organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(1H-imidazol-4-yl)ethanaminium chloride

aLaboratoire de Chimie Inorganique et Environnement, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria, and bCentre de Diffractometrie X, UMR 6226 CNRS, Unite Sciences Chimiques de Rennes, Universite de Rennes I, 263 Avenue du General Leclerc, 35042 Rennes, France
*Correspondence e-mail: samhibi1@yahoo.fr

Edited by A. J. Lough, University of Toronto, Canada (Received 20 March 2015; accepted 6 April 2015; online 9 April 2015)

The title mol­ecular salt, C5H10N3+·Cl, was obtained as by-product in the attempted synthesis of a histamine derivative. The terminal amino group of the starting material is protonated. The Cimidazole—C—C—N(H3)+ group in the cation is in an anti conformation with a torsion angle of 176.22 (10)°. In the crystal, cations and anions are linked via N—H⋯N and N—H—Cl hydrogen bonds, forming a two-dimensional network parallel to (10-1). A single weak C—H⋯Cl hydrogen bond completes a three-dimensional network.

1. Related literature

For the biological and pharmacological applications of histamine derivatives, see: Barnes et al. (2001[Barnes, J. P. (2001). Pulm. Pharmacol. Ther. 14, 329-339.]); Schwartz et al. (1991[Schwartz, J. C., Arrang, J. M., Garbarg, M., Pollard, H. & Ruat, M. (1991). Physiol. Rev. 71, 1-51.]); Bachert et al. (1998[Bachert, C. (1998). Clin. Exp. Allergy, 28, 15-19.]); Emanuel et al. (1999[Emanuel, M. B. (1999). Clin. Exp. Allergy, 29, 1-11.]); Apáti et al. (2012[Apáti, Á., Pászty, K., Erdei, Z., Szebényi, K., Homolya, L. & Sarkadi, B. (2012). Mol. Cell. Endocrinol. 353, 57-67.]). For a study of a histamine copper(II) chloride complex, see: Belfilali et al. (2015[Belfilali, I., Louhibi, S., Mahboub, R., Touzani, R., El Kadiri, S. & Roisnel, T. (2015). Res. Chem. Intermed. 41, 1819-1831.]). For the general chemistry of transition metal ions with histamine, see: Mikulski et al. (2012[Mikulski, D., Basinski, K., Gasowska, A., Bregier-Jarzebowska, R., Molski, M. & Lomozik, L. (2012). Polyhedron, 31, 285-293.]); Kowalik-Jankowska et al. (2010[Kowalik-Jankowska, T., Jankowska, E., Szewczuk, Z. & Kasprzykowski, F. (2010). J. Inorg. Biochem. 104, 831-842.]); Selmeczi et al. (2012[Selmeczi, K., Gizzi, P., Wenger, E. & Henry, B. (2012). Acta Cryst. E68, o1917-o1918.]). For a related structure, see: Prout et al. (1974[Prout, K., Critchley, S. R. & Ganellin, C. R. (1974). Acta Cryst. B30, 2884-2886.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C5H10N3+·Cl

  • Mr = 147.61

  • Monoclinic, P 21 /n

  • a = 4.5840 (2) Å

  • b = 9.1614 (3) Å

  • c = 17.3114 (5) Å

  • β = 91.682 (1)°

  • V = 726.69 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 150 K

  • 0.41 × 0.13 × 0.08 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])' Tmin = 0.868, Tmax = 0.965

  • 5568 measured reflections

  • 1645 independent reflections

  • 1494 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.076

  • S = 1.08

  • 1645 reflections

  • 86 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N5i 0.91 1.96 2.8508 (15) 168
N1—H1B⋯Cl1i 0.91 2.28 3.1557 (11) 160
N1—H1C⋯Cl1ii 0.91 2.39 3.2443 (11) 157
N7—H7⋯Cl1iii 0.78 (2) 2.40 (2) 3.1645 (12) 168 (2)
C2—H2A⋯Cl1iv 0.99 2.72 3.6974 (14) 168
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CRYSCAL (T. Roisnel, local program).

Supporting information


Structural commentary top

Histamine (2-(1H-imidazol-4-yl)ethanamine) is a biogenic amine present in essentially all mammalian tissues and involved in several defense mechanisms of the body. It plays a role in various physiological processes, such as control of gastric acid secretion, neurotransmission, regulation of the microcirculation, and modulation of inflammatory (Barnes et al., 2001) and immunological reactions (Schwartz et al., 1991; Bachert et al., 1998; Emanuel et al., 1999) as well as its uses in pharmacology (Apáti et al., 2012). Moreover, the inter­action of transition metal ions with histamine (Mikulski et al., 2012), play a key role in catalysis processes (Kowalik-Jankowska et al., 2010; Selmeczi et al., 2012). We have previously reported the preparation and the crystal structure of the histamine copper(II) chloride complex and its catalytic activity study (Belfilali et al., 2015). In this study, we report the synthesis and crystal structure determination of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The organic cation displays a trans conformation with respect to the amine group and the imidazole ring about the –CH2—CH2– bond of the side chain with a torsion angle of 176.22 (10)° for N1–C2–C3–C4. The bond lengths and angles are within normal ranges and are comparable to a related structure (Prout et al., 1974). In the crystal, cations and anions are linked via N—H···N and N—H—Cl hydrogen bonds two form a two-dimensional network (Fig. 2) parallel to (101). A single weak C—H···Cl hydrogen bond completes a three-dimensinal network.

Synthesis and crystallization top

A mixture of histamine di­hydro­chloride (1.0 mmol) and methyl-1hy­droxy-2-naphtho­ate (1 mmol) were taken in a beaker placed in a microwave oven and irradiated at 200 watt for 5 minutes. After completion the reaction, the reaction mixture was allowed to reach room temperature and the resulting crystals were separated by filtration.

Refinement top

H atoms bonded to C atoms were included in calculated positions with C—H = 0.95 – 0.99 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N1 were included in calculated positions with N—H = 0.91Å and Uiso(H) = 1.5Ueq(N). The H atom bonded to N7 was refined independently with an isotropic displacement parameter.

Related literature top

For the biological and pharmacological applications of histamine derivatives, see: Barnes et al. (2001); Schwartz et al. (1991); Bachert et al. (1998); Emanuel et al. (1999); Apáti et al. (2012). For a study of a histamine copper(II) chloride complex, see: Belfilali et al. (2015). For the general chemistry of transition metal ions with histamine, see: Mikulski et al. (2012); Kowalik-Jankowska et al. (2010); Selmeczi et al. (2012). For a related structure, see: Prout et al. (1974).

Structure description top

Histamine (2-(1H-imidazol-4-yl)ethanamine) is a biogenic amine present in essentially all mammalian tissues and involved in several defense mechanisms of the body. It plays a role in various physiological processes, such as control of gastric acid secretion, neurotransmission, regulation of the microcirculation, and modulation of inflammatory (Barnes et al., 2001) and immunological reactions (Schwartz et al., 1991; Bachert et al., 1998; Emanuel et al., 1999) as well as its uses in pharmacology (Apáti et al., 2012). Moreover, the inter­action of transition metal ions with histamine (Mikulski et al., 2012), play a key role in catalysis processes (Kowalik-Jankowska et al., 2010; Selmeczi et al., 2012). We have previously reported the preparation and the crystal structure of the histamine copper(II) chloride complex and its catalytic activity study (Belfilali et al., 2015). In this study, we report the synthesis and crystal structure determination of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The organic cation displays a trans conformation with respect to the amine group and the imidazole ring about the –CH2—CH2– bond of the side chain with a torsion angle of 176.22 (10)° for N1–C2–C3–C4. The bond lengths and angles are within normal ranges and are comparable to a related structure (Prout et al., 1974). In the crystal, cations and anions are linked via N—H···N and N—H—Cl hydrogen bonds two form a two-dimensional network (Fig. 2) parallel to (101). A single weak C—H···Cl hydrogen bond completes a three-dimensinal network.

For the biological and pharmacological applications of histamine derivatives, see: Barnes et al. (2001); Schwartz et al. (1991); Bachert et al. (1998); Emanuel et al. (1999); Apáti et al. (2012). For a study of a histamine copper(II) chloride complex, see: Belfilali et al. (2015). For the general chemistry of transition metal ions with histamine, see: Mikulski et al. (2012); Kowalik-Jankowska et al. (2010); Selmeczi et al. (2012). For a related structure, see: Prout et al. (1974).

Synthesis and crystallization top

A mixture of histamine di­hydro­chloride (1.0 mmol) and methyl-1hy­droxy-2-naphtho­ate (1 mmol) were taken in a beaker placed in a microwave oven and irradiated at 200 watt for 5 minutes. After completion the reaction, the reaction mixture was allowed to reach room temperature and the resulting crystals were separated by filtration.

Refinement details top

H atoms bonded to C atoms were included in calculated positions with C—H = 0.95 – 0.99 Å and Uiso(H) = 1.2Ueq(C). H atoms bonded to N1 were included in calculated positions with N—H = 0.91Å and Uiso(H) = 1.5Ueq(N). The H atom bonded to N7 was refined independently with an isotropic displacement parameter.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and CRYSCAL (T. Roisnel, local program).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines.
2-(1H-Imidazol-4-yl)ethanaminium chloride top
Crystal data top
C5H10N3+·ClF(000) = 312
Mr = 147.61Dx = 1.349 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2978 reflections
a = 4.5840 (2) Åθ = 4.6–27.5°
b = 9.1614 (3) ŵ = 0.44 mm1
c = 17.3114 (5) ÅT = 150 K
β = 91.682 (1)°Prism, colourless
V = 726.69 (4) Å30.41 × 0.13 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII
diffractometer
1494 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)'
h = 55
Tmin = 0.868, Tmax = 0.965k = 1111
5568 measured reflectionsl = 1922
1645 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.246P]
where P = (Fo2 + 2Fc2)/3
1645 reflections(Δ/σ)max = 0.001
86 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C5H10N3+·ClV = 726.69 (4) Å3
Mr = 147.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.5840 (2) ŵ = 0.44 mm1
b = 9.1614 (3) ÅT = 150 K
c = 17.3114 (5) Å0.41 × 0.13 × 0.08 mm
β = 91.682 (1)°
Data collection top
Bruker APEXII
diffractometer
1645 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)'
1494 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.965Rint = 0.033
5568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.34 e Å3
1645 reflectionsΔρmin = 0.21 e Å3
86 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4106 (2)0.80020 (12)0.01832 (6)0.0174 (2)
H1A0.31080.73130.04620.026*
H1B0.50290.86140.0510.026*
H1C0.28380.85210.01040.026*
C20.6308 (3)0.72762 (15)0.03395 (7)0.0174 (3)
H2A0.74970.80280.06130.021*
H2B0.76310.66750.00290.021*
C30.4835 (3)0.63146 (15)0.09277 (8)0.0192 (3)
H3A0.36150.69260.12620.023*
H3B0.35430.56050.06550.023*
C40.7051 (3)0.55095 (15)0.14180 (7)0.0169 (3)
N50.8253 (2)0.41984 (12)0.11844 (6)0.0184 (2)
C61.0162 (3)0.38371 (15)0.17436 (7)0.0197 (3)
H61.13340.29820.17410.024*
N71.0229 (3)0.48288 (14)0.23111 (7)0.0223 (3)
H71.124 (5)0.481 (2)0.2682 (14)0.05*
C80.8270 (3)0.58985 (16)0.21139 (8)0.0229 (3)
H80.78420.67470.24050.027*
Cl10.13058 (7)0.01456 (3)0.108958 (17)0.01841 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0185 (5)0.0155 (6)0.0180 (5)0.0019 (4)0.0008 (4)0.0004 (4)
C20.0152 (6)0.0180 (6)0.0190 (6)0.0021 (5)0.0022 (5)0.0002 (5)
C30.0156 (6)0.0200 (7)0.0220 (7)0.0008 (5)0.0007 (5)0.0009 (5)
C40.0160 (6)0.0180 (6)0.0169 (6)0.0017 (5)0.0031 (5)0.0006 (5)
N50.0206 (5)0.0155 (5)0.0189 (5)0.0016 (4)0.0018 (4)0.0006 (5)
C60.0218 (6)0.0176 (6)0.0197 (6)0.0007 (5)0.0012 (5)0.0015 (5)
N70.0238 (6)0.0268 (6)0.0161 (6)0.0001 (5)0.0041 (5)0.0009 (5)
C80.0252 (7)0.0233 (7)0.0202 (7)0.0034 (6)0.0008 (5)0.0046 (6)
Cl10.02061 (18)0.01856 (18)0.01589 (19)0.00105 (12)0.00236 (12)0.00087 (11)
Geometric parameters (Å, º) top
N1—C21.4920 (16)C3—H3B0.99
N1—H1A0.91C4—C81.3604 (18)
N1—H1B0.91C4—N51.3866 (17)
N1—H1C0.91N5—C61.3277 (16)
C2—C31.5196 (18)C6—N71.3379 (18)
C2—H2A0.99C6—H60.95
C2—H2B0.99N7—C81.3658 (18)
C3—C41.4985 (18)N7—H70.78 (2)
C3—H3A0.99C8—H80.95
C2—N1—H1A109.5C2—C3—H3B109.4
C2—N1—H1B109.5H3A—C3—H3B108
H1A—N1—H1B109.5C8—C4—N5109.20 (11)
C2—N1—H1C109.5C8—C4—C3128.79 (13)
H1A—N1—H1C109.5N5—C4—C3121.99 (11)
H1B—N1—H1C109.5C6—N5—C4105.21 (11)
N1—C2—C3111.03 (10)N5—C6—N7111.50 (12)
N1—C2—H2A109.4N5—C6—H6124.2
C3—C2—H2A109.4N7—C6—H6124.2
N1—C2—H2B109.4C6—N7—C8107.63 (11)
C3—C2—H2B109.4C6—N7—H7126.3 (16)
H2A—C2—H2B108C8—N7—H7126.1 (16)
C4—C3—C2110.96 (10)C4—C8—N7106.46 (12)
C4—C3—H3A109.4C4—C8—H8126.8
C2—C3—H3A109.4N7—C8—H8126.8
C4—C3—H3B109.4
N1—C2—C3—C4176.22 (10)C4—N5—C6—N70.21 (15)
C2—C3—C4—C893.03 (17)N5—C6—N7—C80.18 (16)
C2—C3—C4—N584.87 (15)N5—C4—C8—N70.06 (15)
C8—C4—N5—C60.16 (15)C3—C4—C8—N7178.06 (12)
C3—C4—N5—C6178.11 (12)C6—N7—C8—C40.07 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N5i0.911.962.8508 (15)168
N1—H1B···Cl1i0.912.283.1557 (11)160
N1—H1C···Cl1ii0.912.393.2443 (11)157
N7—H7···Cl1iii0.78 (2)2.40 (2)3.1645 (12)168 (2)
C2—H2A···Cl1iv0.992.723.6974 (14)168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N5i0.911.962.8508 (15)168
N1—H1B···Cl1i0.912.283.1557 (11)160
N1—H1C···Cl1ii0.912.393.2443 (11)157
N7—H7···Cl1iii0.78 (2)2.40 (2)3.1645 (12)168 (2)
C2—H2A···Cl1iv0.992.723.6974 (14)168
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge the support of the Algerian Ministry of Higher Education and Scientific Research.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationApáti, Á., Pászty, K., Erdei, Z., Szebényi, K., Homolya, L. & Sarkadi, B. (2012). Mol. Cell. Endocrinol. 353, 57–67.  Web of Science PubMed Google Scholar
First citationBachert, C. (1998). Clin. Exp. Allergy, 28, 15–19.  CrossRef CAS PubMed Google Scholar
First citationBarnes, J. P. (2001). Pulm. Pharmacol. Ther. 14, 329–339.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBelfilali, I., Louhibi, S., Mahboub, R., Touzani, R., El Kadiri, S. & Roisnel, T. (2015). Res. Chem. Intermed. 41, 1819–1831.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmanuel, M. B. (1999). Clin. Exp. Allergy, 29, 1–11.  Web of Science PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKowalik-Jankowska, T., Jankowska, E., Szewczuk, Z. & Kasprzykowski, F. (2010). J. Inorg. Biochem. 104, 831–842.  Web of Science CAS PubMed Google Scholar
First citationMikulski, D., Basinski, K., Gasowska, A., Bregier-Jarzebowska, R., Molski, M. & Lomozik, L. (2012). Polyhedron, 31, 285–293.  Web of Science CrossRef CAS Google Scholar
First citationProut, K., Critchley, S. R. & Ganellin, C. R. (1974). Acta Cryst. B30, 2884–2886.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSchwartz, J. C., Arrang, J. M., Garbarg, M., Pollard, H. & Ruat, M. (1991). Physiol. Rev. 71, 1–51.  PubMed CAS Web of Science Google Scholar
First citationSelmeczi, K., Gizzi, P., Wenger, E. & Henry, B. (2012). Acta Cryst. E68, o1917–o1918.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds