organic compounds
β-D,L-psicose
ofaDepartment of Advanced Materials Science, Faculty of Engineering, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan, bDepartment of Chemistry, Faculty of Science, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama 700-0005, Japan, cRare Sugar Research Center, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan, and dDepartment of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Kagawa 761-0795, Japan
*Correspondence e-mail: tishii@eng.kagawa-u.ac.jp
The title compound, C6H12O6, a C-3 position epimer of fructose, was crystallized from an aqueous solution of equimolar mixture of D- and L-psicose (1,3,4,5,6-pentahydroxyhexan-2-one, ribo-2-hexulose, allulose), and it was confirmed that D-psicose (or L-psicose) formed β-pyranose with a 2C5 (or 5C2) conformation. In the crystal, an O—H⋯O hydrogen bond between the hydroxy groups at the C-3 and C-2 positions connects homochiral molecules into a column along the b axis. The columns are linked by other O—H⋯O hydrogen bonds between D- and L-psicose molecules, forming a three-dimensional network. An intramolecular O—H⋯O hydrogen bond is also observed. The cell volume of racemic β-D,L-psicose [763.21 (6) Å3] is almost the same as that of chiral β-D-psicose [753.06 Å3].
Keywords: crystal structure; hydrogen bonding; racemic compound; rare sugar.
CCDC reference: 1057484
1. Related literature
For the β-D-psicose, see: Kwiecien et al. (2008); Fukada et al. (2010). For the synthesis of the chiral D-psicose, see: Itoh et al. (1995); Takeshita et al. (2000). For the synthesis of the chiral L-psicose, see: Takeshita et al. (1996).
of the chiral2. Experimental
2.1. Crystal data
|
Data collection: RAPID-AUTO (Rigaku, 2009); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure.
Supporting information
CCDC reference: 1057484
https://doi.org/10.1107/S2056989015006623/is5394sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015006623/is5394Isup2.hkl
D-Psicose was prepared from D-fructose by enzymatic
using D-tagatose 3-epimerase (Itoh et al., 1995; Takeshita et al., 2000). L-Psicose was prepared from allitol by microbial oxidation using Gluconobacter frateurii IFO 3254 (Takeshita et al., 1996). D-Psicose and L-psicose were mixed in equal amount and dissolved in hot water to give 60, 65, 70, 75, and 80 wt% solution. And these samples were kept at 10, 20, and 30 °C. After one day, small crystals were obtained in 65, 70, 75, and 80 wt% solution at 10, 20, and 30 °C.H atoms bounded to methine-type C (H3B, H4B, H5B) were positioned geometrically and refined using a riding model with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to methylene-type C (H1B, H1C, H6A, H6B) were positioned geometrically and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to O (H1A, H2A, H3A, H4A, H5A) were positioned geometrically and refined using a riding model with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O), allowing for
of the OH groups.In the crystal of the title compound, the D- and L-molecules are located alternatively in a-c plane, so that the main hydrogen bonding networks can be created between D- and L-molecules. An additional hydrogen bonding between two D-molecules (and two L-molecules) are observed along to the b-axis (O3—H3A···O2iii; Table 1). The molecular structure of D-psicose (or L-psicose) is β-pyranose form with a 2C5 (or 5C2) conformation. Orientations of two OH groups at C-3 and C-5 positions are axial, therefore an intramolecular hydrogen bonding can be observed (O3—H3A···O5; 2.36 Å) [hereafter, (O3···O5)]. The intramolecular hydrogen bonding unit (O3···O5) shown in the racemic D,L-crystal has also observed in a chiral D-crystal (Fukada et al., 2010). In the chiral one, one-dimensional hydrogen bonding chain, that is (O3···O5) -> (O3···O5) -> (O3···O5) ->···, can be observed by connecting through an another hydrogen bonding between two D-molecule units (O5—H5···O3). On the other hand in the case of the racemic one, the L-molecule (or D-molecule) plays as a role of a bridging between two adjacent intramolecular hydrogen bonding in D-molecule (or L-molecule) (O3···O5) units, that is (D O3···O5) -> (L O1) -> (D O3···O5) -> (L O1) -> ··· (or, (L O3···O5) -> (D O1) -> (L O3···O5) -> (D O1) -> ···). Concerning the intermolecular hydrogen bonding, there are four kinds of bondings are also observed between D- and L- psicose molecules (O1—H1A···O3 (a-axis), O2—H2A···O4, O4—H4A···O6 (a-axis), and O5—H5A···O1 (c-axis),). The cell volume of racemic β-D,L-psicose [763.21 (6) Å3 at r.t.] is almost the same as that of chiral β-D-psicose [753.06 Å3 at r.t.].
For the β-D-psicose, see: Kwiecien et al. (2008); Fukada et al. (2010). For the synthesis of the chiral D-psicose, see: Itoh et al. (1995); Takeshita et al. (2000). For the synthesis of the chiral L-psicose, see: Takeshita et al. (1996).
of the chiralData collection: RAPID-AUTO (Rigaku, 2009); cell
RAPID-AUTO (Rigaku, 2009); data reduction: RAPID-AUTO (Rigaku, 2009); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).Fig. 1. ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. | |
Fig. 2. Part of the crystal structure of the title compound with hydrogen-bonding network represented as green solid lines, viewed down the b-axis. The hydrogen atoms are omitted for clarity. | |
Fig. 3. Part of the crystal structure of the chiral β-D-psicose (Fukada et al., 2010) with hydrogen-bonding network represented as green solid lines. The hydrogen atoms are omitted for clarity. |
C6H12O6 | Dx = 1.568 Mg m−3 |
Mr = 180.16 | Cu Kα radiation, λ = 1.54187 Å |
Orthorhombic, Pna21 | Cell parameters from 5584 reflections |
a = 11.2629 (5) Å | θ = 3.5–68.5° |
b = 5.3552 (3) Å | µ = 1.25 mm−1 |
c = 12.6538 (6) Å | T = 296 K |
V = 763.21 (6) Å3 | Block, colorless |
Z = 4 | 0.10 × 0.10 × 0.10 mm |
F(000) = 384.00 |
Rigaku R-AXIS RAPID diffractometer | 1295 reflections with F2 > 2σ(F2) |
Detector resolution: 10.000 pixels mm-1 | Rint = 0.139 |
ω scans | θmax = 68.2°, θmin = 7.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −13→13 |
Tmin = 0.442, Tmax = 0.883 | k = −6→6 |
12119 measured reflections | l = −15→15 |
1400 independent reflections |
Refinement on F2 | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.048 | w = 1/[σ2(Fo2) + (0.0359P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.102 | (Δ/σ)max < 0.001 |
S = 1.04 | Δρmax = 0.25 e Å−3 |
1400 reflections | Δρmin = −0.23 e Å−3 |
116 parameters | Extinction correction: SHELXL |
1 restraint | Extinction coefficient: 0.039 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 666 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.1 (4) |
Hydrogen site location: inferred from neighbouring sites |
C6H12O6 | V = 763.21 (6) Å3 |
Mr = 180.16 | Z = 4 |
Orthorhombic, Pna21 | Cu Kα radiation |
a = 11.2629 (5) Å | µ = 1.25 mm−1 |
b = 5.3552 (3) Å | T = 296 K |
c = 12.6538 (6) Å | 0.10 × 0.10 × 0.10 mm |
Rigaku R-AXIS RAPID diffractometer | 1400 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1295 reflections with F2 > 2σ(F2) |
Tmin = 0.442, Tmax = 0.883 | Rint = 0.139 |
12119 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.102 | Δρmax = 0.25 e Å−3 |
S = 1.04 | Δρmin = −0.23 e Å−3 |
1400 reflections | Absolute structure: Flack (1983), 666 Friedel pairs |
116 parameters | Absolute structure parameter: 0.1 (4) |
1 restraint |
Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6428 (2) | 1.0475 (5) | 0.0101 (2) | 0.0321 (7) | |
O2 | 0.8138 (2) | 1.3225 (4) | 0.1244 (2) | 0.0283 (6) | |
O3 | 0.9712 (2) | 0.7407 (4) | 0.0986 (2) | 0.0278 (6) | |
O4 | 1.12635 (19) | 0.9941 (5) | 0.2360 (2) | 0.0306 (7) | |
O5 | 0.9520 (3) | 0.6941 (5) | 0.3201 (2) | 0.0368 (7) | |
O6 | 0.75926 (19) | 0.9487 (5) | 0.2068 (2) | 0.0243 (6) | |
C1 | 0.7610 (3) | 0.9600 (8) | 0.0218 (3) | 0.0275 (8) | |
C2 | 0.8199 (3) | 1.0614 (6) | 0.1199 (3) | 0.0211 (7) | |
C3 | 0.9525 (3) | 0.9956 (6) | 0.1238 (3) | 0.0223 (7) | |
C4 | 1.0049 (3) | 1.0665 (7) | 0.2306 (2) | 0.0233 (8) | |
C5 | 0.9337 (3) | 0.9564 (7) | 0.3210 (3) | 0.0266 (8) | |
C6 | 0.8044 (3) | 1.0258 (7) | 0.3083 (3) | 0.0289 (8) | |
H1B | 0.80695 | 1.00892 | −0.03968 | 0.0330* | |
H1C | 0.76042 | 0.77904 | 0.02497 | 0.0330* | |
H1A | 0.59772 | 0.95756 | 0.04384 | 0.0386* | |
H2A | 0.75043 | 1.36467 | 0.15074 | 0.0340* | |
H3A | 0.92832 | 0.65324 | 0.13561 | 0.0333* | |
H3B | 0.99273 | 1.0959 | 0.06985 | 0.0268* | |
H4B | 1.00147 | 1.24872 | 0.23691 | 0.0280* | |
H4A | 1.1313 | 0.84167 | 0.23198 | 0.0367* | |
H5A | 0.92192 | 0.63218 | 0.37294 | 0.0442* | |
H5B | 0.96322 | 1.0246 | 0.38792 | 0.0319* | |
H6A | 0.75828 | 0.94707 | 0.36378 | 0.0347* | |
H6B | 0.79566 | 1.20525 | 0.31544 | 0.0347* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0232 (14) | 0.0431 (18) | 0.0301 (13) | −0.0019 (11) | −0.0058 (11) | 0.0126 (12) |
O2 | 0.0238 (12) | 0.0228 (13) | 0.0384 (14) | 0.0010 (9) | 0.0057 (11) | 0.0025 (13) |
O3 | 0.0252 (12) | 0.0240 (13) | 0.0340 (14) | 0.0013 (10) | 0.0068 (10) | −0.0020 (11) |
O4 | 0.0193 (12) | 0.0265 (14) | 0.0459 (17) | 0.0004 (10) | −0.0022 (10) | 0.0013 (12) |
O5 | 0.0475 (17) | 0.0309 (15) | 0.0322 (15) | 0.0064 (12) | 0.0101 (11) | 0.0101 (12) |
O6 | 0.0230 (12) | 0.0297 (14) | 0.0203 (11) | −0.0057 (10) | 0.0027 (10) | 0.0002 (12) |
C1 | 0.025 (2) | 0.032 (2) | 0.0254 (19) | −0.0001 (15) | −0.0001 (14) | 0.0024 (18) |
C2 | 0.0211 (17) | 0.0228 (17) | 0.0195 (16) | 0.0012 (12) | 0.0034 (14) | 0.0043 (16) |
C3 | 0.0197 (19) | 0.0233 (17) | 0.0239 (17) | 0.0009 (12) | 0.0038 (14) | 0.0042 (14) |
C4 | 0.0189 (17) | 0.025 (2) | 0.0265 (19) | 0.0009 (13) | 0.0000 (13) | 0.0006 (15) |
C5 | 0.030 (2) | 0.030 (2) | 0.0201 (17) | 0.0027 (14) | −0.0011 (15) | −0.0001 (15) |
C6 | 0.0272 (18) | 0.039 (2) | 0.0209 (17) | 0.0006 (15) | 0.0055 (15) | −0.0002 (15) |
O1—C1 | 1.419 (4) | O1—H1A | 0.820 |
O2—C2 | 1.401 (4) | O2—H2A | 0.820 |
O3—C3 | 1.418 (4) | O3—H3A | 0.820 |
O4—C4 | 1.423 (4) | O4—H4A | 0.820 |
O5—C5 | 1.419 (4) | O5—H5A | 0.820 |
O6—C2 | 1.428 (4) | C1—H1B | 0.970 |
O6—C6 | 1.442 (4) | C1—H1C | 0.970 |
C1—C2 | 1.509 (5) | C3—H3B | 0.980 |
C2—C3 | 1.535 (5) | C4—H4B | 0.980 |
C3—C4 | 1.523 (5) | C5—H5B | 0.980 |
C4—C5 | 1.516 (5) | C6—H6A | 0.970 |
C5—C6 | 1.512 (5) | C6—H6B | 0.970 |
C2—O6—C6 | 113.3 (2) | C4—O4—H4A | 109.469 |
O1—C1—C2 | 112.3 (3) | C5—O5—H5A | 109.469 |
O2—C2—O6 | 111.6 (3) | O1—C1—H1B | 109.152 |
O2—C2—C1 | 111.8 (3) | O1—C1—H1C | 109.152 |
O2—C2—C3 | 106.0 (3) | C2—C1—H1B | 109.145 |
O6—C2—C1 | 105.7 (3) | C2—C1—H1C | 109.145 |
O6—C2—C3 | 110.1 (3) | H1B—C1—H1C | 107.867 |
C1—C2—C3 | 111.8 (3) | O3—C3—H3B | 107.581 |
O3—C3—C2 | 111.0 (3) | C2—C3—H3B | 107.578 |
O3—C3—C4 | 112.5 (3) | C4—C3—H3B | 107.580 |
C2—C3—C4 | 110.4 (3) | O4—C4—H4B | 107.757 |
O4—C4—C3 | 110.3 (3) | C3—C4—H4B | 107.761 |
O4—C4—C5 | 111.5 (3) | C5—C4—H4B | 107.767 |
C3—C4—C5 | 111.6 (3) | O5—C5—H5B | 109.099 |
O5—C5—C4 | 107.5 (3) | C4—C5—H5B | 109.103 |
O5—C5—C6 | 112.5 (3) | C6—C5—H5B | 109.093 |
C4—C5—C6 | 109.5 (3) | O6—C6—H6A | 109.357 |
O6—C6—C5 | 111.4 (3) | O6—C6—H6B | 109.357 |
C1—O1—H1A | 109.471 | C5—C6—H6A | 109.358 |
C2—O2—H2A | 109.471 | C5—C6—H6B | 109.358 |
C3—O3—H3A | 109.470 | H6A—C6—H6B | 107.992 |
C2—O6—C6—C5 | −60.7 (3) | C1—C2—C3—C4 | −171.7 (2) |
C6—O6—C2—O2 | −58.2 (3) | O3—C3—C4—O4 | 52.5 (3) |
C6—O6—C2—C1 | −179.9 (2) | O3—C3—C4—C5 | −72.0 (3) |
C6—O6—C2—C3 | 59.2 (3) | C2—C3—C4—O4 | 177.1 (2) |
O1—C1—C2—O2 | −53.5 (4) | C2—C3—C4—C5 | 52.6 (3) |
O1—C1—C2—O6 | 68.1 (3) | O4—C4—C5—O5 | −54.2 (3) |
O1—C1—C2—C3 | −172.1 (2) | O4—C4—C5—C6 | −176.7 (2) |
O2—C2—C3—O3 | −168.2 (2) | C3—C4—C5—O5 | 69.6 (3) |
O2—C2—C3—C4 | 66.4 (3) | C3—C4—C5—C6 | −52.9 (3) |
O6—C2—C3—O3 | 71.0 (3) | O5—C5—C6—O6 | −63.8 (4) |
O6—C2—C3—C4 | −54.4 (3) | C4—C5—C6—O6 | 55.7 (4) |
C1—C2—C3—O3 | −46.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3i | 0.82 | 1.91 | 2.715 (3) | 168 |
O2—H2A···O4ii | 0.82 | 1.92 | 2.724 (3) | 166 |
O3—H3A···O2iii | 0.82 | 2.20 | 2.874 (3) | 140 |
O3—H3A···O5 | 0.82 | 2.36 | 2.822 (4) | 117 |
O4—H4A···O6iv | 0.82 | 2.14 | 2.829 (3) | 141 |
O5—H5A···O1v | 0.82 | 1.94 | 2.746 (4) | 169 |
Symmetry codes: (i) x−1/2, −y+3/2, z; (ii) x−1/2, −y+5/2, z; (iii) x, y−1, z; (iv) x+1/2, −y+3/2, z; (v) −x+3/2, y−1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O3i | 0.82 | 1.91 | 2.715 (3) | 168 |
O2—H2A···O4ii | 0.82 | 1.92 | 2.724 (3) | 166 |
O3—H3A···O2iii | 0.82 | 2.20 | 2.874 (3) | 140 |
O3—H3A···O5 | 0.82 | 2.36 | 2.822 (4) | 117 |
O4—H4A···O6iv | 0.82 | 2.14 | 2.829 (3) | 141 |
O5—H5A···O1v | 0.82 | 1.94 | 2.746 (4) | 169 |
Symmetry codes: (i) x−1/2, −y+3/2, z; (ii) x−1/2, −y+5/2, z; (iii) x, y−1, z; (iv) x+1/2, −y+3/2, z; (v) −x+3/2, y−1/2, z+1/2. |
Acknowledgements
The authors are grateful to Grants-in-Aid for Rare Sugar Research of Kagawa University.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fukada, K., Ishii, T., Tanaka, K., Yamaji, M., Yamaoka, Y., Kobashi, K. & Izumori, K. (2010). Bull. Chem. Soc. Jpn, 83, 1193–1197. Web of Science CSD CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Itoh, H., Sato, T. & Izumori, K. (1995). J. Ferment. Bioeng. 80, 101–103. CrossRef CAS Web of Science Google Scholar
Kwiecien, A., Slepokura, K. & Lis, T. (2008). Carbohydr. Res. 343, 2336–2339. Web of Science PubMed CAS Google Scholar
Rigaku (2009). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Takeshita, K., Shimonishi, T. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 212–215. CrossRef CAS Web of Science Google Scholar
Takeshita, K., Suga, A., Takada, G. & Izumori, K. (2000). J. Biosci. Bioeng. 90, 453–455. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the crystal of the title compound, the D- and L-molecules are located alternatively in a-c plane, so that the main hydrogen bonding networks can be created between D- and L-molecules. An additional hydrogen bonding between two D-molecules (and two L-molecules) are observed along to the b-axis (O3—H3A···O2iii; Table 1). The molecular structure of D-psicose (or L-psicose) is β-pyranose form with a 2C5 (or 5C2) conformation. Orientations of two OH groups at C-3 and C-5 positions are axial, therefore an intramolecular hydrogen bonding can be observed (O3—H3A···O5; 2.36 Å) [hereafter, (O3···O5)]. The intramolecular hydrogen bonding unit (O3···O5) shown in the racemic D,L-crystal has also observed in a chiral D-crystal (Fukada et al., 2010). In the chiral one, one-dimensional hydrogen bonding chain, that is (O3···O5) -> (O3···O5) -> (O3···O5) ->···, can be observed by connecting through an another hydrogen bonding between two D-molecule units (O5—H5···O3). On the other hand in the case of the racemic one, the L-molecule (or D-molecule) plays as a role of a bridging between two adjacent intramolecular hydrogen bonding in D-molecule (or L-molecule) (O3···O5) units, that is (D O3···O5) -> (L O1) -> (D O3···O5) -> (L O1) -> ··· (or, (L O3···O5) -> (D O1) -> (L O3···O5) -> (D O1) -> ···). Concerning the intermolecular hydrogen bonding, there are four kinds of bondings are also observed between D- and L- psicose molecules (O1—H1A···O3 (a-axis), O2—H2A···O4, O4—H4A···O6 (a-axis), and O5—H5A···O1 (c-axis),). The cell volume of racemic β-D,L-psicose [763.21 (6) Å3 at r.t.] is almost the same as that of chiral β-D-psicose [753.06 Å3 at r.t.].