organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(11-oxo-10H,11H-indeno­[1,2-b]chromen-10-yl)-2,3-di­hydro-1H-indene-1,3-dione

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Ishida, Okayama University, Japan (Received 8 April 2015; accepted 16 April 2015; online 22 April 2015)

In the title mol­ecule, C25H14O4, the fused-ring system consisting of four rings is approximately planar, with a dihedral angle of 9.62 (5)° between the planes of the indene ring system and the benzene ring. The di­hydro­indene-1,3-dione unit makes a dihedral angle of 63.50 (2)° with the mean plane of the fused-ring system. A weak C—H⋯O inter­action organizes the mol­ecules into a helical chain along the b axis. In addition, there is a ππ stacking inter­action between the five-membered rings of adjacent fused-ring systems, with a centroid–centroid distance of 3.666 (1) Å.

1. Related literature

For synthesis and biological properties of chromene scaffolds, see: RamaGanesh et al. (2010[RamaGanesh, C. K., Bodke, Y. W. & Venkatsh, K. B. (2010). Indian J. Chem. Sect. B, 49, 1151-1154.]); O'Kenedy & Thornes (1997[O'Kenedy, R. & Thornes, R. D. (1997). In Coumarins Biology, Applications and Mode of Action. Chichester: John Wiley & Sons.]); Zabradnik (1992[Zabradnik, M. (1992). The Production and Application of Fluorescent Brightening Agents. New York: John Wiley and Sons.]). For the bioactivity of fused chromenes, see: Bargagna et al. (1992[Bargagna, A., Longobardi, M., Mariani, E., Schenone, P., Rossi, F., D'Amico, M. & Falzarano, C. (1992). Farmaco, 47, 345-355.]); Ermili et al. (1979[Ermili, A., Roma, G., Buonamici, M., Cuttica, A., Galante, M., Orsini, G. & Passerini, N. (1979). Farmaco [Sci.], 34, 535-544.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C25H14O4

  • Mr = 378.36

  • Monoclinic, P 21 /c

  • a = 8.7409 (2) Å

  • b = 14.4740 (3) Å

  • c = 14.2774 (3) Å

  • β = 101.141 (1)°

  • V = 1772.28 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.78 mm−1

  • T = 150 K

  • 0.23 × 0.22 × 0.11 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.86, Tmax = 0.92

  • 28946 measured reflections

  • 3495 independent reflections

  • 3189 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.090

  • S = 1.06

  • 3495 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O4i 0.95 2.54 3.4687 (15) 166
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

The synthesis of chromenes scaffolds has attracted considerable attention from organic and medicinal chemists for many years as larg number of natural products contain this heterocyclic nucleus (RamaGanesh et al., 2010). They are widely used as additives in food, perfumes, cosmetics, pharmaceuticals (O'Kenedy & Thornes, 1997), optical brighteners, dispersed fluorescent and laser dyes (Zabradnik, 1992). Fused chromene ring systems have platelet anti-aggregating, local anesthetic (Bargagna et al., 1992) and also exhibit antidepressant effects (Ermili et al., 1979). In this view and following to our study in synthesis of bio-active hetero-cyclic molecules, we report in this study the synthesis and crystal structure of the title compound.

In the title molecule (Fig. 1), there is a slight fold in the larger fused ring moiety along the C1···O1 line with a dihedral angle between the mean planes of C2–C10 and C11–C16 rings being 9.62 (5)°. The dihedral angle between the mean planes of C1–C16/O1 and C17–C25 ring systems is 63.50 (2)°. The molecules associate along the 21 axes via a weak C12—H12···O4i [symmetry code: (i) 1-x, -1/2+y, 1/2-z] hydrogen bond to form a helical chain (Table 1 and Fig. 2). In addition, there is a ππ stacking interaction between the five-membered C2–C4/C9/C10 ring and its centrosymmetrically related counterpart with a centroid-centroid distance of 3.666 (1) Å, an interplanar distance of 3.575 (1) Å and a centroid offset of 0.812 (1) Å.

Related literature top

For synthesis and biological properties of chromene scaffolds, see: RamaGanesh et al. (2010); O'Kenedy & Thornes (1997); Zabradnik (1992). For the bioactivity of fused chromenes, see: Bargagna et al. (1992); Ermili et al. (1979).

Experimental top

In 30 ml of ethanol, a mixture of 1 mmol (122 mg) of salicylaldehyde and 2 mmol (292 mg) of 1H-indene-1,3(2H)-dione has been refluxed in the presence of a guanidine derivative as a lewise base catalyst. The reaction was monitored by TLC till completion after 5 h. On cooling, the solid product was collected by filteration, dried under vacuum and recrystallized from dimethylformamide (DMF). Single crystals suitable for X-ray diffraction were obtained by further crystallization from DMF. M.p. 513 K.

Refinement top

H-atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached carbon atoms.

Structure description top

The synthesis of chromenes scaffolds has attracted considerable attention from organic and medicinal chemists for many years as larg number of natural products contain this heterocyclic nucleus (RamaGanesh et al., 2010). They are widely used as additives in food, perfumes, cosmetics, pharmaceuticals (O'Kenedy & Thornes, 1997), optical brighteners, dispersed fluorescent and laser dyes (Zabradnik, 1992). Fused chromene ring systems have platelet anti-aggregating, local anesthetic (Bargagna et al., 1992) and also exhibit antidepressant effects (Ermili et al., 1979). In this view and following to our study in synthesis of bio-active hetero-cyclic molecules, we report in this study the synthesis and crystal structure of the title compound.

In the title molecule (Fig. 1), there is a slight fold in the larger fused ring moiety along the C1···O1 line with a dihedral angle between the mean planes of C2–C10 and C11–C16 rings being 9.62 (5)°. The dihedral angle between the mean planes of C1–C16/O1 and C17–C25 ring systems is 63.50 (2)°. The molecules associate along the 21 axes via a weak C12—H12···O4i [symmetry code: (i) 1-x, -1/2+y, 1/2-z] hydrogen bond to form a helical chain (Table 1 and Fig. 2). In addition, there is a ππ stacking interaction between the five-membered C2–C4/C9/C10 ring and its centrosymmetrically related counterpart with a centroid-centroid distance of 3.666 (1) Å, an interplanar distance of 3.575 (1) Å and a centroid offset of 0.812 (1) Å.

For synthesis and biological properties of chromene scaffolds, see: RamaGanesh et al. (2010); O'Kenedy & Thornes (1997); Zabradnik (1992). For the bioactivity of fused chromenes, see: Bargagna et al. (1992); Ermili et al. (1979).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with labeling scheme and 50% probability ellipsoids.
[Figure 2] Fig. 2. A packing diagram of the title compound, showing a chain structure formed by C—H···O interactions (dashed lines).
2-(11-Oxo-10H,11H-indeno[1,2-b]chromen-10-yl)-2,3-dihydro-1H-indene-1,3-dione top
Crystal data top
C25H14O4F(000) = 784
Mr = 378.36Dx = 1.418 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 8.7409 (2) ÅCell parameters from 9790 reflections
b = 14.4740 (3) Åθ = 3.1–72.3°
c = 14.2774 (3) ŵ = 0.78 mm1
β = 101.141 (1)°T = 150 K
V = 1772.28 (7) Å3Block, orange
Z = 40.23 × 0.22 × 0.11 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3495 independent reflections
Radiation source: INCOATEC IµS micro–focus source3189 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.4°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1717
Tmin = 0.86, Tmax = 0.92l = 1717
28946 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5107P]
where P = (Fo2 + 2Fc2)/3
3495 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C25H14O4V = 1772.28 (7) Å3
Mr = 378.36Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.7409 (2) ŵ = 0.78 mm1
b = 14.4740 (3) ÅT = 150 K
c = 14.2774 (3) Å0.23 × 0.22 × 0.11 mm
β = 101.141 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3495 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
3189 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.92Rint = 0.030
28946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
3495 reflectionsΔρmin = 0.21 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 1.00 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47506 (10)0.32965 (6)0.40020 (6)0.0302 (2)
O20.16356 (11)0.59782 (6)0.38392 (6)0.0352 (2)
O30.08695 (12)0.33852 (7)0.24206 (6)0.0440 (3)
O40.27958 (11)0.57260 (6)0.06450 (6)0.0343 (2)
C10.35974 (13)0.48118 (7)0.26329 (8)0.0240 (2)
H10.40790.54330.25860.029*
C20.33109 (13)0.47028 (8)0.36229 (8)0.0243 (2)
C30.23649 (13)0.52859 (8)0.41347 (8)0.0263 (2)
C40.24407 (13)0.48383 (8)0.50974 (8)0.0266 (2)
C50.17816 (15)0.50868 (9)0.58577 (9)0.0320 (3)
H50.11520.56240.58350.038*
C60.20691 (15)0.45208 (10)0.66709 (9)0.0354 (3)
H60.16240.46770.72070.043*
C70.29864 (15)0.37426 (9)0.67053 (8)0.0352 (3)
H70.31680.33730.72660.042*
C80.36576 (14)0.34857 (9)0.59259 (8)0.0314 (3)
H80.42890.29490.59470.038*
C90.33631 (13)0.40432 (8)0.51294 (8)0.0260 (2)
C100.38543 (13)0.39924 (8)0.42012 (8)0.0248 (2)
C110.52713 (13)0.33794 (8)0.31358 (8)0.0262 (2)
C120.63660 (14)0.27212 (8)0.30077 (9)0.0314 (3)
H120.66580.22470.34680.038*
C130.70268 (14)0.27624 (9)0.22043 (9)0.0337 (3)
H130.77820.23170.21100.040*
C140.65849 (14)0.34552 (9)0.15348 (9)0.0330 (3)
H140.70390.34870.09830.040*
C150.54789 (14)0.41008 (8)0.16735 (8)0.0291 (3)
H150.51880.45720.12100.035*
C160.47777 (13)0.40800 (8)0.24747 (8)0.0248 (2)
C170.20346 (13)0.47769 (8)0.18908 (8)0.0255 (2)
H170.12980.52310.20910.031*
C180.12395 (13)0.38332 (8)0.17816 (8)0.0280 (3)
C190.10045 (12)0.35606 (8)0.07625 (8)0.0253 (2)
C200.03310 (14)0.27627 (8)0.03180 (9)0.0307 (3)
H200.00950.23020.06660.037*
C210.03053 (14)0.26658 (8)0.06495 (9)0.0332 (3)
H210.01410.21260.09690.040*
C220.09206 (15)0.33439 (9)0.11675 (9)0.0334 (3)
H220.08930.32550.18300.040*
C230.15714 (14)0.41447 (8)0.07265 (8)0.0303 (3)
H230.19820.46100.10770.036*
C240.16014 (13)0.42425 (7)0.02446 (8)0.0251 (2)
C250.22245 (13)0.50203 (8)0.08798 (8)0.0258 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0330 (4)0.0288 (4)0.0296 (4)0.0069 (3)0.0081 (3)0.0060 (3)
O20.0399 (5)0.0292 (4)0.0385 (5)0.0078 (4)0.0125 (4)0.0058 (4)
O30.0468 (6)0.0541 (6)0.0294 (5)0.0207 (5)0.0036 (4)0.0110 (4)
O40.0468 (5)0.0261 (4)0.0291 (4)0.0079 (4)0.0049 (4)0.0039 (3)
C10.0249 (5)0.0234 (5)0.0231 (5)0.0017 (4)0.0033 (4)0.0008 (4)
C20.0236 (5)0.0248 (5)0.0234 (5)0.0020 (4)0.0015 (4)0.0006 (4)
C30.0254 (5)0.0256 (5)0.0272 (6)0.0028 (4)0.0037 (4)0.0008 (4)
C40.0256 (5)0.0280 (6)0.0249 (5)0.0048 (4)0.0014 (4)0.0016 (4)
C50.0331 (6)0.0334 (6)0.0296 (6)0.0035 (5)0.0060 (5)0.0047 (5)
C60.0355 (7)0.0474 (7)0.0237 (6)0.0090 (6)0.0065 (5)0.0042 (5)
C70.0346 (6)0.0458 (7)0.0234 (6)0.0079 (6)0.0010 (5)0.0059 (5)
C80.0286 (6)0.0358 (6)0.0274 (6)0.0023 (5)0.0004 (5)0.0047 (5)
C90.0233 (5)0.0290 (6)0.0241 (5)0.0045 (4)0.0004 (4)0.0006 (4)
C100.0221 (5)0.0255 (5)0.0255 (5)0.0016 (4)0.0011 (4)0.0009 (4)
C110.0250 (5)0.0270 (6)0.0263 (6)0.0018 (4)0.0039 (4)0.0002 (4)
C120.0291 (6)0.0273 (6)0.0366 (6)0.0019 (5)0.0028 (5)0.0004 (5)
C130.0276 (6)0.0328 (6)0.0408 (7)0.0030 (5)0.0067 (5)0.0064 (5)
C140.0285 (6)0.0383 (7)0.0332 (6)0.0027 (5)0.0088 (5)0.0041 (5)
C150.0267 (6)0.0317 (6)0.0286 (6)0.0027 (5)0.0043 (5)0.0009 (5)
C160.0217 (5)0.0247 (5)0.0271 (5)0.0033 (4)0.0022 (4)0.0014 (4)
C170.0263 (6)0.0264 (5)0.0233 (5)0.0017 (4)0.0032 (4)0.0032 (4)
C180.0223 (5)0.0336 (6)0.0269 (6)0.0018 (5)0.0014 (4)0.0070 (5)
C190.0214 (5)0.0257 (5)0.0277 (6)0.0019 (4)0.0021 (4)0.0045 (4)
C200.0268 (6)0.0264 (6)0.0367 (6)0.0022 (5)0.0010 (5)0.0059 (5)
C210.0324 (6)0.0259 (6)0.0387 (7)0.0007 (5)0.0006 (5)0.0046 (5)
C220.0370 (7)0.0345 (6)0.0287 (6)0.0001 (5)0.0063 (5)0.0046 (5)
C230.0337 (6)0.0304 (6)0.0272 (6)0.0027 (5)0.0069 (5)0.0014 (5)
C240.0243 (5)0.0237 (5)0.0265 (6)0.0012 (4)0.0031 (4)0.0025 (4)
C250.0272 (5)0.0242 (5)0.0251 (5)0.0012 (4)0.0025 (4)0.0037 (4)
Geometric parameters (Å, º) top
O1—C101.3400 (14)C11—C161.3956 (16)
O1—C111.4030 (13)C12—C131.3817 (18)
O2—C31.2185 (14)C12—H120.9500
O3—C181.2131 (14)C13—C141.3877 (18)
O4—C251.2123 (14)C13—H130.9500
C1—C21.4906 (15)C14—C151.3861 (17)
C1—C161.5256 (15)C14—H140.9500
C1—C171.5595 (15)C15—C161.3986 (16)
C1—H11.0000C15—H150.9500
C2—C101.3464 (16)C17—C251.5256 (15)
C2—C31.4709 (16)C17—C181.5268 (16)
C3—C41.5093 (16)C17—H171.0000
C4—C51.3715 (17)C18—C191.4829 (16)
C4—C91.4008 (16)C19—C201.3924 (16)
C5—C61.4034 (18)C19—C241.3937 (15)
C5—H50.9500C20—C211.3843 (18)
C6—C71.378 (2)C20—H200.9500
C6—H60.9500C21—C221.3977 (18)
C7—C81.4047 (18)C21—H210.9500
C7—H70.9500C22—C231.3874 (17)
C8—C91.3775 (16)C22—H220.9500
C8—H80.9500C23—C241.3888 (16)
C9—C101.4717 (15)C23—H230.9500
C11—C121.3873 (16)C24—C251.4818 (16)
C10—O1—C11115.17 (9)C12—C13—H13120.1
C2—C1—C16108.01 (9)C14—C13—H13120.1
C2—C1—C17110.81 (9)C15—C14—C13119.85 (11)
C16—C1—C17113.92 (9)C15—C14—H14120.1
C2—C1—H1108.0C13—C14—H14120.1
C16—C1—H1108.0C14—C15—C16122.03 (11)
C17—C1—H1108.0C14—C15—H15119.0
C10—C2—C3107.40 (10)C16—C15—H15119.0
C10—C2—C1123.94 (10)C11—C16—C15116.22 (10)
C3—C2—C1128.60 (10)C11—C16—C1122.27 (10)
O2—C3—C2127.35 (11)C15—C16—C1121.46 (10)
O2—C3—C4126.60 (11)C25—C17—C18103.92 (9)
C2—C3—C4106.03 (9)C25—C17—C1113.22 (9)
C5—C4—C9121.12 (11)C18—C17—C1114.84 (9)
C5—C4—C3131.06 (11)C25—C17—H17108.2
C9—C4—C3107.82 (10)C18—C17—H17108.2
C4—C5—C6117.79 (12)C1—C17—H17108.2
C4—C5—H5121.1O3—C18—C19126.10 (11)
C6—C5—H5121.1O3—C18—C17125.71 (11)
C7—C6—C5121.10 (11)C19—C18—C17108.20 (9)
C7—C6—H6119.4C20—C19—C24120.94 (11)
C5—C6—H6119.4C20—C19—C18129.36 (10)
C6—C7—C8121.16 (11)C24—C19—C18109.70 (10)
C6—C7—H7119.4C21—C20—C19117.57 (11)
C8—C7—H7119.4C21—C20—H20121.2
C9—C8—C7117.31 (12)C19—C20—H20121.2
C9—C8—H8121.3C20—C21—C22121.54 (11)
C7—C8—H8121.3C20—C21—H21119.2
C8—C9—C4121.52 (11)C22—C21—H21119.2
C8—C9—C10132.35 (11)C23—C22—C21120.82 (11)
C4—C9—C10106.13 (10)C23—C22—H22119.6
O1—C10—C2126.54 (10)C21—C22—H22119.6
O1—C10—C9120.86 (10)C22—C23—C24117.73 (11)
C2—C10—C9112.60 (10)C22—C23—H23121.1
C12—C11—C16122.74 (11)C24—C23—H23121.1
C12—C11—O1114.01 (10)C23—C24—C19121.38 (11)
C16—C11—O1123.21 (10)C23—C24—C25128.48 (10)
C13—C12—C11119.30 (11)C19—C24—C25110.14 (10)
C13—C12—H12120.3O4—C25—C24126.38 (10)
C11—C12—H12120.3O4—C25—C17125.60 (10)
C12—C13—C14119.85 (11)C24—C25—C17108.02 (9)
C16—C1—C2—C108.40 (14)O1—C11—C16—C15176.14 (10)
C17—C1—C2—C10117.03 (12)C12—C11—C16—C1178.73 (10)
C16—C1—C2—C3174.83 (10)O1—C11—C16—C11.09 (17)
C17—C1—C2—C359.74 (14)C14—C15—C16—C110.92 (17)
C10—C2—C3—O2177.52 (11)C14—C15—C16—C1178.17 (10)
C1—C2—C3—O20.33 (19)C2—C1—C16—C117.86 (14)
C10—C2—C3—C40.95 (12)C17—C1—C16—C11115.70 (11)
C1—C2—C3—C4178.15 (10)C2—C1—C16—C15169.22 (10)
O2—C3—C4—C51.7 (2)C17—C1—C16—C1567.21 (13)
C2—C3—C4—C5179.85 (12)C2—C1—C17—C25171.83 (9)
O2—C3—C4—C9178.00 (11)C16—C1—C17—C2566.13 (12)
C2—C3—C4—C90.49 (12)C2—C1—C17—C1869.02 (12)
C9—C4—C5—C60.34 (17)C16—C1—C17—C1853.01 (13)
C3—C4—C5—C6179.97 (11)C25—C17—C18—O3179.89 (12)
C4—C5—C6—C70.17 (18)C1—C17—C18—O355.90 (16)
C5—C6—C7—C80.39 (19)C25—C17—C18—C190.28 (11)
C6—C7—C8—C90.09 (18)C1—C17—C18—C19123.93 (10)
C7—C8—C9—C40.42 (17)O3—C18—C19—C200.1 (2)
C7—C8—C9—C10179.89 (11)C17—C18—C19—C20179.97 (11)
C5—C4—C9—C80.65 (17)O3—C18—C19—C24178.97 (12)
C3—C4—C9—C8179.64 (10)C17—C18—C19—C240.86 (12)
C5—C4—C9—C10179.59 (10)C24—C19—C20—C211.22 (17)
C3—C4—C9—C100.12 (12)C18—C19—C20—C21177.80 (11)
C11—O1—C10—C26.15 (16)C19—C20—C21—C220.44 (18)
C11—O1—C10—C9173.60 (9)C20—C21—C22—C230.48 (19)
C3—C2—C10—O1179.16 (10)C21—C22—C23—C240.59 (18)
C1—C2—C10—O11.80 (18)C22—C23—C24—C190.20 (17)
C3—C2—C10—C91.08 (13)C22—C23—C24—C25179.92 (11)
C1—C2—C10—C9178.44 (10)C20—C19—C24—C231.13 (17)
C8—C9—C10—O10.82 (19)C18—C19—C24—C23178.07 (10)
C4—C9—C10—O1179.45 (10)C20—C19—C24—C25179.10 (10)
C8—C9—C10—C2178.95 (12)C18—C19—C24—C251.70 (13)
C4—C9—C10—C20.77 (13)C23—C24—C25—O41.7 (2)
C10—O1—C11—C12171.53 (10)C19—C24—C25—O4178.55 (11)
C10—O1—C11—C166.30 (15)C23—C24—C25—C17177.87 (11)
C16—C11—C12—C131.24 (18)C19—C24—C25—C171.87 (12)
O1—C11—C12—C13176.60 (10)C18—C17—C25—O4179.17 (11)
C11—C12—C13—C140.34 (18)C1—C17—C25—O455.58 (15)
C12—C13—C14—C150.22 (18)C18—C17—C25—C241.26 (11)
C13—C14—C15—C160.09 (18)C1—C17—C25—C24124.00 (10)
C12—C11—C16—C151.50 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O4i0.952.543.4687 (15)166
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O4i0.952.543.4687 (15)166
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBargagna, A., Longobardi, M., Mariani, E., Schenone, P., Rossi, F., D'Amico, M. & Falzarano, C. (1992). Farmaco, 47, 345–355.  PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErmili, A., Roma, G., Buonamici, M., Cuttica, A., Galante, M., Orsini, G. & Passerini, N. (1979). Farmaco [Sci.], 34, 535–544.  CAS PubMed Google Scholar
First citationO'Kenedy, R. & Thornes, R. D. (1997). In Coumarins Biology, Applications and Mode of Action. Chichester: John Wiley & Sons.  Google Scholar
First citationRamaGanesh, C. K., Bodke, Y. W. & Venkatsh, K. B. (2010). Indian J. Chem. Sect. B, 49, 1151–1154.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZabradnik, M. (1992). The Production and Application of Fluorescent Brightening Agents. New York: John Wiley and Sons.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds