (Edagawa et al., 2012). During the course of photoremoval studies of these materials, we found that the simple ester, 4,5-dimethoxy-2-nitrobenzyl acetate, which releases acetic acid on photo-irradiation, forms two different types of crystals, orange rods and yellow needles. Here, we report the crystal structures of these two polymorphs of the title compound.
is of interest in crystallization, material synthesis and the pharmaceutical industry because differences in the crystal packing and/or conformation of compounds with the same formula can change the chemical and physical properties, including solubility, bioavailability and so forth (Moulton & Zaworotko, 20012. Structural commentary
The molecular structures of the two crystals are approximately planar and almost identical, as shown in Fig. 1. The C2—C1—C7—O3, C9—C8—O3—C7, C5—C4—O5—C10 and C4—C5—O6—C11 torsion angles in the two crystals are approximately 180°. The dihedral angles between the benzene ring (C1–C6) and the nitro group (O1/N1/O2) are 9.54 (11) and 4.15 (7)° for the orange and yellow polymorphs, respectively.
3. Supramolecular features
Although the two crystals crystallize in the same P21/c) with Z′ = 1, their packing modes are different. In the orange crystal, the molecules are connected by an intermolecular C—H⋯O interaction [C11—H11B⋯O4i; symmetry code: (i) 1 − x, − + y, − z; Table 1] between the methoxy group and the carbonyl group, forming a helical chain along the b axis as shown in Fig. 2, left. In addition, a π–π interaction between the benzene rings with a centroid–centroid distance of 3.6087 (11) Å links the chains to be stacked along the c axis. In the yellow crystal, the molecules located in the plane perpendicular to the ac plane are connected by C—H⋯O interactions (Table 2) between methoxy groups [C10—H10B⋯O6ii; symmetry code: (ii) 1 − x, 1 − y, 2 − z] and between acetyl groups [C9—H9B⋯O4iii; symmetry code: (iii) −x, − + y, − z], forming a sheet structure parallel to (02) (Fig. 2, right).
(
|
In the orange crystal, the molecules are stacked in columnar structures via π–π interactions along the c axis (Fig. 3, left). In contrast, no π–π interactions are observed in the yellow crystal. The molecules are therefore terraced along the diagonal line of the a and c axes as shown in Fig. 3, right. As a result of these packing differences, the volume of the of the orange crystal is larger than that of the yellow one, i.e., the orange crystal contains slightly more void space than the yellow one. This would account for the predominant growth of the yellow crystals.
4. Synthesis and crystallization
4,5-Dimethoxy-2-nitrobenzyl alcohol (0.714 g, 3.35 mmol), acetic anhydride (0.63 ml, 6.66 mmol), Et3N (1 ml) and CH2Cl2 (20 ml) were placed in a 100 mL flask, and the mixture was stirred at ambient temperature overnight. The mixture was extracted with CH2Cl2 (20 ml × 3), washed with brine, dried over MgSO4, and evaporated to give a yellow solid (0.773 g, 90% yield). The solid was crystallized by slow evaporation from a mixed solution of ethyl acetate and hexane (1:1). Orange crystals were occasionally obtained in small amounts, but the yellow crystals grew predominantly.
