research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of di­chlorido­palladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(di­phenyl­phosphan­yl)quinoline

aDepartment of Chemistry, Okayama University, Okayama 700-8530, Japan, and bGraduate School of Science and Research Center for Material Science, Nagoya, University, Chikusa, Nagoya 464-8602, Japan
*Correspondence e-mail: suzuki@okayama-u.ac.jp

Edited by H. Ishida, Okayama University, Japan (Received 7 March 2015; accepted 25 March 2015; online 2 April 2015)

The crystal structures of di­chlorido­palladium(II), -platinum(II) and -rhodium(III) complexes containing 8-(di­phenyl­phosphan­yl)quinoline, (SP-4)-[PdCl2(C21H16NP)], (1) [systematic name: di­chlor­ido­(8-di­phenyl­phosphanyl­quinoline)­palladium(II)], (SP-4)-[PtCl2(C21H16NP)]·CH2Cl2, (2) [systematic name: di­chlorido­(8-di­phenyl­phos­phanyl­quinoline)­platinum(II) dichlorometh­ane monosolvate], and (OC-6–32)-[RhCl2(C21H16NP)2]PF6·0.5CH2Cl2·0.5CH3OH, (3) [systematic name: cis-di­chlor­ido­bis­(8-di­phenyl­phosphanyl­quinoline)­rhodium(III) hexa­fluorido­phos­phate di­chloro­methane/­methanol hemisolvate] are reported. In these complexes, the phosphanyl­quinoline acts as a bidentate ligand, forming a planar asymmetrical five-membered chelate ring. The palladium(II) and platinum(II) complex mol­ecules in (1) and (2), respectively, show a typical square-planar coordination geometry and form a dimeric structure through an inter­molecular ππ stacking inter­action between the quinolyl rings. The centroid–centroid distances between the stacked six-membered rings in (1) and (2) are 3.633 (2) and 3.644 (2) Å, respectively. The cationic rhodium(III) complex in (3) has a cis(Cl),cis(P),cis(N) (OC-6–32) configuration of the ligands, in which two kinds of intra­molecular ππ stacking inter­actions are observed: between the quinolyl and phenyl rings and between two phenyl rings, the centroid–centroid distances being 3.458 (2) and 3.717 (2) Å, respectively. The PF6 anion in (3) is rotationally disordered, the site occupancies of each F atom being 0.613 (14) and 0.387 (14). The CH2Cl2 and CH3OH solvent mol­ecules are also disordered and equal site occupancies of 0.5 are assumed.

1. Chemical context

8-Quinolylphosphanes are an inter­esting class of ligands because they form a planar asymmetrical five-membered chelate ring via coordination through quinoline-N and phosphane-P atoms (Issleib & Hörnig, 1972[Issleib, K. & Hörnig, K. (1972). Z. Anorg. Allg. Chem. 389, 263-268.]; Salem & Wild, 1992[Salem, G. & Wild, S. B. (1992). Inorg. Chem. 31, 581-586.]; Wehman et al., 1997[Wehman, P., van Donge, H. M. A., Hagos, A., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (1997). J. Organomet. Chem. 535, 183-193.]). The electronic differentiation of the donor groups, in particular their π-bonding natures, may stabilize unusual electronic states of their transition metal complexes (Espinet & Soulantica, 1999[Espinet, P. & Soulantica, K. (1999). Coord. Chem. Rev. 193-195, 499-556.]). In addition, the steric requirement from the quinolyl moiety often has a strong influence on the properties of their metal complexes. For example, the nickel(II) and palladium(II) complexes containing two 8-(di­phenyl­phosphan­yl)quinoline (Ph2Pqn) mol­ecules with a cis(P) configuration showed a severe distortion of the square-planar coordination geometry around NiII and PdII as a result of the steric hindrance between mutually cis-positioned quinolyl groups (Suzuki, 2004[Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.]; Hashimoto et al., 2010[Hashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39-47.]). Several crystallographic studies have been performed for other Ph2Pqn complexes, as described in §4, but not for the platinum(II) and rhodium(III) complexes. In 1979, the preparation and spectroscopic characterization of [MCl2(Ph2Pqn)] (M = PdII, PtII, and RhII) was reported (Hudali et al., 1979[Hudali, H. A., Kingston, J. V. & Tayim, H. A. (1979). Inorg. Chem. 18, 1391-1394.]), but the crystal structures of these complexes were not confirmed, except for [PdCl2(Ph2Pqn)]·CH2Cl2 (Bastanov et al., 2009[Bastanov, A. S., Bryant, D. E., Kilner, M. & Neletin, I. S. (2009). Private communication (refcode OBAWIZ). CCDC, Cambridge, England.]). In particular, it is worthwhile to reinvestigate the rhodium(II) complex because it was prepared from RhCl3·3H2O and Ph2Pqn in acetone (Hudali et al., 1979[Hudali, H. A., Kingston, J. V. & Tayim, H. A. (1979). Inorg. Chem. 18, 1391-1394.]).

[Scheme 1]

2. Structural commentary

A yellow block-shaped crystal of the PdII complex, (SP-4)-[PdCl2(Ph2Pqn)], (1), recrystallized from hot aceto­nitrile, was used for the X-ray diffraction analysis. The complex mol­ecule (Fig. 1[link]) has a typical square-planar coordination geometry with a chelating Ph2Pqn ligand, whose P1—Pd1—N1 bite angle is 84.75 (6)°. The quinolyl plane is almost co-planar to the PdII coordination plane; the dihedral angle between these planes is only 8.58 (3)°. The two Pd—Cl bonds show a significant difference in length [Pd1—Cl1 2.3716 (6) vs Pd1—Cl2 2.2885 (7) Å], indicating a strong trans influence of the phosphane donor group. The corresponding Pd—Cl bond in cis(P)-[PdCl(Ph2Pqn)2]BF4, which is also trans to the phosphane donor of Ph2Pqn, was similarly long at 2.375 (2) Å (Suzuki, 2004[Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.]). On the other hand, the Pd1—P1 bond [2.2026 (6) Å] in (1) is slightly shorter than those in cis(P)-[PdCl(Ph2Pqn)2]BF4 and cis(P)-[Pd(Ph2Pqn)2]X2 (X = Cl or Br) [2.229 (2)–2.267 (2) Å], presumably due to the steric congestion in the above bis­(Ph2Pqn)-type complexes. The Pd1—N1 bond length in (1) is 2.065 (2) Å. The dihedral angles between the quinolyl ring system and the two phenyl rings of the coordinated Ph2Pqn are 72.34 (8) and 74.79 (8)°.

[Figure 1]
Figure 1
An ORTEP of the mol­ecular structure of [PdCl2(Ph2Pqn)], (1), showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

When the platinum(II) complex was recrystallized from di­chloro­methane, the resulting crystals contained a CH2Cl2 mol­ecule per a complex mol­ecule: [PtCl2(Ph2Pqn)]·CH2Cl2 (2). The X-ray analysis revealed that it was isomorphous with the PdII analogue, [PdCl2(Ph2Pqn)]·CH2Cl2, which has been deposited in the Cambridge Structural Database (Bastanov et al., 2009[Bastanov, A. S., Bryant, D. E., Kilner, M. & Neletin, I. S. (2009). Private communication (refcode OBAWIZ). CCDC, Cambridge, England.]). The mol­ecular structure of the PtII complex moiety with a square-planar coordination geometry (Fig. 2[link]) is very similar to the above PdII complex in (1). The Pt1—P1 and Pt1—N1 bond lengths are 2.1963 (6) and 2.051 (2) Å, respectively, and the Ph2Pqn bite angle (P1—Pt1—N1) is 85.44 (6)°. The Pt1—Cl1 and Pt1—Cl2 bond lengths are 2.3747 (6) and 2.3002 (7) Å, respectively, also indicative of a strong trans influence of the phosphane donor group.

[Figure 2]
Figure 2
An ORTEP of the mol­ecular structure of [PtCl2(Ph2Pqn)]·CH2Cl2, (2), showing the atom-numbering scheme, with displacement ellipsoids drawn at the 50% probability level.

Pale yellow prismatic crystals of [RhCl2(Ph2Pqn)2]PF6·0.5CH2Cl2·0.5CH3OH (3) were analyzed by the X-ray diffraction method, and it was revealed that the complex cation has an octa­hedral coordination geometry with a cis(Cl),cis(P),cis(N) (OC-6-32) configuration (Figs. 3[link] and 4[link]). As a result of the strong trans influence of the phosphane donor, the two Rh—Cl and the two Rh—N bond lengths are significantly different from each other. The Rh1—Cl1 bond [2.3787 (6) Å] is longer by 0.045 Å than Rh1—Cl2 [2.3338 (7) Å], while Rh1—N1 [2.168 (2) Å] is longer by 0.10 Å than Rh1—N11 [2.065 (2) Å]. This fact suggests that the trans influence of the phosphane donor is much effective for the Rh—N(quinoline) bond rather than the Rh—Cl bond. Two slightly deviated Rh—P bond lengths [Rh1—P1 2.2897 (7) vs. Rh1—P2 2.2531 (8) Å] seem to result from different steric congestion around the P donor atoms. The larger bond angle of P1—Rh1—P2 [100.55 (3)°] than the ideal right angle is also suggestive of steric inter­action between the two phosphane groups. However, the mol­ecular structure of the complex cation (Fig. 3[link]) also suggests an intra­molecular ππ stacking inter­action between the C27–C32 and C39–C44 phenyl rings. The centroid–centroid distance between these rings is 3.717 (2) Å. An other intra­molecular ππ stacking inter­action is also found between the N11/C12–C14/C20/C19 ring of the quinolyl substituent and the C21–C26 phenyl ring, the centroid–centroid distance being 3.458 (2) Å. These inter­actions could stabilize the cis(Cl),cis(P),cis(N) configuration of the RhIII complex cation [RhCl2(Ph2Pqn)2]+.

[Figure 3]
Figure 3
An ORTEP of the complex molecule in (OC-6–32)-[RhCl2(Ph2Pqn)2]PF6·0.5CH2Cl2·0.5CH3OH, (3), showing the atom-numbering scheme, with displacement ellipsoids drawn at 30% probability level. Hydrogen atoms are omitted for clarity.
[Figure 4]
Figure 4
Possible configurations and notation for the [RhCl2(P–N)2]+ complex cation.