5. Refinement
Crystal data, data collection and structure . All H atoms were located geometrically and refined using a riding model, with C—H = 0.99 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989015006714/is5391sup1.cif
contains datablocks orange, yellow, global. DOI:Structure factors: contains datablock orange. DOI: https://doi.org/10.1107/S2056989015006714/is5391orangesup2.hkl
Structure factors: contains datablock yellow. DOI: https://doi.org/10.1107/S2056989015006714/is5391yellowsup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015006714/is5391orangesup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989015006714/is5391yellowsup5.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989015006714/is5391orangesup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989015006714/is5391yellowsup7.cml
For both compounds, data collection: CrystalClear-SM Expert (Rigaku, 2011). Cell
CrystalClear-SM Expert (Rigaku, 2011) for orange; CrystalClear-SM Expert for yellow. Data reduction: CrystalClear-SM Expert (Rigaku, 2011) for orange; CrystalClear-SM Expert for yellow. For both compounds, program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Yadokari-XG (Wakita, 2001).C11H13NO6 | F(000) = 536 |
Mr = 255.22 | Dx = 1.48 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 2655 reflections |
a = 8.8751 (13) Å | θ = 3.1–27.5° |
b = 19.555 (2) Å | µ = 0.12 mm−1 |
c = 6.8688 (9) Å | T = 93 K |
β = 106.298 (6)° | Platelet, orange |
V = 1144.2 (3) Å3 | 0.45 × 0.42 × 0.39 mm |
Z = 4 |
Rigaku Mercury375R (2x2 bin mode) diffractometer | 2612 independent reflections |
Radiation source: fine-focus sealed tube | 2098 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.2° |
profile data from ω–scans | h = −11→11 |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | k = −25→25 |
Tmin = 0.960, Tmax = 0.970 | l = −8→8 |
11495 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.132 | H-atom parameters not refined |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0597P)2 + 0.5862P] where P = (Fo2 + 2Fc2)/3 |
2612 reflections | (Δ/σ)max < 0.001 |
166 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.19328 (19) | 0.29434 (8) | 0.7664 (2) | 0.0124 (3) | |
C2 | 0.04911 (19) | 0.26435 (9) | 0.7614 (3) | 0.0139 (3) | |
C3 | 0.02606 (19) | 0.19342 (8) | 0.7577 (3) | 0.0140 (3) | |
H3 | −0.0739 | 0.1752 | 0.7541 | 0.017* | |
C4 | 0.1487 (2) | 0.15013 (8) | 0.7593 (3) | 0.0139 (3) | |
C5 | 0.29755 (19) | 0.17865 (8) | 0.7678 (2) | 0.0125 (3) | |
C6 | 0.31701 (19) | 0.24911 (8) | 0.7700 (2) | 0.0128 (3) | |
H6 | 0.4171 | 0.2673 | 0.7740 | 0.015* | |
C7 | 0.22141 (19) | 0.37064 (8) | 0.7674 (3) | 0.0138 (3) | |
H7A | 0.1502 | 0.3919 | 0.6450 | 0.017* | |
H7B | 0.2010 | 0.3916 | 0.8887 | 0.017* | |
C8 | 0.4225 (2) | 0.44786 (9) | 0.7575 (3) | 0.0155 (4) | |
C9 | 0.5882 (2) | 0.45412 (9) | 0.7490 (3) | 0.0218 (4) | |
H9A | 0.5938 | 0.4425 | 0.6124 | 0.033* | |
H9B | 0.6550 | 0.4227 | 0.8475 | 0.033* | |
H9C | 0.6247 | 0.5012 | 0.7816 | 0.033* | |
C10 | −0.0084 (2) | 0.05009 (9) | 0.7387 (3) | 0.0200 (4) | |
H10A | −0.0436 | 0.0632 | 0.8565 | 0.030* | |
H10B | 0.0007 | 0.0002 | 0.7344 | 0.030* | |
H10C | −0.0848 | 0.0660 | 0.6144 | 0.030* | |
C11 | 0.5657 (2) | 0.15867 (9) | 0.7809 (3) | 0.0187 (4) | |
H11A | 0.5598 | 0.1883 | 0.6639 | 0.028* | |
H11B | 0.6370 | 0.1205 | 0.7803 | 0.028* | |
H11C | 0.6051 | 0.1850 | 0.9063 | 0.028* | |
N1 | −0.08677 (17) | 0.30611 (7) | 0.7608 (2) | 0.0154 (3) | |
O1 | −0.08009 (15) | 0.36827 (7) | 0.7379 (2) | 0.0252 (3) | |
O2 | −0.20491 (15) | 0.27751 (7) | 0.7846 (2) | 0.0236 (3) | |
O3 | 0.38271 (14) | 0.38139 (6) | 0.7701 (2) | 0.0154 (3) | |
O4 | 0.33181 (16) | 0.49408 (7) | 0.7520 (2) | 0.0257 (3) | |
O5 | 0.14161 (14) | 0.08062 (6) | 0.7543 (2) | 0.0176 (3) | |
O6 | 0.41110 (14) | 0.13243 (6) | 0.7695 (2) | 0.0164 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0128 (8) | 0.0155 (8) | 0.0088 (8) | 0.0001 (6) | 0.0027 (6) | 0.0011 (6) |
C2 | 0.0112 (8) | 0.0174 (8) | 0.0137 (8) | 0.0022 (6) | 0.0046 (6) | 0.0009 (6) |
C3 | 0.0121 (8) | 0.0174 (8) | 0.0127 (8) | −0.0021 (6) | 0.0037 (6) | 0.0004 (6) |
C4 | 0.0147 (8) | 0.0137 (8) | 0.0133 (8) | −0.0031 (6) | 0.0040 (6) | 0.0003 (6) |
C5 | 0.0134 (8) | 0.0152 (8) | 0.0095 (8) | 0.0014 (6) | 0.0041 (6) | −0.0001 (6) |
C6 | 0.0113 (8) | 0.0160 (8) | 0.0117 (8) | −0.0008 (6) | 0.0043 (6) | −0.0002 (6) |
C7 | 0.0105 (8) | 0.0147 (8) | 0.0177 (9) | −0.0003 (6) | 0.0065 (6) | 0.0002 (6) |
C8 | 0.0161 (8) | 0.0149 (8) | 0.0164 (9) | −0.0025 (6) | 0.0063 (7) | −0.0006 (6) |
C9 | 0.0140 (8) | 0.0182 (9) | 0.0347 (11) | −0.0021 (7) | 0.0094 (8) | −0.0009 (8) |
C10 | 0.0173 (9) | 0.0163 (8) | 0.0271 (10) | −0.0074 (7) | 0.0075 (7) | −0.0016 (7) |
C11 | 0.0120 (8) | 0.0170 (8) | 0.0277 (10) | −0.0006 (6) | 0.0065 (7) | −0.0011 (7) |
N1 | 0.0113 (7) | 0.0171 (7) | 0.0177 (8) | −0.0005 (5) | 0.0041 (6) | −0.0007 (5) |
O1 | 0.0179 (7) | 0.0159 (6) | 0.0437 (9) | 0.0031 (5) | 0.0119 (6) | 0.0037 (6) |
O2 | 0.0133 (6) | 0.0236 (7) | 0.0364 (8) | −0.0016 (5) | 0.0111 (6) | 0.0010 (6) |
O3 | 0.0114 (6) | 0.0131 (6) | 0.0227 (7) | −0.0011 (4) | 0.0063 (5) | 0.0000 (5) |
O4 | 0.0203 (7) | 0.0141 (6) | 0.0461 (9) | 0.0008 (5) | 0.0147 (6) | 0.0018 (6) |
O5 | 0.0160 (6) | 0.0120 (6) | 0.0264 (7) | −0.0022 (5) | 0.0085 (5) | −0.0001 (5) |
O6 | 0.0124 (6) | 0.0137 (6) | 0.0244 (7) | 0.0013 (5) | 0.0071 (5) | 0.0005 (5) |
C1—C2 | 1.399 (2) | C8—O3 | 1.356 (2) |
C1—C6 | 1.405 (2) | C8—C9 | 1.494 (2) |
C1—C7 | 1.512 (2) | C9—H9A | 0.9800 |
C2—C3 | 1.401 (2) | C9—H9B | 0.9800 |
C2—N1 | 1.456 (2) | C9—H9C | 0.9800 |
C3—C4 | 1.377 (2) | C10—O5 | 1.436 (2) |
C3—H3 | 0.9500 | C10—H10A | 0.9800 |
C4—O5 | 1.361 (2) | C10—H10B | 0.9800 |
C4—C5 | 1.420 (2) | C10—H10C | 0.9800 |
C5—O6 | 1.351 (2) | C11—O6 | 1.446 (2) |
C5—C6 | 1.388 (2) | C11—H11A | 0.9800 |
C6—H6 | 0.9500 | C11—H11B | 0.9800 |
C7—O3 | 1.4419 (19) | C11—H11C | 0.9800 |
C7—H7A | 0.9900 | N1—O1 | 1.229 (2) |
C7—H7B | 0.9900 | N1—O2 | 1.2390 (19) |
C8—O4 | 1.204 (2) | ||
C2—C1—C6 | 116.20 (15) | O3—C8—C9 | 110.96 (15) |
C2—C1—C7 | 124.21 (15) | C8—C9—H9A | 109.5 |
C6—C1—C7 | 119.59 (15) | C8—C9—H9B | 109.5 |
C1—C2—C3 | 122.90 (15) | H9A—C9—H9B | 109.5 |
C1—C2—N1 | 121.08 (15) | C8—C9—H9C | 109.5 |
C3—C2—N1 | 116.02 (15) | H9A—C9—H9C | 109.5 |
C4—C3—C2 | 119.83 (15) | H9B—C9—H9C | 109.5 |
C4—C3—H3 | 120.1 | O5—C10—H10A | 109.5 |
C2—C3—H3 | 120.1 | O5—C10—H10B | 109.5 |
O5—C4—C3 | 125.67 (15) | H10A—C10—H10B | 109.5 |
O5—C4—C5 | 115.43 (15) | O5—C10—H10C | 109.5 |
C3—C4—C5 | 118.90 (15) | H10A—C10—H10C | 109.5 |
O6—C5—C6 | 125.00 (15) | H10B—C10—H10C | 109.5 |
O6—C5—C4 | 114.87 (15) | O6—C11—H11A | 109.5 |
C6—C5—C4 | 120.12 (15) | O6—C11—H11B | 109.5 |
C5—C6—C1 | 122.03 (15) | H11A—C11—H11B | 109.5 |
C5—C6—H6 | 119.0 | O6—C11—H11C | 109.5 |
C1—C6—H6 | 119.0 | H11A—C11—H11C | 109.5 |
O3—C7—C1 | 107.82 (13) | H11B—C11—H11C | 109.5 |
O3—C7—H7A | 110.1 | O1—N1—O2 | 122.43 (15) |
C1—C7—H7A | 110.1 | O1—N1—C2 | 119.04 (14) |
O3—C7—H7B | 110.1 | O2—N1—C2 | 118.53 (14) |
C1—C7—H7B | 110.1 | C8—O3—C7 | 114.47 (13) |
H7A—C7—H7B | 108.5 | C4—O5—C10 | 116.93 (13) |
O4—C8—O3 | 122.58 (16) | C5—O6—C11 | 117.20 (13) |
O4—C8—C9 | 126.45 (16) | ||
C6—C1—C2—C3 | −0.7 (2) | C7—C1—C6—C5 | −179.55 (15) |
C7—C1—C2—C3 | 179.08 (16) | C2—C1—C7—O3 | −179.18 (15) |
C6—C1—C2—N1 | 178.95 (15) | C6—C1—C7—O3 | 0.6 (2) |
C7—C1—C2—N1 | −1.2 (3) | C1—C2—N1—O1 | 9.5 (2) |
C1—C2—C3—C4 | 0.1 (3) | C3—C2—N1—O1 | −170.83 (16) |
N1—C2—C3—C4 | −179.59 (15) | C1—C2—N1—O2 | −170.13 (16) |
C2—C3—C4—O5 | −179.39 (16) | C3—C2—N1—O2 | 9.6 (2) |
C2—C3—C4—C5 | 1.0 (2) | O4—C8—O3—C7 | 2.5 (2) |
O5—C4—C5—O6 | 0.1 (2) | C9—C8—O3—C7 | −176.69 (15) |
C3—C4—C5—O6 | 179.78 (15) | C1—C7—O3—C8 | 175.79 (14) |
O5—C4—C5—C6 | 178.91 (14) | C3—C4—O5—C10 | 2.4 (3) |
C3—C4—C5—C6 | −1.4 (2) | C5—C4—O5—C10 | −177.96 (15) |
O6—C5—C6—C1 | 179.47 (15) | C6—C5—O6—C11 | 2.1 (2) |
C4—C5—C6—C1 | 0.8 (2) | C4—C5—O6—C11 | −179.17 (15) |
C2—C1—C6—C5 | 0.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C11—H11B···O4i | 0.98 | 2.50 | 3.369 (2) | 147 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
C11H13NO6 | F(000) = 536 |
Mr = 255.22 | Dx = 1.52 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 2424 reflections |
a = 10.476 (3) Å | θ = 3.1–27.5° |
b = 10.714 (3) Å | µ = 0.13 mm−1 |
c = 10.266 (3) Å | T = 93 K |
β = 105.077 (10)° | Neecle, yellow |
V = 1112.6 (6) Å3 | 0.56 × 0.54 × 0.25 mm |
Z = 4 |
Rigaku Mercury375R (2x2 bin mode) diffractometer | 2058 independent reflections |
Radiation source: fine-focus sealed tube | 1769 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 25.5°, θmin = 3.1° |
profile data from ω–scan | h = −12→12 |
Absorption correction: multi-scan (REQAB; Rigaku, 1998) | k = −12→12 |
Tmin = 0.797, Tmax = 0.970 | l = −12→12 |
9498 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.130 | H-atom parameters not refined |
S = 1.13 | w = 1/[σ2(Fo2) + (0.0689P)2 + 0.4454P] where P = (Fo2 + 2Fc2)/3 |
2058 reflections | (Δ/σ)max < 0.001 |
166 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Experimental. Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.22297 (15) | 0.82305 (16) | 0.58154 (16) | 0.0158 (4) | |
C2 | 0.29963 (16) | 0.88543 (15) | 0.69423 (17) | 0.0154 (4) | |
C3 | 0.37895 (16) | 0.82230 (16) | 0.80564 (16) | 0.0168 (4) | |
H3 | 0.4307 | 0.8681 | 0.8801 | 0.020* | |
C4 | 0.38181 (16) | 0.69396 (16) | 0.80717 (16) | 0.0167 (4) | |
C5 | 0.30317 (15) | 0.62775 (16) | 0.69555 (17) | 0.0154 (4) | |
C6 | 0.22676 (16) | 0.69258 (16) | 0.58567 (16) | 0.0158 (4) | |
H6 | 0.1754 | 0.6469 | 0.5109 | 0.019* | |
C7 | 0.13844 (16) | 0.88840 (15) | 0.45857 (17) | 0.0166 (4) | |
H7A | 0.0754 | 0.9456 | 0.4852 | 0.020* | |
H7B | 0.1948 | 0.9379 | 0.4140 | 0.020* | |
C8 | −0.01205 (16) | 0.83679 (16) | 0.25084 (16) | 0.0175 (4) | |
C9 | −0.08377 (18) | 0.73342 (16) | 0.16403 (18) | 0.0216 (4) | |
H9A | −0.1781 | 0.7378 | 0.1603 | 0.032* | |
H9B | −0.0481 | 0.6529 | 0.2022 | 0.032* | |
H9C | −0.0721 | 0.7418 | 0.0728 | 0.032* | |
C10 | 0.53711 (16) | 0.68572 (16) | 1.02246 (16) | 0.0186 (4) | |
H10A | 0.6026 | 0.7354 | 0.9923 | 0.028* | |
H10B | 0.5826 | 0.6245 | 1.0895 | 0.028* | |
H10C | 0.4834 | 0.7409 | 1.0630 | 0.028* | |
C11 | 0.22990 (18) | 0.43083 (16) | 0.59702 (17) | 0.0211 (4) | |
H11A | 0.1368 | 0.4538 | 0.5832 | 0.032* | |
H11B | 0.2410 | 0.3417 | 0.6185 | 0.032* | |
H11C | 0.2574 | 0.4480 | 0.5146 | 0.032* | |
O1 | 0.23683 (12) | 1.08224 (11) | 0.60592 (12) | 0.0219 (3) | |
O2 | 0.36433 (12) | 1.07109 (11) | 0.80903 (12) | 0.0228 (3) | |
O3 | 0.06713 (11) | 0.79354 (11) | 0.36698 (12) | 0.0186 (3) | |
O4 | −0.02320 (12) | 0.94638 (11) | 0.22241 (12) | 0.0229 (3) | |
O5 | 0.45330 (11) | 0.62196 (11) | 0.90924 (12) | 0.0183 (3) | |
O6 | 0.30975 (12) | 0.50251 (11) | 0.70663 (12) | 0.0187 (3) | |
N1 | 0.30069 (14) | 1.02142 (14) | 0.70366 (14) | 0.0175 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0163 (8) | 0.0161 (8) | 0.0155 (8) | 0.0025 (6) | 0.0052 (7) | 0.0004 (6) |
C2 | 0.0196 (8) | 0.0084 (8) | 0.0189 (9) | 0.0000 (6) | 0.0064 (7) | −0.0011 (6) |
C3 | 0.0179 (8) | 0.0159 (8) | 0.0154 (8) | −0.0026 (7) | 0.0023 (7) | −0.0015 (6) |
C4 | 0.0189 (8) | 0.0155 (9) | 0.0149 (8) | 0.0008 (7) | 0.0031 (7) | 0.0008 (6) |
C5 | 0.0163 (8) | 0.0136 (9) | 0.0158 (8) | −0.0006 (6) | 0.0033 (7) | −0.0002 (6) |
C6 | 0.0177 (8) | 0.0137 (9) | 0.0153 (8) | −0.0009 (6) | 0.0033 (7) | −0.0023 (6) |
C7 | 0.0193 (8) | 0.0115 (8) | 0.0163 (8) | −0.0006 (6) | 0.0000 (7) | −0.0022 (6) |
C8 | 0.0169 (8) | 0.0188 (9) | 0.0148 (8) | 0.0001 (7) | 0.0006 (7) | 0.0014 (7) |
C9 | 0.0233 (9) | 0.0158 (9) | 0.0212 (9) | 0.0007 (7) | −0.0025 (7) | 0.0003 (7) |
C10 | 0.0199 (8) | 0.0181 (9) | 0.0144 (8) | −0.0017 (7) | −0.0018 (7) | −0.0009 (7) |
C11 | 0.0278 (9) | 0.0134 (9) | 0.0188 (9) | −0.0016 (7) | 0.0000 (7) | −0.0029 (6) |
O1 | 0.0277 (7) | 0.0145 (6) | 0.0204 (7) | 0.0032 (5) | 0.0009 (5) | 0.0035 (5) |
O2 | 0.0307 (7) | 0.0153 (7) | 0.0189 (7) | −0.0016 (5) | −0.0001 (5) | −0.0052 (5) |
O3 | 0.0215 (6) | 0.0127 (6) | 0.0173 (6) | 0.0004 (5) | −0.0027 (5) | −0.0002 (5) |
O4 | 0.0277 (7) | 0.0140 (6) | 0.0229 (7) | 0.0001 (5) | −0.0008 (5) | 0.0031 (5) |
O5 | 0.0222 (6) | 0.0131 (6) | 0.0146 (6) | −0.0007 (5) | −0.0040 (5) | 0.0008 (5) |
O6 | 0.0245 (6) | 0.0095 (6) | 0.0183 (6) | −0.0001 (5) | −0.0013 (5) | −0.0001 (4) |
N1 | 0.0195 (7) | 0.0153 (8) | 0.0168 (7) | −0.0007 (6) | 0.0029 (6) | −0.0007 (6) |
C1—C2 | 1.395 (2) | C8—O3 | 1.345 (2) |
C1—C6 | 1.399 (2) | C8—C9 | 1.496 (2) |
C1—C7 | 1.512 (2) | C9—H9A | 0.9800 |
C2—C3 | 1.401 (2) | C9—H9B | 0.9800 |
C2—N1 | 1.460 (2) | C9—H9C | 0.9800 |
C3—C4 | 1.375 (3) | C10—O5 | 1.4344 (19) |
C3—H3 | 0.9500 | C10—H10A | 0.9800 |
C4—O5 | 1.359 (2) | C10—H10B | 0.9800 |
C4—C5 | 1.416 (2) | C10—H10C | 0.9800 |
C5—O6 | 1.347 (2) | C11—O6 | 1.437 (2) |
C5—C6 | 1.388 (2) | C11—H11A | 0.9800 |
C6—H6 | 0.9500 | C11—H11B | 0.9800 |
C7—O3 | 1.4524 (19) | C11—H11C | 0.9800 |
C7—H7A | 0.9900 | O1—N1 | 1.2368 (19) |
C7—H7B | 0.9900 | O2—N1 | 1.2339 (19) |
C8—O4 | 1.208 (2) | ||
C2—C1—C6 | 116.61 (15) | O3—C8—C9 | 111.81 (14) |
C2—C1—C7 | 123.79 (16) | C8—C9—H9A | 109.5 |
C6—C1—C7 | 119.60 (14) | C8—C9—H9B | 109.5 |
C1—C2—C3 | 122.48 (16) | H9A—C9—H9B | 109.5 |
C1—C2—N1 | 121.72 (15) | C8—C9—H9C | 109.5 |
C3—C2—N1 | 115.79 (15) | H9A—C9—H9C | 109.5 |
C4—C3—C2 | 119.91 (15) | H9B—C9—H9C | 109.5 |
C4—C3—H3 | 120.0 | O5—C10—H10A | 109.5 |
C2—C3—H3 | 120.0 | O5—C10—H10B | 109.5 |
O5—C4—C3 | 125.62 (15) | H10A—C10—H10B | 109.5 |
O5—C4—C5 | 115.33 (15) | O5—C10—H10C | 109.5 |
C3—C4—C5 | 119.04 (15) | H10A—C10—H10C | 109.5 |
O6—C5—C6 | 124.98 (15) | H10B—C10—H10C | 109.5 |
O6—C5—C4 | 115.13 (14) | O6—C11—H11A | 109.5 |
C6—C5—C4 | 119.89 (16) | O6—C11—H11B | 109.5 |
C5—C6—C1 | 122.05 (15) | H11A—C11—H11B | 109.5 |
C5—C6—H6 | 119.0 | O6—C11—H11C | 109.5 |
C1—C6—H6 | 119.0 | H11A—C11—H11C | 109.5 |
O3—C7—C1 | 107.90 (13) | H11B—C11—H11C | 109.5 |
O3—C7—H7A | 110.1 | C8—O3—C7 | 115.31 (13) |
C1—C7—H7A | 110.1 | C4—O5—C10 | 116.94 (13) |
O3—C7—H7B | 110.1 | C5—O6—C11 | 117.37 (13) |
C1—C7—H7B | 110.1 | O2—N1—O1 | 122.61 (15) |
H7A—C7—H7B | 108.4 | O2—N1—C2 | 118.78 (14) |
O4—C8—O3 | 123.19 (15) | O1—N1—C2 | 118.60 (13) |
O4—C8—C9 | 125.01 (15) | ||
C6—C1—C2—C3 | 1.2 (2) | C7—C1—C6—C5 | 179.61 (14) |
C7—C1—C2—C3 | −178.75 (15) | C2—C1—C7—O3 | −176.32 (14) |
C6—C1—C2—N1 | −178.07 (14) | C6—C1—C7—O3 | 3.7 (2) |
C7—C1—C2—N1 | 2.0 (2) | O4—C8—O3—C7 | 0.8 (2) |
C1—C2—C3—C4 | −0.8 (2) | C9—C8—O3—C7 | −178.75 (13) |
N1—C2—C3—C4 | 178.48 (15) | C1—C7—O3—C8 | −179.24 (13) |
C2—C3—C4—O5 | −179.33 (14) | C3—C4—O5—C10 | −2.8 (2) |
C2—C3—C4—C5 | −0.4 (2) | C5—C4—O5—C10 | 178.28 (13) |
O5—C4—C5—O6 | 0.4 (2) | C6—C5—O6—C11 | −1.0 (2) |
C3—C4—C5—O6 | −178.65 (15) | C4—C5—O6—C11 | 178.91 (13) |
O5—C4—C5—C6 | −179.73 (14) | C1—C2—N1—O2 | 175.79 (14) |
C3—C4—C5—C6 | 1.3 (2) | C3—C2—N1—O2 | −3.5 (2) |
O6—C5—C6—C1 | 179.03 (15) | C1—C2—N1—O1 | −3.7 (2) |
C4—C5—C6—C1 | −0.9 (2) | C3—C2—N1—O1 | 177.02 (14) |
C2—C1—C6—C5 | −0.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9B···O4i | 0.98 | 2.40 | 3.375 (2) | 174 |
C10—H10B···O6ii | 0.98 | 2.51 | 3.472 (2) | 169 |
Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) −x+1, −y+1, −z+2. |
Acknowledgements
We thank Kanagawa University for the general support of our studies.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Edagawa, Y., Nakanishi, J., Yamaguchi, K. & Takeda, N. (2012). Colloids Surf. B Biointerfaces, 99, 20–26. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Matsuo, K. & Matsuoka, M. (2007). Cryst. Growth Des. 7, 411–415. Web of Science CrossRef CAS Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.jp/k-wakita/yadokari Google Scholar
Yu, L. (2010). Acc. Chem. Res. 43, 1257–1266. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.