The crystal structures of the related complexes with (2-amino­eth­yl)di­phenyl­phosphane, [RhCl2(Ph2PCH2CH2NH2)2]+, were reported to have the trans(Cl),cis(P) (OC-6-13) or cis(Cl),trans(P) (OC-6-33) configuration (Fig. 4[link]) (Galsbøl et al., 1986[Galsbøl, F., Kojima, M., Ishii, T., Ohba, S., Saito, Y. & Fujita, J. (1986). Bull. Chem. Soc. Jpn, 59, 1701-1707.]). If the trans(Cl),cis(P) configuration were assumed for the present Ph2Pqn complex, the mol­ecule would have severe steric hindrance between the ortho-H atoms of the mutually cis-positioned quinolyl groups, as observed in the crystal structures of cis(P)-[Pd(Ph2Pqn)2]X2 (Suzuki, 2004[Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.]). The trans(P) configurations, i.e., trans(Cl),trans(P) (OC-6-12) and cis(Cl),trans(P) (OC-6-33), would be unfavorable due to the mutually trans disposition of the phosphane groups having a strong trans influence. The last configuration, cis(Cl),trans(N) (OC-6-22), cannot form an intra­molecular stacking inter­action between the aryl groups of the phosphanes. Therefore, the observed cis(Cl),cis(P),cis(N) geometrical isomer could be the most favorable from the steric and electronic points of views.

3. Supra­molecular features

In the crystal structure of (1), there is an inter­molecular ππ stacking inter­action between the quinolyl planes, forming an inversion dimer (Fig. 5[link]). The centroid–centroid distance between the N1/C2–C4/C10/C9 ring and the C5i–C10i ring of the neighbouring mol­ecule [symmetry code: (i) 1 – x, 1 – y, 2 – z] is 3.633 (2) Å.

[Figure 5]
Figure 5
A view of the crystal packing of [PdCl2(Ph2Pqn)], (1), illustrating the ππ stacking inter­actions between the complexes. Color code: Pd, purple; Cl, green; P, yellow; N, blue; C, black; and H, gray.

The PtII complex in (2) also forms an inversion dimer unit by an inter­molecular ππ stacking inter­action between the quinolyl rings of neighbouring mol­ecules (Fig. 6[link]). The centroid–centroid distance between the N1/C2–C4/C10/C9 ring and the C5ii–C10ii ring of the neighbouring mol­ecule [symmetry code: (ii) 1 – x, –y, 1 – z] is 3.644 (2) Å.

[Figure 6]
Figure 6
A view of the crystal packing of [PtCl2(Ph2Pqn)]·CH2Cl2, (2), illustrating the ππ stacking inter­actions between the complexes. Color code: Pt, purple; Cl, green; P, yellow; N, blue; C, black; and H, gray.

No remarkable inter­molecular stacking or hydrogen-bonding inter­actions are observed in the crystal structure of (3).

4. Database survey

The crystal structure of Ph2Pqn was reported previously (Nag et al., 2010[Nag, S., Cibian, M. & Hanan, G. S. (2010). Acta Cryst. E66, o2847.]). Several metal complexes containing Ph2Pqn have also reported by us and others, e.g., [Ni(Ph2Pqn)2](BF4)n (n = 1 or 2; Hashimoto et al., 2010[Hashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39-47.]), [Pd(Ph2Pqn)2]X2 (X = Cl, Br, or BF4; Suzuki, 2004[Suzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869-1876.]), [Ru(bpy)2(Ph2Pqn)](PF6)2 (bpy = 2,2-bi­pyridine; Suzuki et al., 2002[Suzuki, T., Kuchiyama, T., Kishi, S., Kaizaki, S. & Kato, M. (2002). Bull. Chem. Soc. Jpn, 75, 2433-2439.]), [Cp*Ir(N3)(Ph2Pqn)] (Cp* = penta­methyl­cyclo­penta­dienyl; Suzuki et al., 2009[Suzuki, T., Kotera, M., Takayama, A. & Kojima, M. (2009). Polyhedron, 28, 2287-2293.]), [Cu(Ph2Pqn)2]BF4 (Suzuki et al., 2011[Suzuki, T., Yamaguchi, H., Hashimoto, A., Nozaki, K., Doi, M., Inazumi, N., Ikeda, N., Kawata, S., Kojima, M. & Takagi, H. D. (2011). Inorg. Chem. 50, 3981-3987.]), [NiCl(C10H7)(Ph2Pqn)] (C10H7 = 1-naphthyl; Sun et al., 2002[Sun, W.-H., Li, Z., Hu, H., Wu, B., Yang, H., Zhu, N., Leng, X. & Wang, H. (2002). New J. Chem. 26, 1474-1478.]), [Cu(Ph2Pqn)2]PF6 and [ZnX2(Ph2Pqn)] (X = Cl, Br, or I; Tsukuda et al., 2009[Tsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7-12.]), [Cu(Ph2Pqn){(Ph2PC6H4)2O}]BF4 (Qin et al., 2009[Qin, L., Zhang, Q., Sun, W., Wang, J., Lu, C., Cheng, Y. & Wang, L. (2009). Dalton Trans. pp. 9388-9391.]), [AuCl(Ph2Pqn)] (Monkowius et al., 2009[Monkowius, U., Zabel, M., Fleck, M. & Yersin, H. (2009). Z. Naturforsch. Teil B, 64, 1513-1524.]), [PdCl(C3H5)(Ph2Pqn)], [Pd(C3H5)(Ph2Pqn)]ClO4, [Pd(Ph2Pqn)(MeOOCC≡CCOOMe)] and [Pd(Ph2Pqn){MeOOC(Me)C=CCOOMe}] (C3H5 = allyl; Canovese et al., 2010[Canovese, L., Visentin, F., Santo, C., Chessa, G. & Bertolasi, V. (2010). Organometallics, 29, 3027-3038.]). In addition, the crystal structure of [PdCl2(Ph2Pqn)]·CH2Cl2 has been deposited (Bastanov et al., 2009[Bastanov, A. S., Bryant, D. E., Kilner, M. & Neletin, I. S. (2009). Private communication (refcode OBAWIZ). CCDC, Cambridge, England.]).

5. Synthesis and crystallization

The ligand, Ph2Pqn, was prepared according to a literature method (Feltham & Metzger, 1971[Feltham, R. D. & Metzger, H. G. (1971). J. Organomet. Chem. 33, 347-355.]; Aguirre et al., 2007[Aguirre, P. A., Lagos, C. A., Moya, S. A., Zúñiga, C., Vera-Oyarce, C., Sola, F., Peris, G. & Bayón, J. C. (2007). Dalton Trans. pp. 5419-5426.]). The di­chlorido­palladium(II) and platinum(II) complexes, [PdCl2(Ph2Pqn)] and [PtCl2(Ph2Pqn)], were prepared by the method reported previously by Hudali et al. (1979[Hudali, H. A., Kingston, J. V. & Tayim, H. A. (1979). Inorg. Chem. 18, 1391-1394.]). The palladium(II) complex was recrystallized from hot aceto­nitrile to afford yellow block-shaped crystals of [PdCl2(Ph2Pqn)], (1). Analysis calculated for C21H16Cl2NPPd: C 51.4, H 3.29, N 2.85%. Found: C 51.2, H 3.25, N 2.87%.

The colorless platelet crystals of the platinum(II) complex, [PtCl2(Ph2Pqn)]·CH2Cl2, (2), were obtained by recrystallization from di­chloro­methane. Analysis calculated for C21H16Cl2NPPt: C 43.5, H 2.78, N 2.42%. Found (after drying completely): C 42.8, H 2.75, N 2.44%.

The PF6 salt of the di­chlorido­rhodium(III) complex, [RhCl2(Ph2Pqn)2]PF6, was precipitated from a methanol solution of RhCl3(Ph2Pqn)2(H2O), which was prepared by a reaction of RhCl3·3H2O and two equivalent amounts of Ph2Pqn in boiling water, by addition of a saturated methanol solution of NH4PF6. The crude product was recrystallized from a mixture of di­chloro­methane and methanol, affording pale-yellow prismatic crystals of [RhCl2(Ph2Pqn)2]PF6·0.5CH2Cl2·0.5CH3OH (3). These crystals were efflorescent when they were picked up from the mother liquor. Analysis calculated for C42H32Cl2F6N2P3Rh·2H2O: C 51.4, H 3.70, N 2.85%. Found (after drying completely): C 51.6, H 3.55, N 2.85%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were refined using a riding model, with O—H = 0.84 Å and C—H = 0.95 (aromatic), 0.99 (methyl­ene) or 0.98 (meth­yl) Å, and with Uiso(H) = 1.2 or 1.5Ueq(C,O). During the refinement for (3), each F atom of the PF6 anion was found to have a large displacement ellipsoid elongated in the direction perpendic­ular to the P—F bond, which was attributable to rotational disorder of the anion over two positions. The occupancies of each F atom refined to 0.613 (14) and 0.387 (14). In addition, since the crystal structure of (3) contains a void accessible for a solvent mol­ecule, disordered CH2Cl2 and CH3OH mol­ecules with equal probabilities of 0.5 were assumed. In the refinement, the P—F, C—Cl and C—O bond lengths and the Cl—C—Cl bond angle were restrained to be 1.55 (1), 1.75 (1), 1.42 (2) Å and 112.0 (2)°, respectively. Rigid bond restraints were also applied for the disordered CH2Cl2 and CH3OH mol­ecules.

Table 1
Experimental details

  (1) (2) (3)
Crystal data
Chemical formula [PdCl2(C21H16NP)] [PtCl2(C21H16NP)]·CH2Cl2 [RhCl2(C21H16NP)2](PF6)·0.5CH2Cl2·0.5CH4O
Mr 490.62 664.23 1003.90
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 200 200 200
a, b, c (Å) 9.0293 (5), 15.2154 (8), 13.7936 (6) 13.9280 (5), 9.2371 (3), 17.8941 (6) 9.841 (5), 13.825 (6), 16.167 (8)
α, β, γ (°) 90, 91.8197 (13), 90 90, 102.8447 (10), 90 87.307 (19), 81.80 (2), 70.819 (18)
V3) 1894.07 (16) 2244.53 (13) 2056.2 (17)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.35 6.81 0.79
Crystal size (mm) 0.18 × 0.15 × 0.12 0.25 × 0.24 × 0.05 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (ABSCOR.; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.693, 0.850 0.281, 0.727 0.848, 0.882
No. of measured, independent and observed [I > 2σ(I)] reflections 18103, 4283, 3913 20995, 5081, 4665 20385, 9338, 7245
Rint 0.034 0.028 0.046
(sin θ/λ)max−1) 0.649 0.648 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 0.92 0.017, 0.037, 0.98 0.044, 0.120, 1.06
No. of reflections 4283 5081 9338
No. of parameters 235 262 605
No. of restraints 0 0 20
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.84, −0.50 0.58, −0.60 0.68, −1.03
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), DIRDIF99-PATTY (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

For all compounds, data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010). Program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008) for (1), (2); DIRDIF99-PATTY (Beurskens et al., 1999) for (3). For all compounds, program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

(1) Dichlorido(8-diphenylphosphanylquinoline)palladium(II) top
Crystal data top
[PdCl2(C21H16NP)]F(000) = 976
Mr = 490.62Dx = 1.721 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 9.0293 (5) ÅCell parameters from 10456 reflections
b = 15.2154 (8) Åθ = 3.0–27.5°
c = 13.7936 (6) ŵ = 1.35 mm1
β = 91.8197 (13)°T = 200 K
V = 1894.07 (16) Å3Block, yellow
Z = 40.18 × 0.15 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4283 independent reflections
Radiation source: fine-focus sealed tube3913 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.034
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 119
Tmin = 0.693, Tmax = 0.850k = 1919
18103 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.0416P)2 + 2.3772P]
where P = (Fo2 + 2Fc2)/3
4283 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.42495 (2)0.29307 (2)0.78114 (2)0.02590 (7)
Cl10.57514 (7)0.16783 (4)0.81289 (5)0.04011 (15)
Cl20.39715 (8)0.25626 (5)0.62073 (5)0.04049 (16)
P10.28188 (6)0.40803 (4)0.75258 (4)0.02469 (13)
N10.4378 (2)0.33998 (13)0.92166 (15)0.0296 (4)
C20.5290 (3)0.30655 (17)0.9896 (2)0.0359 (6)
H20.59600.26180.97140.043*
C30.5315 (3)0.33376 (19)1.0863 (2)0.0414 (6)
H30.59950.30811.13200.050*
C40.4363 (3)0.39706 (19)1.11443 (19)0.0400 (6)
H40.43340.41391.18070.048*
C50.2453 (3)0.50817 (18)1.06576 (19)0.0396 (6)
H50.23970.52831.13070.047*
C60.1606 (3)0.54738 (18)0.9943 (2)0.0391 (6)
H60.09780.59501.01010.047*
C70.1650 (3)0.51819 (17)0.89779 (18)0.0333 (5)
H70.10530.54600.84890.040*
C80.2560 (3)0.44917 (15)0.87408 (17)0.0271 (5)
C90.3462 (3)0.40817 (15)0.94699 (17)0.0280 (5)
C100.3411 (3)0.43799 (17)1.04423 (18)0.0346 (5)
C110.0989 (3)0.39004 (15)0.70011 (17)0.0279 (5)
C120.0674 (3)0.40697 (17)0.60209 (19)0.0335 (5)
H120.14060.43250.56290.040*
C130.0709 (3)0.38636 (19)0.5624 (2)0.0402 (6)
H130.09320.39870.49600.048*
C140.1766 (3)0.3481 (2)0.6186 (2)0.0440 (7)
H140.27090.33360.59050.053*
C150.1463 (3)0.3307 (2)0.7151 (2)0.0432 (7)
H150.21980.30420.75330.052*
C160.0090 (3)0.35166 (17)0.75691 (19)0.0341 (5)
H160.01140.34000.82370.041*
C170.3685 (3)0.49474 (15)0.68551 (16)0.0260 (5)
C180.5132 (3)0.48296 (17)0.65615 (18)0.0325 (5)
H180.56080.42770.66510.039*
C190.5880 (3)0.55202 (19)0.61371 (19)0.0391 (6)
H190.68710.54410.59430.047*
C200.5192 (3)0.63163 (19)0.59974 (19)0.0405 (6)
H200.57110.67880.57110.049*
C210.3749 (3)0.64331 (18)0.6273 (2)0.0393 (6)
H210.32730.69830.61630.047*
C220.2985 (3)0.57554 (17)0.67083 (18)0.0333 (5)
H220.19960.58410.69040.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.02371 (11)0.02217 (11)0.03178 (12)0.00047 (6)0.00035 (7)0.00150 (6)
Cl10.0335 (3)0.0306 (3)0.0562 (4)0.0070 (3)0.0014 (3)0.0060 (3)
Cl20.0487 (4)0.0367 (3)0.0361 (3)0.0004 (3)0.0012 (3)0.0069 (2)
P10.0232 (3)0.0233 (3)0.0276 (3)0.0006 (2)0.0002 (2)0.0007 (2)
N10.0268 (10)0.0295 (11)0.0323 (11)0.0045 (8)0.0015 (8)0.0046 (8)
C20.0336 (14)0.0307 (13)0.0427 (15)0.0045 (10)0.0076 (11)0.0079 (10)
C30.0452 (16)0.0406 (15)0.0376 (15)0.0086 (13)0.0108 (11)0.0079 (11)
C40.0478 (17)0.0442 (16)0.0276 (13)0.0135 (13)0.0061 (11)0.0016 (11)
C50.0490 (17)0.0379 (14)0.0322 (14)0.0090 (12)0.0081 (11)0.0077 (10)
C60.0426 (16)0.0317 (14)0.0436 (16)0.0012 (11)0.0109 (11)0.0056 (11)
C70.0337 (13)0.0300 (13)0.0366 (14)0.0012 (10)0.0057 (10)0.0008 (10)
C80.0260 (12)0.0269 (12)0.0286 (12)0.0045 (9)0.0020 (9)0.0000 (9)
C90.0273 (12)0.0252 (11)0.0314 (12)0.0074 (9)0.0006 (9)0.0010 (9)
C100.0397 (15)0.0321 (13)0.0320 (13)0.0117 (11)0.0001 (10)0.0006 (10)
C110.0247 (12)0.0237 (11)0.0354 (13)0.0009 (9)0.0006 (9)0.0019 (9)
C120.0334 (13)0.0317 (13)0.0351 (14)0.0009 (10)0.0032 (10)0.0010 (10)
C130.0360 (15)0.0385 (15)0.0451 (16)0.0083 (11)0.0136 (11)0.0063 (11)
C140.0280 (14)0.0427 (16)0.0607 (19)0.0062 (12)0.0074 (12)0.0177 (13)
C150.0275 (14)0.0441 (16)0.0583 (19)0.0037 (12)0.0083 (12)0.0111 (13)
C160.0296 (13)0.0351 (13)0.0375 (14)0.0036 (10)0.0023 (10)0.0022 (10)
C170.0257 (12)0.0273 (11)0.0250 (11)0.0040 (9)0.0015 (8)0.0006 (8)
C180.0302 (13)0.0298 (13)0.0375 (14)0.0002 (10)0.0030 (10)0.0015 (10)
C190.0343 (14)0.0434 (15)0.0400 (15)0.0089 (12)0.0096 (11)0.0019 (11)
C200.0496 (17)0.0358 (14)0.0362 (14)0.0142 (12)0.0028 (11)0.0044 (11)
C210.0473 (16)0.0287 (13)0.0415 (15)0.0018 (11)0.0053 (11)0.0064 (10)
C220.0295 (13)0.0328 (13)0.0374 (14)0.0000 (10)0.0013 (10)0.0033 (10)
Geometric parameters (Å, º) top
Pd1—N12.065 (2)C9—C101.418 (3)
Pd1—P12.2026 (6)C11—C121.397 (4)
Pd1—Cl22.2885 (7)C11—C161.397 (3)
Pd1—Cl12.3716 (6)C12—C131.384 (4)
P1—C111.804 (2)C12—H120.9500
P1—C171.804 (2)C13—C141.377 (4)
P1—C81.811 (2)C13—H130.9500
N1—C21.329 (3)C14—C151.377 (4)
N1—C91.379 (3)C14—H140.9500
C2—C31.396 (4)C15—C161.387 (4)
C2—H20.9500C15—H150.9500
C3—C41.356 (4)C16—H160.9500
C3—H30.9500C17—C221.394 (3)
C4—C101.418 (4)C17—C181.392 (3)
C4—H40.9500C18—C191.388 (4)
C5—C61.365 (4)C18—H180.9500
C5—C101.412 (4)C19—C201.372 (4)
C5—H50.9500C19—H190.9500
C6—C71.405 (4)C20—C211.381 (4)
C6—H60.9500C20—H200.9500
C7—C81.379 (3)C21—C221.388 (4)
C7—H70.9500C21—H210.9500
C8—C91.418 (3)C22—H220.9500
N1—Pd1—P184.75 (6)C5—C10—C9118.6 (2)
N1—Pd1—Cl2173.28 (6)C5—C10—C4123.4 (2)
P1—Pd1—Cl288.61 (2)C9—C10—C4117.9 (3)
N1—Pd1—Cl195.14 (6)C12—C11—C16119.7 (2)
P1—Pd1—Cl1178.94 (2)C12—C11—P1121.08 (19)
Cl2—Pd1—Cl191.51 (3)C16—C11—P1119.00 (19)
C11—P1—C17108.18 (11)C13—C12—C11119.7 (3)
C11—P1—C8106.28 (11)C13—C12—H12120.2
C17—P1—C8107.01 (11)C11—C12—H12120.2
C11—P1—Pd1118.41 (8)C12—C13—C14120.4 (3)
C17—P1—Pd1114.27 (8)C12—C13—H13119.8
C8—P1—Pd1101.60 (8)C14—C13—H13119.8
C2—N1—C9118.2 (2)C15—C14—C13120.4 (3)
C2—N1—Pd1122.99 (19)C15—C14—H14119.8
C9—N1—Pd1118.79 (16)C13—C14—H14119.8
N1—C2—C3123.4 (3)C14—C15—C16120.3 (3)
N1—C2—H2118.3C14—C15—H15119.8
C3—C2—H2118.3C16—C15—H15119.8
C4—C3—C2119.5 (3)C15—C16—C11119.5 (3)
C4—C3—H3120.2C15—C16—H16120.2
C2—C3—H3120.2C11—C16—H16120.2
C3—C4—C10119.5 (3)C22—C17—C18119.8 (2)
C3—C4—H4120.3C22—C17—P1121.15 (18)
C10—C4—H4120.3C18—C17—P1118.78 (19)
C6—C5—C10120.8 (2)C19—C18—C17119.9 (2)
C6—C5—H5119.6C19—C18—H18120.0
C10—C5—H5119.6C17—C18—H18120.0
C5—C6—C7120.9 (3)C20—C19—C18120.2 (3)
C5—C6—H6119.5C20—C19—H19119.9
C7—C6—H6119.5C18—C19—H19119.9
C8—C7—C6120.0 (3)C19—C20—C21120.1 (2)
C8—C7—H7120.0C19—C20—H20119.9
C6—C7—H7120.0C21—C20—H20119.9
C7—C8—C9120.0 (2)C20—C21—C22120.6 (3)
C7—C8—P1125.31 (19)C20—C21—H21119.7
C9—C8—P1114.59 (18)C22—C21—H21119.7
N1—C9—C8119.1 (2)C21—C22—C17119.3 (2)
N1—C9—C10121.2 (2)C21—C22—H22120.4
C8—C9—C10119.7 (2)C17—C22—H22120.4
C9—N1—C2—C33.4 (4)C3—C4—C10—C92.3 (4)
Pd1—N1—C2—C3175.5 (2)C17—P1—C11—C1228.7 (2)
N1—C2—C3—C40.5 (4)C8—P1—C11—C12143.3 (2)
C2—C3—C4—C103.3 (4)Pd1—P1—C11—C12103.4 (2)
C10—C5—C6—C70.9 (4)C17—P1—C11—C16156.7 (2)
C5—C6—C7—C80.2 (4)C8—P1—C11—C1642.1 (2)
C6—C7—C8—C90.6 (4)Pd1—P1—C11—C1671.2 (2)
C6—C7—C8—P1176.4 (2)C16—C11—C12—C130.6 (4)
C11—P1—C8—C750.7 (2)P1—C11—C12—C13175.2 (2)
C17—P1—C8—C764.7 (2)C11—C12—C13—C141.0 (4)
Pd1—P1—C8—C7175.1 (2)C12—C13—C14—C150.6 (4)
C11—P1—C8—C9133.35 (18)C13—C14—C15—C160.1 (4)
C17—P1—C8—C9111.23 (18)C14—C15—C16—C110.5 (4)
Pd1—P1—C8—C98.88 (18)C12—C11—C16—C150.1 (4)
C2—N1—C9—C8175.3 (2)P1—C11—C16—C15174.6 (2)
Pd1—N1—C9—C85.7 (3)C11—P1—C17—C2252.8 (2)
C2—N1—C9—C104.5 (3)C8—P1—C17—C2261.3 (2)
Pd1—N1—C9—C10174.54 (17)Pd1—P1—C17—C22172.94 (17)
C7—C8—C9—N1179.2 (2)C11—P1—C17—C18133.20 (19)
P1—C8—C9—N13.0 (3)C8—P1—C17—C18112.7 (2)
C7—C8—C9—C100.6 (3)Pd1—P1—C17—C181.0 (2)
P1—C8—C9—C10176.80 (18)C22—C17—C18—C191.0 (4)
C6—C5—C10—C90.9 (4)P1—C17—C18—C19173.1 (2)
C6—C5—C10—C4177.3 (3)C17—C18—C19—C200.6 (4)
N1—C9—C10—C5179.9 (2)C18—C19—C20—C210.4 (4)
C8—C9—C10—C50.1 (3)C19—C20—C21—C221.2 (4)
N1—C9—C10—C41.7 (3)C20—C21—C22—C170.8 (4)
C8—C9—C10—C4178.1 (2)C18—C17—C22—C210.2 (4)
C3—C4—C10—C5175.9 (3)P1—C17—C22—C21173.7 (2)
(2) Dichlorido(8-diphenylphosphanylquinoline)platinum(II) dichloromethane monosolvate top
Crystal data top
[PtCl2(C21H16NP)]·CH2Cl2F(000) = 1272
Mr = 664.23Dx = 1.966 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 13.9280 (5) ÅCell parameters from 12710 reflections
b = 9.2371 (3) Åθ = 3.0–27.4°
c = 17.8941 (6) ŵ = 6.81 mm1
β = 102.8447 (10)°T = 200 K
V = 2244.53 (13) Å3Platelet, colorless
Z = 40.25 × 0.24 × 0.05 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5081 independent reflections
Radiation source: fine-focus sealed tube4665 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.028
ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1818
Tmin = 0.281, Tmax = 0.727k = 1110
20995 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.037H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0073P)2 + 3.0468P]
where P = (Fo2 + 2Fc2)/3
5081 reflections(Δ/σ)max = 0.003
262 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.60 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.34435 (2)0.08493 (2)0.69614 (2)0.02160 (3)
Cl10.40053 (5)0.06049 (7)0.80665 (3)0.03408 (14)
Cl20.20025 (5)0.12939 (8)0.73477 (4)0.03670 (15)
Cl30.19749 (8)0.61854 (9)0.43864 (4)0.0575 (2)
Cl40.04531 (7)0.67431 (12)0.30251 (5)0.0619 (2)
P10.29474 (5)0.22285 (6)0.59493 (3)0.02219 (12)
N10.46929 (15)0.0549 (2)0.65523 (11)0.0237 (4)
C10.1712 (2)0.6794 (3)0.34355 (16)0.0393 (6)
H1A0.19530.78000.34200.047*
H1B0.20650.61820.31310.047*
C20.5401 (2)0.0380 (3)0.68572 (14)0.0313 (6)
H20.53130.09600.72750.038*
C30.6271 (2)0.0547 (3)0.65944 (16)0.0367 (6)
H30.67580.12200.68340.044*
C40.6411 (2)0.0261 (3)0.59951 (15)0.0342 (6)
H40.70010.01640.58160.041*
C50.5755 (2)0.2104 (3)0.49983 (15)0.0352 (6)
H50.63240.20220.47910.042*
C60.5028 (2)0.3044 (3)0.46766 (15)0.0374 (6)
H60.51010.36260.42550.045*
C70.4172 (2)0.3161 (3)0.49634 (14)0.0319 (6)
H70.36700.38210.47330.038*
C80.40500 (18)0.2329 (3)0.55748 (13)0.0241 (5)
C90.48110 (18)0.1374 (3)0.59276 (13)0.0239 (5)
C100.5677 (2)0.1246 (3)0.56378 (14)0.0283 (5)
C110.2562 (2)0.4050 (3)0.61167 (13)0.0274 (5)
C120.1573 (2)0.4345 (3)0.60854 (17)0.0403 (7)
H120.10890.36180.59220.048*
C130.1296 (3)0.5704 (3)0.6294 (2)0.0524 (9)
H130.06220.59090.62720.063*
C140.2001 (3)0.6758 (3)0.65334 (17)0.0481 (8)
H140.18080.76850.66780.058*
C150.2971 (3)0.6479 (3)0.65643 (16)0.0440 (8)
H150.34490.72130.67280.053*
C160.3265 (2)0.5121 (3)0.63574 (13)0.0318 (6)
H160.39410.49290.63810.038*
C170.20016 (18)0.1489 (3)0.51834 (13)0.0249 (5)
C180.1620 (2)0.0112 (3)0.52486 (15)0.0305 (6)
H180.18290.04250.57090.037*
C190.0931 (2)0.0475 (3)0.46383 (17)0.0386 (6)
H190.06700.14130.46850.046*
C200.0623 (2)0.0296 (3)0.39660 (16)0.0420 (7)
H200.01500.01070.35530.050*
C210.1009 (2)0.1660 (4)0.38972 (16)0.0450 (7)
H210.08070.21860.34330.054*
C220.1687 (2)0.2259 (3)0.45004 (15)0.0383 (6)
H220.19410.32000.44510.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.02203 (5)0.02250 (5)0.02056 (5)0.00063 (4)0.00538 (3)0.00020 (3)
Cl10.0310 (4)0.0435 (4)0.0267 (3)0.0012 (3)0.0042 (2)0.0108 (3)
Cl20.0304 (4)0.0427 (4)0.0423 (3)0.0051 (3)0.0193 (3)0.0086 (3)
Cl30.0775 (7)0.0463 (4)0.0421 (4)0.0134 (4)0.0009 (4)0.0046 (3)
Cl40.0372 (5)0.0920 (7)0.0503 (4)0.0008 (4)0.0034 (4)0.0148 (4)
P10.0220 (3)0.0218 (3)0.0232 (3)0.0003 (2)0.0059 (2)0.0005 (2)
N10.0226 (11)0.0256 (10)0.0228 (9)0.0005 (8)0.0051 (8)0.0043 (8)
C10.0342 (17)0.0445 (16)0.0389 (14)0.0001 (13)0.0073 (12)0.0018 (13)
C20.0304 (15)0.0352 (14)0.0272 (12)0.0058 (11)0.0044 (11)0.0013 (11)
C30.0298 (15)0.0410 (15)0.0380 (14)0.0096 (12)0.0046 (12)0.0075 (12)
C40.0260 (15)0.0414 (15)0.0365 (14)0.0005 (12)0.0094 (11)0.0142 (12)
C50.0317 (16)0.0429 (16)0.0355 (13)0.0102 (12)0.0173 (12)0.0097 (12)
C60.0428 (18)0.0401 (15)0.0333 (13)0.0084 (13)0.0171 (12)0.0016 (12)
C70.0351 (16)0.0312 (13)0.0299 (12)0.0027 (11)0.0080 (11)0.0010 (11)
C80.0228 (13)0.0256 (12)0.0245 (11)0.0032 (10)0.0063 (9)0.0048 (9)
C90.0257 (13)0.0250 (11)0.0212 (11)0.0051 (10)0.0057 (9)0.0074 (9)
C100.0255 (14)0.0306 (13)0.0297 (12)0.0058 (10)0.0078 (10)0.0104 (10)
C110.0363 (15)0.0233 (12)0.0242 (11)0.0019 (11)0.0104 (10)0.0017 (9)
C120.0383 (18)0.0309 (14)0.0558 (18)0.0018 (12)0.0191 (14)0.0023 (13)
C130.060 (2)0.0383 (17)0.068 (2)0.0172 (16)0.0349 (19)0.0037 (15)
C140.085 (3)0.0241 (14)0.0436 (16)0.0096 (15)0.0329 (17)0.0021 (12)
C150.076 (3)0.0254 (13)0.0333 (14)0.0086 (15)0.0173 (15)0.0041 (11)
C160.0416 (17)0.0291 (13)0.0251 (12)0.0041 (12)0.0086 (11)0.0010 (10)
C170.0236 (13)0.0237 (11)0.0273 (11)0.0027 (10)0.0052 (10)0.0020 (9)
C180.0283 (15)0.0304 (13)0.0329 (13)0.0022 (11)0.0072 (11)0.0004 (11)
C190.0331 (16)0.0346 (14)0.0483 (16)0.0072 (12)0.0091 (13)0.0118 (13)
C200.0305 (16)0.0529 (18)0.0391 (15)0.0009 (14)0.0002 (12)0.0158 (14)
C210.0432 (19)0.0534 (19)0.0322 (14)0.0019 (15)0.0052 (13)0.0027 (13)
C220.0399 (17)0.0322 (14)0.0375 (14)0.0011 (12)0.0026 (12)0.0057 (12)
Geometric parameters (Å, º) top
Pt1—N12.051 (2)C7—H70.9500
Pt1—P12.1963 (6)C8—C91.416 (3)
Pt1—Cl22.3002 (7)C9—C101.420 (3)
Pt1—Cl12.3747 (6)C11—C161.392 (4)
Cl3—C11.752 (3)C11—C121.393 (4)
Cl4—C11.744 (3)C12—C131.388 (4)
P1—C171.810 (3)C12—H120.9500
P1—C81.809 (2)C13—C141.381 (5)
P1—C111.811 (2)C13—H130.9500
N1—C21.329 (3)C14—C151.366 (5)
N1—C91.392 (3)C14—H140.9500
C1—H1A0.9900C15—C161.394 (4)
C1—H1B0.9900C15—H150.9500
C2—C31.402 (4)C16—H160.9500
C2—H20.9500C17—C181.393 (4)
C3—C41.356 (4)C17—C221.398 (3)
C3—H30.9500C18—C191.393 (4)
C4—C101.411 (4)C18—H180.9500
C4—H40.9500C19—C201.381 (4)
C5—C61.361 (4)C19—H190.9500
C5—C101.416 (4)C20—C211.386 (4)
C5—H50.9500C20—H200.9500
C6—C71.404 (4)C21—C221.382 (4)
C6—H60.9500C21—H210.9500
C7—C81.378 (3)C22—H220.9500
N1—Pt1—P185.44 (6)N1—C9—C8119.3 (2)
N1—Pt1—Cl2175.93 (6)N1—C9—C10120.6 (2)
P1—Pt1—Cl290.50 (2)C8—C9—C10120.1 (2)
N1—Pt1—Cl194.13 (6)C4—C10—C9118.5 (2)
P1—Pt1—Cl1178.80 (2)C4—C10—C5123.3 (2)
Cl2—Pt1—Cl189.93 (2)C9—C10—C5118.2 (2)
C17—P1—C8105.88 (11)C16—C11—C12119.6 (2)
C17—P1—C11106.45 (12)C16—C11—P1119.9 (2)
C8—P1—C11108.71 (12)C12—C11—P1120.1 (2)
C17—P1—Pt1116.61 (8)C13—C12—C11119.8 (3)
C8—P1—Pt1101.42 (8)C13—C12—H12120.1
C11—P1—Pt1116.93 (8)C11—C12—H12120.1
C2—N1—C9118.2 (2)C14—C13—C12120.1 (3)
C2—N1—Pt1123.48 (17)C14—C13—H13120.0
C9—N1—Pt1118.27 (16)C12—C13—H13120.0
Cl4—C1—Cl3111.96 (17)C15—C14—C13120.5 (3)
Cl4—C1—H1A109.2C15—C14—H14119.7
Cl3—C1—H1A109.2C13—C14—H14119.7
Cl4—C1—H1B109.2C14—C15—C16120.3 (3)
Cl3—C1—H1B109.2C14—C15—H15119.8
H1A—C1—H1B107.9C16—C15—H15119.8
N1—C2—C3123.4 (2)C11—C16—C15119.6 (3)
N1—C2—H2118.3C11—C16—H16120.2
C3—C2—H2118.3C15—C16—H16120.2
C4—C3—C2119.5 (3)C18—C17—C22119.1 (2)
C4—C3—H3120.3C18—C17—P1120.54 (19)
C2—C3—H3120.3C22—C17—P1120.2 (2)
C3—C4—C10119.7 (3)C17—C18—C19119.9 (2)
C3—C4—H4120.1C17—C18—H18120.0
C10—C4—H4120.1C19—C18—H18120.0
C6—C5—C10121.0 (3)C20—C19—C18120.5 (3)
C6—C5—H5119.5C20—C19—H19119.7
C10—C5—H5119.5C18—C19—H19119.7
C5—C6—C7120.5 (3)C19—C20—C21119.6 (3)
C5—C6—H6119.8C19—C20—H20120.2
C7—C6—H6119.8C21—C20—H20120.2
C8—C7—C6120.8 (3)C22—C21—C20120.4 (3)
C8—C7—H7119.6C22—C21—H21119.8
C6—C7—H7119.6C20—C21—H21119.8
C7—C8—C9119.3 (2)C21—C22—C17120.4 (3)
C7—C8—P1126.0 (2)C21—C22—H22119.8
C9—C8—P1114.57 (17)C17—C22—H22119.8
C9—N1—C2—C31.6 (4)C6—C5—C10—C91.0 (4)
Pt1—N1—C2—C3177.6 (2)C17—P1—C11—C16147.98 (19)
N1—C2—C3—C40.5 (4)C8—P1—C11—C1634.3 (2)
C2—C3—C4—C100.7 (4)Pt1—P1—C11—C1679.7 (2)
C10—C5—C6—C71.4 (4)C17—P1—C11—C1238.9 (2)
C5—C6—C7—C80.0 (4)C8—P1—C11—C12152.6 (2)
C6—C7—C8—C91.6 (4)Pt1—P1—C11—C1293.4 (2)
C6—C7—C8—P1173.7 (2)C16—C11—C12—C130.0 (4)
C17—P1—C8—C762.9 (2)P1—C11—C12—C13173.1 (2)
C11—P1—C8—C751.1 (2)C11—C12—C13—C140.1 (5)
Pt1—P1—C8—C7174.9 (2)C12—C13—C14—C150.3 (5)
C17—P1—C8—C9112.53 (18)C13—C14—C15—C160.3 (4)
C11—P1—C8—C9133.44 (18)C12—C11—C16—C150.0 (4)
Pt1—P1—C8—C99.65 (18)P1—C11—C16—C15173.17 (19)
C2—N1—C9—C8177.6 (2)C14—C15—C16—C110.2 (4)
Pt1—N1—C9—C83.1 (3)C8—P1—C17—C18112.0 (2)
C2—N1—C9—C101.5 (3)C11—P1—C17—C18132.4 (2)
Pt1—N1—C9—C10177.82 (17)Pt1—P1—C17—C180.1 (2)
C7—C8—C9—N1179.1 (2)C8—P1—C17—C2264.2 (2)
P1—C8—C9—N15.1 (3)C11—P1—C17—C2251.3 (2)
C7—C8—C9—C101.9 (3)Pt1—P1—C17—C22176.13 (19)
P1—C8—C9—C10173.94 (17)C22—C17—C18—C190.3 (4)
C3—C4—C10—C90.8 (4)P1—C17—C18—C19176.5 (2)
C3—C4—C10—C5178.5 (2)C17—C18—C19—C200.2 (4)
N1—C9—C10—C40.3 (3)C18—C19—C20—C210.4 (5)
C8—C9—C10—C4178.7 (2)C19—C20—C21—C221.0 (5)
N1—C9—C10—C5179.6 (2)C20—C21—C22—C170.9 (5)
C8—C9—C10—C50.6 (3)C18—C17—C22—C210.2 (4)
C6—C5—C10—C4179.7 (3)P1—C17—C22—C21176.0 (2)
(3) cis-Dichloridobis(8-diphenylphosphanylquinoline)rhodium(III) hexafluoridophosphate dichloromethane/methanol hemisolvate top
Crystal data top
[RhCl2(C21H16NP)2](PF6)·0.5CH2Cl2·0.5CH4OZ = 2
Mr = 1003.90F(000) = 1012
Triclinic, P1Dx = 1.621 Mg m3
a = 9.841 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 13.825 (6) ÅCell parameters from 15480 reflections
c = 16.167 (8) Åθ = 3.1–27.5°
α = 87.307 (19)°µ = 0.79 mm1
β = 81.80 (2)°T = 200 K
γ = 70.819 (18)°Prism, colorless
V = 2056.2 (17) Å30.20 × 0.20 × 0.15 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
9338 independent reflections
Radiation source: fine-focus sealed tube7245 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.046
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR.; Rigaku, 1995)
h = 1212
Tmin = 0.848, Tmax = 0.882k = 1717
20385 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.064P)2]
where P = (Fo2 + 2Fc2)/3
9338 reflections(Δ/σ)max = 0.002
605 parametersΔρmax = 0.68 e Å3
20 restraintsΔρmin = 1.03 e Å3
Special details top

Experimental. The 31P NMR spectrum of 3 in CD3CN (400 MHz, 22 °C) showed two doublet of doublets resonances at δ 38.66 (JRh–P = 110, JP–P = 21 Hz) and 40.47 (JRh–P = 113 Hz).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.81791 (2)0.88958 (2)0.68292 (2)0.02967 (9)
Cl10.92494 (8)0.90055 (6)0.54278 (4)0.03774 (17)
Cl21.04776 (8)0.82096 (6)0.72496 (4)0.03852 (17)
P10.71063 (8)0.90351 (6)0.81912 (4)0.03163 (17)
P20.80756 (8)0.73608 (6)0.64925 (4)0.03480 (18)
P30.55681 (15)0.62928 (12)0.29883 (9)0.0909 (4)
F1A0.6674 (12)0.5251 (7)0.3142 (9)0.163 (6)0.613 (14)
F2A0.4337 (9)0.5838 (8)0.3072 (9)0.132 (4)0.613 (14)
F3A0.601 (2)0.6117 (9)0.2058 (4)0.182 (6)0.613 (14)
F4A0.559 (3)0.633 (2)0.3936 (6)0.322 (12)0.613 (14)
F5A0.6781 (9)0.6811 (7)0.2764 (13)0.174 (5)0.613 (14)
F6A0.4534 (11)0.7384 (6)0.2966 (15)0.211 (8)0.613 (14)
F1B0.530 (4)0.5418 (19)0.356 (2)0.300 (16)0.387 (14)
F2B0.451 (2)0.6177 (18)0.240 (2)0.208 (10)0.387 (14)
F3B0.6695 (18)0.5392 (19)0.249 (2)0.212 (13)0.387 (14)
F4B0.449 (2)0.6981 (12)0.3668 (10)0.147 (7)0.387 (14)
F5B0.6769 (14)0.6458 (17)0.3408 (15)0.163 (9)0.387 (14)
F6B0.522 (3)0.7243 (11)0.2443 (9)0.232 (15)0.387 (14)
N10.8319 (3)1.03784 (18)0.71011 (14)0.0333 (5)
N110.6185 (3)0.9470 (2)0.64031 (13)0.0382 (6)
Cl3A0.3228 (12)0.6504 (8)0.8186 (7)0.322 (5)0.5
Cl4A0.3702 (13)0.5700 (9)0.9744 (6)0.407 (8)0.5
C1A0.289 (2)0.5586 (14)0.8897 (10)0.307 (11)0.5
H1A0.18290.57310.90580.369*0.5
H1B0.33140.48900.86550.369*0.5
O1B0.3204 (14)0.7010 (12)0.8793 (10)0.213 (8)0.5
H1F0.35930.70570.83020.256*0.5
C1B0.326 (2)0.5987 (17)0.8956 (10)0.227 (11)0.5
H1C0.27390.59420.95140.341*0.5
H1E0.42730.55470.89320.341*0.5
H1D0.28010.57610.85370.341*0.5
C20.8789 (4)1.0945 (2)0.6523 (2)0.0478 (8)
H20.89391.07390.59560.057*
C30.9078 (4)1.1828 (3)0.6702 (2)0.0567 (9)
H30.94311.22030.62640.068*
C40.8852 (4)1.2148 (3)0.7497 (2)0.0571 (10)
H40.90201.27600.76240.069*
C50.8172 (5)1.1806 (3)0.8995 (2)0.0696 (12)
H50.83301.24060.91590.083*
C60.7766 (5)1.1198 (4)0.9585 (2)0.0743 (13)
H60.76671.13681.01570.089*
C70.7488 (4)1.0322 (3)0.93688 (19)0.0542 (9)
H70.72050.99010.97940.065*
C80.7622 (3)1.0064 (2)0.85439 (17)0.0377 (7)
C90.8102 (3)1.0674 (2)0.79179 (18)0.0369 (6)
C100.8366 (4)1.1571 (3)0.8139 (2)0.0484 (8)
C120.5505 (4)1.0465 (3)0.63529 (19)0.0525 (9)
H120.59791.09220.64900.063*
C130.4129 (4)1.0875 (4)0.6109 (2)0.0713 (13)
H130.36841.15960.60810.086*
C140.3440 (4)1.0250 (4)0.5916 (2)0.0761 (15)
H140.24961.05250.57550.091*
C150.3453 (5)0.8472 (6)0.5772 (3)0.0870 (18)
H150.25030.87140.56180.104*
C160.4156 (6)0.7439 (6)0.5816 (3)0.098 (2)
H160.36870.69710.56970.118*
C170.5564 (4)0.7070 (4)0.6036 (3)0.0723 (12)
H170.60480.63530.60550.087*
C180.6254 (4)0.7737 (3)0.62245 (19)0.0495 (9)
C190.5529 (3)0.8803 (3)0.61891 (17)0.0467 (8)
C200.4116 (4)0.9172 (4)0.59511 (19)0.0615 (11)
C210.5141 (3)0.9536 (3)0.82721 (17)0.0432 (8)
C220.4385 (4)1.0554 (3)0.8417 (2)0.0644 (11)
H220.48811.10150.85120.077*
C230.2882 (6)1.0909 (5)0.8423 (3)0.107 (2)
H230.23471.16130.85220.129*
C240.2165 (6)1.0214 (8)0.8282 (3)0.125 (3)
H240.11411.04470.82910.151*
C250.2927 (6)0.9224 (7)0.8134 (3)0.104 (2)
H250.24420.87600.80300.125*
C260.4391 (4)0.8879 (4)0.8133 (2)0.0639 (11)
H260.49110.81740.80350.077*
C270.7478 (4)0.8059 (2)0.89991 (17)0.0428 (7)
C280.6348 (5)0.7924 (3)0.9570 (2)0.0645 (11)
H280.53730.83250.95200.077*
C290.6633 (6)0.7216 (4)1.0204 (3)0.0891 (16)
H290.58590.71391.05960.107*
C300.8036 (7)0.6625 (4)1.0267 (3)0.1008 (19)
H300.82330.61271.06990.121*
C310.9143 (6)0.6745 (4)0.9719 (3)0.102 (2)
H311.01120.63310.97690.122*
C320.8874 (5)0.7475 (4)0.9078 (2)0.0761 (14)
H320.96590.75620.87010.091*
C330.9307 (3)0.6735 (2)0.55799 (18)0.0373 (7)
C341.0796 (3)0.6486 (2)0.55612 (19)0.0437 (7)
H341.11760.66390.60280.052*
C351.1731 (4)0.6015 (3)0.4863 (2)0.0505 (8)
H351.27500.58460.48520.061*
C361.1187 (4)0.5794 (2)0.4188 (2)0.0487 (8)
H361.18280.54640.37130.058*
C370.9725 (4)0.6047 (2)0.41995 (19)0.0481 (8)
H370.93560.58940.37280.058*
C380.8767 (4)0.6523 (2)0.48863 (18)0.0427 (7)
H380.77500.67030.48830.051*
C390.8269 (4)0.6356 (2)0.72758 (18)0.0407 (7)
C400.7092 (5)0.6125 (3)0.7699 (3)0.0689 (12)
H400.61360.65070.75950.083*
C410.7312 (6)0.5334 (3)0.8277 (3)0.0844 (15)
H410.64980.51790.85650.101*
C420.8658 (6)0.4779 (3)0.8439 (2)0.0714 (12)
H420.87810.42490.88450.086*
C430.9853 (6)0.4982 (3)0.8016 (2)0.0724 (12)
H431.08020.45840.81210.087*
C440.9657 (4)0.5771 (3)0.7437 (2)0.0597 (10)
H441.04790.59150.71470.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.03129 (14)0.03778 (14)0.02306 (12)0.01406 (10)0.00624 (8)0.00226 (9)
Cl10.0437 (4)0.0465 (4)0.0252 (3)0.0185 (3)0.0016 (3)0.0013 (3)
Cl20.0332 (4)0.0482 (4)0.0393 (4)0.0168 (3)0.0119 (3)0.0035 (3)
P10.0335 (4)0.0417 (4)0.0227 (3)0.0152 (3)0.0058 (3)0.0020 (3)
P20.0358 (4)0.0452 (4)0.0305 (4)0.0218 (4)0.0038 (3)0.0078 (3)
P30.0619 (8)0.1049 (11)0.0944 (10)0.0099 (8)0.0086 (7)0.0199 (9)
F1A0.099 (7)0.145 (8)0.206 (11)0.007 (6)0.030 (8)0.076 (9)
F2A0.072 (4)0.155 (8)0.176 (9)0.058 (5)0.023 (5)0.025 (7)
F3A0.281 (16)0.160 (11)0.067 (4)0.040 (10)0.018 (6)0.022 (5)
F4A0.30 (2)0.51 (4)0.108 (8)0.04 (3)0.068 (11)0.103 (13)
F5A0.106 (7)0.117 (6)0.290 (16)0.033 (5)0.008 (8)0.011 (9)
F6A0.088 (6)0.112 (7)0.42 (2)0.032 (5)0.092 (10)0.112 (12)
F1B0.28 (4)0.20 (2)0.42 (4)0.11 (2)0.03 (4)0.16 (3)
F2B0.164 (18)0.21 (2)0.26 (2)0.038 (13)0.078 (18)0.12 (2)
F3B0.115 (14)0.20 (2)0.30 (3)0.040 (14)0.08 (2)0.14 (2)
F4B0.140 (13)0.143 (12)0.121 (11)0.015 (9)0.044 (9)0.052 (8)
F5B0.079 (9)0.22 (2)0.184 (17)0.009 (10)0.078 (11)0.073 (14)
F6B0.43 (4)0.145 (17)0.110 (10)0.11 (2)0.001 (15)0.079 (12)
N10.0396 (14)0.0320 (12)0.0291 (11)0.0126 (11)0.0045 (10)0.0033 (10)
N110.0332 (14)0.0595 (16)0.0202 (11)0.0122 (12)0.0057 (9)0.0011 (11)
Cl3A0.302 (11)0.251 (10)0.445 (14)0.111 (8)0.131 (12)0.083 (10)
Cl4A0.480 (19)0.444 (17)0.221 (8)0.130 (12)0.146 (10)0.022 (9)
C1A0.35 (3)0.218 (19)0.33 (2)0.15 (2)0.233 (17)0.174 (15)
O1B0.118 (9)0.287 (16)0.257 (16)0.110 (10)0.061 (10)0.168 (13)
C1B0.26 (2)0.48 (3)0.114 (11)0.33 (2)0.086 (12)0.119 (16)
C20.067 (2)0.0415 (17)0.0344 (15)0.0181 (16)0.0036 (15)0.0000 (14)
C30.080 (3)0.0396 (18)0.052 (2)0.0268 (18)0.0016 (18)0.0005 (16)
C40.075 (3)0.0420 (18)0.060 (2)0.0295 (19)0.0005 (19)0.0092 (17)
C50.100 (3)0.072 (3)0.053 (2)0.054 (3)0.008 (2)0.027 (2)
C60.111 (4)0.093 (3)0.0392 (19)0.064 (3)0.006 (2)0.026 (2)
C70.070 (2)0.071 (2)0.0324 (15)0.040 (2)0.0014 (15)0.0128 (16)
C80.0358 (16)0.0489 (17)0.0311 (14)0.0173 (14)0.0017 (12)0.0085 (13)
C90.0331 (16)0.0410 (16)0.0358 (15)0.0096 (13)0.0041 (12)0.0090 (13)
C100.056 (2)0.0469 (19)0.0454 (18)0.0220 (17)0.0004 (15)0.0139 (15)
C120.047 (2)0.067 (2)0.0326 (16)0.0030 (17)0.0095 (14)0.0074 (16)
C130.046 (2)0.100 (3)0.044 (2)0.009 (2)0.0103 (17)0.015 (2)
C140.034 (2)0.142 (5)0.0343 (18)0.003 (3)0.0126 (15)0.010 (2)
C150.038 (2)0.180 (6)0.051 (2)0.044 (3)0.0051 (18)0.029 (3)
C160.064 (3)0.184 (6)0.077 (3)0.079 (4)0.001 (2)0.049 (4)
C170.054 (2)0.106 (3)0.075 (3)0.048 (2)0.000 (2)0.036 (2)
C180.0394 (19)0.082 (3)0.0365 (16)0.0320 (18)0.0013 (13)0.0200 (16)
C190.0312 (17)0.087 (3)0.0233 (13)0.0201 (17)0.0037 (11)0.0091 (15)
C200.0347 (19)0.123 (4)0.0258 (15)0.023 (2)0.0073 (13)0.0020 (19)
C210.0369 (17)0.071 (2)0.0236 (13)0.0205 (16)0.0054 (12)0.0023 (14)
C220.046 (2)0.084 (3)0.051 (2)0.005 (2)0.0067 (17)0.006 (2)
C230.058 (3)0.150 (6)0.069 (3)0.024 (3)0.003 (2)0.012 (3)
C240.034 (3)0.271 (10)0.056 (3)0.029 (4)0.011 (2)0.009 (4)
C250.050 (3)0.241 (8)0.044 (2)0.075 (4)0.003 (2)0.022 (3)
C260.051 (2)0.120 (4)0.0341 (16)0.047 (2)0.0011 (15)0.0148 (19)
C270.059 (2)0.0453 (17)0.0256 (13)0.0170 (16)0.0089 (13)0.0009 (13)
C280.075 (3)0.074 (3)0.0450 (19)0.028 (2)0.0082 (18)0.0157 (19)
C290.124 (5)0.091 (4)0.048 (2)0.037 (3)0.001 (3)0.025 (2)
C300.149 (5)0.081 (3)0.047 (2)0.008 (3)0.005 (3)0.021 (2)
C310.099 (4)0.110 (4)0.051 (2)0.026 (3)0.012 (3)0.017 (3)
C320.068 (3)0.101 (3)0.0350 (18)0.003 (2)0.0040 (18)0.014 (2)
C330.0431 (18)0.0379 (15)0.0359 (15)0.0207 (14)0.0012 (13)0.0082 (13)
C340.0431 (19)0.0511 (19)0.0405 (16)0.0209 (15)0.0000 (13)0.0132 (14)
C350.050 (2)0.0480 (19)0.054 (2)0.0198 (16)0.0054 (16)0.0127 (16)
C360.068 (2)0.0366 (16)0.0392 (16)0.0194 (16)0.0109 (16)0.0116 (14)
C370.072 (3)0.0428 (17)0.0344 (15)0.0260 (17)0.0039 (15)0.0079 (14)
C380.055 (2)0.0463 (17)0.0341 (15)0.0263 (16)0.0058 (14)0.0066 (13)
C390.054 (2)0.0420 (17)0.0341 (15)0.0283 (15)0.0012 (13)0.0080 (13)
C400.066 (3)0.052 (2)0.083 (3)0.023 (2)0.014 (2)0.008 (2)
C410.093 (4)0.070 (3)0.087 (3)0.040 (3)0.027 (3)0.011 (3)
C420.118 (4)0.055 (2)0.049 (2)0.042 (3)0.004 (2)0.0045 (19)
C430.099 (4)0.081 (3)0.050 (2)0.042 (3)0.025 (2)0.017 (2)
C440.067 (3)0.083 (3)0.0443 (19)0.042 (2)0.0161 (17)0.0071 (19)
Geometric parameters (Å, º) top
Rh1—N112.065 (2)C14—C201.420 (7)
Rh1—N12.168 (2)C14—H140.9500
Rh1—P22.2531 (8)C15—C161.370 (8)
Rh1—P12.2897 (7)C15—C201.392 (7)
Rh1—Cl22.3338 (7)C15—H150.9500
Rh1—Cl12.3787 (6)C16—C171.402 (7)
P1—C81.800 (3)C16—H160.9500
P1—C211.815 (3)C17—C181.378 (5)
P1—C271.818 (3)C17—H170.9500
P2—C181.806 (3)C18—C191.413 (5)
P2—C391.816 (3)C19—C201.418 (5)
P2—C331.821 (3)C21—C221.372 (5)
P3—F3A1.513 (6)C21—C261.389 (5)
P3—F6B1.518 (8)C22—C231.396 (6)
P3—F6A1.519 (7)C22—H220.9500
P3—F2A1.526 (6)C23—C241.409 (10)
P3—F5B1.526 (8)C23—H230.9500
P3—F1A1.528 (6)C24—C251.341 (9)
P3—F4B1.529 (8)C24—H240.9500
P3—F3B1.538 (8)C25—C261.360 (6)
P3—F4A1.539 (7)C25—H250.9500
P3—F2B1.552 (8)C26—H260.9500
P3—F1B1.558 (9)C27—C321.367 (5)
P3—F5A1.576 (7)C27—C281.397 (5)
N1—C21.322 (4)C28—C291.376 (5)
N1—C91.367 (4)C28—H280.9500
N11—C121.321 (4)C29—C301.370 (7)
N11—C191.368 (4)C29—H290.9500
Cl3A—C1A1.754 (10)C30—C311.353 (7)
Cl4A—C1A1.721 (10)C30—H300.9500
C1A—H1A0.9900C31—C321.402 (5)
C1A—H1B0.9900C31—H310.9500
O1B—C1B1.412 (16)C32—H320.9500
O1B—H1F0.8400C33—C341.387 (4)
C1B—H1C0.9800C33—C381.388 (4)
C1B—H1E0.9800C34—C351.387 (4)
C1B—H1D0.9800C34—H340.9500
C2—C31.392 (5)C35—C361.370 (5)
C2—H20.9500C35—H350.9500
C3—C41.344 (5)C36—C371.361 (5)
C3—H30.9500C36—H360.9500
C4—C101.405 (5)C37—C381.385 (4)
C4—H40.9500C37—H370.9500
C5—C61.346 (5)C38—H380.9500
C5—C101.407 (5)C39—C401.381 (5)
C5—H50.9500C39—C441.395 (5)
C6—C71.396 (5)C40—C411.385 (6)
C6—H60.9500C40—H400.9500
C7—C81.373 (4)C41—C421.351 (6)
C7—H70.9500C41—H410.9500
C8—C91.416 (4)C42—C431.377 (6)
C9—C101.418 (4)C42—H420.9500
C12—C131.392 (5)C43—C441.387 (5)
C12—H120.9500C43—H430.9500
C13—C141.332 (7)C44—H440.9500
C13—H130.9500
N11—Rh1—N195.37 (10)C4—C10—C9118.3 (3)
N11—Rh1—P284.53 (8)C5—C10—C9117.6 (3)
N1—Rh1—P2177.65 (6)N11—C12—C13123.2 (4)
N11—Rh1—P191.56 (6)N11—C12—H12118.4
N1—Rh1—P181.81 (6)C13—C12—H12118.4
P2—Rh1—P1100.55 (3)C14—C13—C12119.5 (4)
N11—Rh1—Cl2177.29 (7)C14—C13—H13120.2
N1—Rh1—Cl286.06 (7)C12—C13—H13120.2
P2—Rh1—Cl293.94 (3)C13—C14—C20120.1 (4)
P1—Rh1—Cl290.92 (3)C13—C14—H14120.0
N11—Rh1—Cl187.29 (6)C20—C14—H14120.0
N1—Rh1—Cl190.19 (6)C16—C15—C20120.8 (4)
P2—Rh1—Cl187.45 (3)C16—C15—H15119.6
P1—Rh1—Cl1171.78 (3)C20—C15—H15119.6
Cl2—Rh1—Cl190.41 (3)C15—C16—C17120.3 (4)
C8—P1—C21104.72 (15)C15—C16—H16119.8
C8—P1—C27105.37 (14)C17—C16—H16119.8
C21—P1—C27104.93 (15)C18—C17—C16120.7 (5)
C8—P1—Rh1100.60 (9)C18—C17—H17119.6
C21—P1—Rh1111.85 (9)C16—C17—H17119.6
C27—P1—Rh1127.10 (11)C17—C18—C19119.2 (4)
C18—P2—C39108.44 (16)C17—C18—P2125.0 (3)
C18—P2—C33107.38 (14)C19—C18—P2115.7 (2)
C39—P2—C33104.33 (14)N11—C19—C18119.6 (3)
C18—P2—Rh1100.25 (12)N11—C19—C20120.5 (4)
C39—P2—Rh1119.73 (10)C18—C19—C20119.8 (3)
C33—P2—Rh1116.00 (9)C15—C20—C19119.1 (5)
F3A—P3—F6A98.7 (10)C15—C20—C14123.3 (4)
F3A—P3—F2A96.5 (6)C19—C20—C14117.6 (4)
F6A—P3—F2A92.8 (7)C22—C21—C26119.1 (4)
F6B—P3—F5B99.3 (12)C22—C21—P1122.0 (3)
F3A—P3—F1A89.1 (5)C26—C21—P1118.8 (3)
F6A—P3—F1A170.5 (9)C21—C22—C23119.6 (5)
F2A—P3—F1A91.7 (7)C21—C22—H22120.2
F6B—P3—F4B85.3 (8)C23—C22—H22120.2
F5B—P3—F4B87.0 (10)C22—C23—C24119.4 (6)
F6B—P3—F3B109.7 (17)C22—C23—H23120.3
F5B—P3—F3B89.9 (12)C24—C23—H23120.3
F4B—P3—F3B165.0 (17)C25—C24—C23120.0 (5)
F3A—P3—F4A163.5 (12)C25—C24—H24120.0
F6A—P3—F4A93.0 (9)C23—C24—H24120.0
F2A—P3—F4A94.5 (11)C24—C25—C26120.5 (6)
F1A—P3—F4A78.3 (11)C24—C25—H25119.8
F6B—P3—F2B73.3 (16)C26—C25—H25119.8
F5B—P3—F2B169.0 (18)C25—C26—C21121.4 (5)
F4B—P3—F2B100.3 (14)C25—C26—H26119.3
F3B—P3—F2B85.1 (12)C21—C26—H26119.3
F6B—P3—F1B158.1 (19)C32—C27—C28119.0 (3)
F5B—P3—F1B98.6 (18)C32—C27—P1120.4 (3)
F4B—P3—F1B83.2 (15)C28—C27—P1120.6 (3)
F3B—P3—F1B82.8 (16)C29—C28—C27120.7 (4)
F2B—P3—F1B90.6 (15)C29—C28—H28119.7
F3A—P3—F5A76.1 (9)C27—C28—H28119.7
F6A—P3—F5A84.0 (6)C30—C29—C28119.7 (4)
F2A—P3—F5A171.3 (9)C30—C29—H29120.1
F1A—P3—F5A92.7 (7)C28—C29—H29120.1
F4A—P3—F5A93.7 (10)C31—C30—C29120.3 (4)
C2—N1—C9118.3 (3)C31—C30—H30119.8
C2—N1—Rh1122.6 (2)C29—C30—H30119.8
C9—N1—Rh1118.45 (18)C30—C31—C32120.7 (5)
C12—N11—C19119.0 (3)C30—C31—H31119.7
C12—N11—Rh1121.9 (2)C32—C31—H31119.7
C19—N11—Rh1119.2 (2)C27—C32—C31119.6 (4)
Cl4A—C1A—Cl3A104.2 (8)C27—C32—H32120.2
Cl4A—C1A—H1A110.9C31—C32—H32120.2
Cl3A—C1A—H1A110.9C34—C33—C38119.2 (3)
Cl4A—C1A—H1B110.9C34—C33—P2120.3 (2)
Cl3A—C1A—H1B110.9C38—C33—P2120.5 (2)
H1A—C1A—H1B108.9C33—C34—C35120.2 (3)
C1B—O1B—H1F109.5C33—C34—H34119.9
O1B—C1B—H1C109.5C35—C34—H34119.9
O1B—C1B—H1E109.5C36—C35—C34120.1 (3)
H1C—C1B—H1E109.5C36—C35—H35120.0
O1B—C1B—H1D109.5C34—C35—H35120.0
H1C—C1B—H1D109.5C37—C36—C35119.9 (3)
H1E—C1B—H1D109.5C37—C36—H36120.0
N1—C2—C3123.5 (3)C35—C36—H36120.0
N1—C2—H2118.2C36—C37—C38121.2 (3)
C3—C2—H2118.2C36—C37—H37119.4
C4—C3—C2119.5 (3)C38—C37—H37119.4
C4—C3—H3120.2C37—C38—C33119.4 (3)
C2—C3—H3120.2C37—C38—H38120.3
C3—C4—C10119.5 (3)C33—C38—H38120.3
C3—C4—H4120.2C40—C39—C44118.6 (3)
C10—C4—H4120.2C40—C39—P2122.4 (3)
C6—C5—C10121.5 (3)C44—C39—P2119.0 (2)
C6—C5—H5119.3C39—C40—C41119.7 (4)
C10—C5—H5119.3C39—C40—H40120.2
C5—C6—C7121.1 (3)C41—C40—H40120.2
C5—C6—H6119.5C42—C41—C40121.5 (4)
C7—C6—H6119.5C42—C41—H41119.3
C8—C7—C6120.3 (3)C40—C41—H41119.3
C8—C7—H7119.9C41—C42—C43120.1 (4)
C6—C7—H7119.9C41—C42—H42120.0
C7—C8—C9119.2 (3)C43—C42—H42120.0
C7—C8—P1124.0 (2)C42—C43—C44119.4 (4)
C9—C8—P1116.7 (2)C42—C43—H43120.3
N1—C9—C8118.9 (3)C44—C43—H43120.3
N1—C9—C10120.8 (3)C43—C44—C39120.8 (4)
C8—C9—C10120.3 (3)C43—C44—H44119.6
C4—C10—C5124.1 (3)C39—C44—H44119.6
C9—N1—C2—C30.1 (5)C13—C14—C20—C15178.9 (3)
Rh1—N1—C2—C3170.8 (3)C13—C14—C20—C190.5 (5)
N1—C2—C3—C41.2 (6)C8—P1—C21—C2211.2 (3)
C2—C3—C4—C101.7 (6)C27—P1—C21—C22121.9 (3)
C10—C5—C6—C71.6 (8)Rh1—P1—C21—C2296.9 (3)
C5—C6—C7—C80.1 (7)C8—P1—C21—C26172.8 (2)
C6—C7—C8—C92.6 (6)C27—P1—C21—C2662.0 (3)
C6—C7—C8—P1173.1 (3)Rh1—P1—C21—C2679.2 (2)
C21—P1—C8—C777.0 (3)C26—C21—C22—C230.1 (5)
C27—P1—C8—C733.4 (3)P1—C21—C22—C23176.2 (3)
Rh1—P1—C8—C7166.8 (3)C21—C22—C23—C240.1 (6)
C21—P1—C8—C998.7 (2)C22—C23—C24—C250.7 (8)
C27—P1—C8—C9150.9 (2)C23—C24—C25—C261.1 (8)
Rh1—P1—C8—C917.4 (3)C24—C25—C26—C210.8 (7)
C2—N1—C9—C8179.0 (3)C22—C21—C26—C250.2 (5)
Rh1—N1—C9—C87.6 (4)P1—C21—C26—C25175.9 (3)
C2—N1—C9—C100.4 (5)C8—P1—C27—C3273.9 (3)
Rh1—N1—C9—C10171.7 (2)C21—P1—C27—C32175.8 (3)
C7—C8—C9—N1176.0 (3)Rh1—P1—C27—C3242.6 (4)
P1—C8—C9—N18.1 (4)C8—P1—C27—C28103.4 (3)
C7—C8—C9—C103.4 (5)C21—P1—C27—C286.9 (3)
P1—C8—C9—C10172.6 (3)Rh1—P1—C27—C28140.1 (3)
C3—C4—C10—C5176.4 (4)C32—C27—C28—C290.2 (6)
C3—C4—C10—C91.2 (6)P1—C27—C28—C29177.2 (4)
C6—C5—C10—C4176.9 (4)C27—C28—C29—C301.2 (7)
C6—C5—C10—C90.7 (7)C28—C29—C30—C311.1 (9)
N1—C9—C10—C40.2 (5)C29—C30—C31—C320.0 (9)
C8—C9—C10—C4179.5 (3)C28—C27—C32—C310.9 (7)
N1—C9—C10—C5177.6 (3)P1—C27—C32—C31178.3 (4)
C8—C9—C10—C51.7 (5)C30—C31—C32—C271.0 (8)
C19—N11—C12—C131.5 (4)C18—P2—C33—C34171.2 (3)
Rh1—N11—C12—C13176.6 (2)C39—P2—C33—C3473.8 (3)
N11—C12—C13—C140.2 (5)Rh1—P2—C33—C3460.1 (3)
C12—C13—C14—C200.7 (5)C18—P2—C33—C387.1 (3)
C20—C15—C16—C170.6 (7)C39—P2—C33—C38107.8 (3)
C15—C16—C17—C181.1 (7)Rh1—P2—C33—C38118.2 (2)
C16—C17—C18—C190.4 (5)C38—C33—C34—C351.2 (5)
C16—C17—C18—P2178.5 (3)P2—C33—C34—C35179.6 (2)
C39—P2—C18—C1747.8 (3)C33—C34—C35—C360.0 (5)
C33—P2—C18—C1764.4 (3)C34—C35—C36—C370.8 (5)
Rh1—P2—C18—C17174.1 (3)C35—C36—C37—C380.4 (5)
C39—P2—C18—C19134.0 (2)C36—C37—C38—C330.8 (5)
C33—P2—C18—C19113.8 (2)C34—C33—C38—C371.6 (4)
Rh1—P2—C18—C197.8 (2)P2—C33—C38—C37180.0 (2)
C12—N11—C19—C18178.8 (3)C18—P2—C39—C4013.0 (3)
Rh1—N11—C19—C183.0 (3)C33—P2—C39—C40127.2 (3)
C12—N11—C19—C202.7 (4)Rh1—P2—C39—C40100.9 (3)
Rh1—N11—C19—C20175.5 (2)C18—P2—C39—C44164.7 (3)
C17—C18—C19—N11177.8 (3)C33—P2—C39—C4450.5 (3)
P2—C18—C19—N114.0 (4)Rh1—P2—C39—C4481.3 (3)
C17—C18—C19—C200.8 (5)C44—C39—C40—C410.8 (6)
P2—C18—C19—C20177.5 (2)P2—C39—C40—C41178.6 (3)
C16—C15—C20—C190.6 (6)C39—C40—C41—C420.1 (7)
C16—C15—C20—C14180.0 (4)C40—C41—C42—C431.2 (7)
N11—C19—C20—C15177.2 (3)C41—C42—C43—C441.3 (7)
C18—C19—C20—C151.3 (4)C42—C43—C44—C390.3 (6)
N11—C19—C20—C142.2 (4)C40—C39—C44—C430.7 (6)
C18—C19—C20—C14179.3 (3)P2—C39—C44—C43178.5 (3)
 

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research No. 25410070 from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

References

First citationAguirre, P. A., Lagos, C. A., Moya, S. A., Zúñiga, C., Vera-Oyarce, C., Sola, F., Peris, G. & Bayón, J. C. (2007). Dalton Trans. pp. 5419–5426.  Web of Science CSD CrossRef Google Scholar
First citationBastanov, A. S., Bryant, D. E., Kilner, M. & Neletin, I. S. (2009). Private communication (refcode OBAWIZ). CCDC, Cambridge, England.  Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationCanovese, L., Visentin, F., Santo, C., Chessa, G. & Bertolasi, V. (2010). Organometallics, 29, 3027–3038.  Web of Science CSD CrossRef CAS Google Scholar
First citationEspinet, P. & Soulantica, K. (1999). Coord. Chem. Rev. 193–195, 499–556.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFeltham, R. D. & Metzger, H. G. (1971). J. Organomet. Chem. 33, 347–355.  CrossRef CAS Web of Science Google Scholar
First citationGalsbøl, F., Kojima, M., Ishii, T., Ohba, S., Saito, Y. & Fujita, J. (1986). Bull. Chem. Soc. Jpn, 59, 1701–1707.  Google Scholar
First citationHashimoto, A., Yamaguchi, H., Suzuki, T., Kashiwabara, K., Kojima, M. & Takagi, H. D. (2010). Eur. J. Inorg. Chem. pp. 39–47.  Web of Science CSD CrossRef Google Scholar
First citationHudali, H. A., Kingston, J. V. & Tayim, H. A. (1979). Inorg. Chem. 18, 1391–1394.  CrossRef CAS Web of Science Google Scholar
First citationIssleib, K. & Hörnig, K. (1972). Z. Anorg. Allg. Chem. 389, 263–268.  CrossRef CAS Web of Science Google Scholar
First citationMonkowius, U., Zabel, M., Fleck, M. & Yersin, H. (2009). Z. Naturforsch. Teil B, 64, 1513–1524.  CAS Google Scholar
First citationNag, S., Cibian, M. & Hanan, G. S. (2010). Acta Cryst. E66, o2847.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQin, L., Zhang, Q., Sun, W., Wang, J., Lu, C., Cheng, Y. & Wang, L. (2009). Dalton Trans. pp. 9388–9391.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSalem, G. & Wild, S. B. (1992). Inorg. Chem. 31, 581–586.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, W.-H., Li, Z., Hu, H., Wu, B., Yang, H., Zhu, N., Leng, X. & Wang, H. (2002). New J. Chem. 26, 1474–1478.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, T. (2004). Bull. Chem. Soc. Jpn, 77, 1869–1876.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, T., Kotera, M., Takayama, A. & Kojima, M. (2009). Polyhedron, 28, 2287–2293.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, T., Kuchiyama, T., Kishi, S., Kaizaki, S. & Kato, M. (2002). Bull. Chem. Soc. Jpn, 75, 2433–2439.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuzuki, T., Yamaguchi, H., Hashimoto, A., Nozaki, K., Doi, M., Inazumi, N., Ikeda, N., Kawata, S., Kojima, M. & Takagi, H. D. (2011). Inorg. Chem. 50, 3981–3987.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTsukuda, T., Nishigata, C., Arai, K. & Tsubomura, T. (2009). Polyhedron, 28, 7–12.  Web of Science CSD CrossRef CAS Google Scholar
First citationWehman, P., van Donge, H. M. A., Hagos, A., Kamer, P. C. J. & van Leeuwen, P. W. N. M. (1997). J. Organomet. Chem. 535, 183–193.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds