research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

New insights in the discovery of novel h-MAO-B inhibitors: structural characterization of a series of N-phenyl-4-oxo-4H-chromene-3-carboxamide derivatives

aFP-ENAS-Faculdade de Ciências de Saúde, Escola Superior de Saúde da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto, Portugal, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cCIQ/Departamento de Quιmica e Bioquιmica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
*Correspondence e-mail: jnlow111@gmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 13 April 2015; accepted 21 April 2015; online 25 April 2015)

Six N-substituted-phenyl 4-oxo-4H-chromene-3-carboxamides, namely N-(2-nitro­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C16H10N2O5 (2b), N-(3-meth­oxy­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C17H13NO4, (3a), N-(3-bromo­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C16H10BrNO3, (3b), N-(4-methoxy­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C17H13NO4, (4a), N-(4-methyl­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C17H13NO3, (4d), and N-(4-hy­droxy­phen­yl)-4-oxo-4H-chromene-3-carboxamide, C16H11NO4, (4e), have been structurally characterized. All compounds exhibit an anti conformation with respect to the C—N rotamer of the amide and a trans-related conformation with the carbonyl groups of the chromone ring of the amide. These structures present an intra­molecular hydrogen-bonded network comprising an N—H⋯O hydrogen bond between the amide N atom and the O atom of the carbonyl group of the pyrone ring, forming an S(6) ring, and a weak Car—H⋯O hydrogen bond in which the carbonyl group of the amide acts as acceptor for the H atom of an ortho-C atom of the exocyclic phenyl ring, which results in another S(6) ring. The N—H⋯O intra­molecular hydrogen bond constrains the carboxamide moiety such that it is virtually coplanar with the chromone ring.

1. Chemical context

Chromones are a group of natural and synthetic oxygen heterocyclic compounds having a high degree of chemical diversity that is frequently linked to a broad array of biological activities. The chromone-3-(phen­yl)carboxamide derivatives, depicted the scheme, have emerged as promising compounds for the management of neurodegenerative diseases such as Alzheimer's and Parkinson's since they display selective inhibition activities against h-MAO-B. Recent data (Cagide et al., 2015[Cagide, F., Reis, J., Gaspar, A., Borges, F., Gomes, L. & Low, J. N. (2015). Chem. Commun. 14, 2832-2835.]) suggest that the activity and selectivity towards that enzyme is dependent on the nature and position of the substituent located in the exocyclic phenyl ring. When compared with the unsubstituted compound (1), the para substitution in the exocyclic phenyl ring seems to play an important role in the enzymatic inter­action: the presence of para-Cl (4c) and –CH3 (4d) substituents favours the potency while an –OH (4e) substituent has the opposite effect. The data acquired so far point out the importance of a structure–activity relationship study to optimize the potency vs selectivity of this type of inhibitor, namely performing structural and electronic changes in the substituents.

Thus, the results for the structural characterization of some chromone-3-phenyl­carboxamide derivatives are presented and discussed. These compounds are as follows – (1): N-phenyl-4-oxo-4H-chromene-3-carboxamide (Cagide et al., 2015[Cagide, F., Reis, J., Gaspar, A., Borges, F., Gomes, L. & Low, J. N. (2015). Chem. Commun. 14, 2832-2835.]); (2a): N-(2-meth­oxy­phen­yl)-4-oxo-4H-chromene-3-carb­oxamide (Gomes et al., 2013[Gomes, L. R., Low, J. N., Borges, F. & Cagide, F. (2013). Acta Cryst. C69, 927-933.]); (2b): N-(2-nitro­phen­yl)-4-oxo-4H-chromone-3-carboxamide (CCDC 1025354); (3a): N-(3-meth­oxy­phen­yl)-4-oxo-4H-chromene-3-carboxamide (CCDC 102353); (3b): N-(3-bromo­phen­yl)-4-oxo-4H-chromene-3-carboxamide (CCDC 1025352); (4a): N-(4-meth­oxyphen­yl)-4-oxo-4H-chromene-3-carboxamide (CCDC 1025355); (4b): N-(4-bromo­phen­yl)-4-oxo-4H-chromene-3-carboxamide (Gomes et al., 2015[Gomes, L. R., Low, J. N., Cagide, F. & Borges, F. (2015). Acta Cryst. E71, 88-93.]); (4c): N-(4-chloro­phen­yl)-4-oxo-4H-chromene-3-carboxamide (Gomes et al., 2015[Gomes, L. R., Low, J. N., Cagide, F. & Borges, F. (2015). Acta Cryst. E71, 88-93.]); (4d): N-(4-methyl­phen­yl)-4-oxo-4H-chromene-3-carboxamide; (4e): N-(4-hy­droxy­phen­yl)-4-oxo-4H-chromene-3-carboxamide (CCDC 102524). Compounds with CCDC numbers given were deposited by the current authors, Gomes, Borges and Low, in the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

[Scheme 1]

2. Structural commentary

2.1. Mol­ecular structures

Conformations and intra­molecular hydrogen-bond network

The structural analysis confirms that the mol­ecules are 4-chromone derivatives with a phenyl­amide substituent on position number 3 of the pyrone ring. Fig. 1[link] to 6 show the displacement ellipsoid diagrams with the adopted labelling scheme for (2b), (3a), (3b), (4a), (4d) and (4e), the structurally characterized compounds in this work. As seen, the mol­ecules exhibit an anti conformation with respect to the C–N rotamer of the amide following a pattern given by compound (1), which was previously described by Cagide et al. (2015[Cagide, F., Reis, J., Gaspar, A., Borges, F., Gomes, L. & Low, J. N. (2015). Chem. Commun. 14, 2832-2835.]). Due to the asymmetry of the chromone residue, the anti conformation can assume several geometries depending on the relative position of the carbonyl groups of the chromone ring and the amide group which can be cis or trans related. Compounds (1)–(4) exhibit a trans relation between these bonds as can be seen in Figs. 1[link][link][link][link][link][link] to 6. This mol­ecular conformation allows the establishment of two or three intra­molecular hydrogen bonds. Details of the intra­molecular hydrogen bonding are given in Tables 2[link]–7[link][link][link][link][link]. Generally, as seen in the scheme below, there is an intra­molecular hydrogen bond involving the amide and the chromone where the amide nitro­gen atom acts as donor to the oxo oxygen atom of the chromone ring, forming an S(6) ring; the carboxyl oxygen of the amide acts as acceptor for a weak H inter­action with the C–H group located at the ortho position of the phenyl ring, forming another S(6) ring. This hydrogen-bonding network probably enhances the planarity of the mol­ecules and may prevent them from adopting some other possible conformations by restraining their geometries. Compounds (2a) and (2b) have substituents located at the ortho position on the benzyl ring with oxygen atoms (meth­oxy and nitro, respectively) that act as acceptors for the amide nitro­gen atom of the carboxamide residue, hence forming a third intra­molecular hydrogen bond (see scheme).

[Scheme 2]

Table 2
Hydrogen-bond geometry (Å, °) for (2b)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.96 (4) 1.95 (4) 2.718 (3) 136 (3)
N3—H3⋯O32 0.96 (4) 1.96 (4) 2.633 (3) 126 (3)
C316—H316⋯O3 0.95 2.40 2.902 (4) 113
C8—H8⋯O32i 0.95 2.58 3.210 (4) 124
C5—H5⋯O1ii 0.95 2.60 3.375 (4) 139
C313—H313⋯O3iii 0.95 2.49 3.299 (4) 143
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (3a)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.95 (2) 1.89 (2) 2.7147 (17) 143.8 (18)
C312—H312⋯O3 0.95 2.25 2.855 (2) 121
C2—H2⋯O3i 0.95 2.37 3.243 (2) 153
Symmetry code: (i) -x+1, -y+2, -z+1.

Table 4
Hydrogen-bond geometry (Å, °) for (3b)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O14 0.88 1.93 2.686 (3) 143
N23—H23⋯O24 0.88 1.94 2.698 (3) 143
C12—H12⋯O131 0.95 2.34 2.727 (4) 104
C22—H22⋯O231 0.95 2.33 2.725 (4) 104
C132—H132⋯O131 0.95 2.26 2.860 (4) 121
C232—H232⋯O231 0.95 2.28 2.865 (4) 119
C12—H12⋯O14i 0.95 2.49 3.221 (4) 134
C22—H22⋯O24i 0.95 2.43 3.185 (4) 136
C15—H15⋯O11ii 0.95 2.68 3.587 (4) 160
C25—H25⋯O21ii 0.95 2.58 3.530 (4) 177
C136—H136⋯O131ii 0.95 2.43 3.282 (4) 149
C236—H236⋯O231ii 0.95 2.41 3.270 (4) 151
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Table 5
Hydrogen-bond geometry (Å, °) for (4a)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.901 (17) 1.903 (16) 2.6919 (13) 145.0 (15)
C312—H312⋯O3 0.95 2.37 2.9441 (17) 119
C2—H2⋯O4i 0.95 2.47 3.212 (3) 134
C316—H316⋯O3ii 0.95 2.33 3.201 (2) 152
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Table 6
Hydrogen-bond geometry (Å, °) for (4d)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O4 0.900 (18) 1.916 (18) 2.7098 (13) 146.1 (15)
C312—H312⋯O3 0.95 2.37 2.9240 (16) 116
C2—H2⋯O4i 0.95 2.40 3.1280 (14) 133
C316—H316⋯O3ii 0.95 2.44 3.3644 (14) 164
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Table 7
Hydrogen-bond geometry (Å, °) for (4e)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O14 0.94 (4) 1.88 (4) 2.693 (4) 143 (4)
N23—H23⋯O24 0.90 (4) 1.95 (4) 2.698 (4) 139 (4)
C112—H112⋯O13 0.95 2.23 2.833 (4) 121
C212—H212⋯O23 0.95 2.28 2.845 (4) 117
O114—H114⋯O23 0.91 (6) 1.76 (6) 2.647 (4) 167 (5)
O214—H214⋯O13i 0.88 (5) 1.81 (5) 2.668 (4) 165 (5)
C16—H16⋯O114ii 0.95 2.46 3.411 (5) 174
C18—H18⋯O24iii 0.95 2.56 3.481 (5) 163
C22—H22⋯O114 0.95 2.58 3.508 (4) 166
C26—H26⋯O214iv 0.95 2.51 3.454 (5) 175
C28—H28⋯O14iv 0.95 2.46 3.391 (5) 165
Symmetry codes: (i) x-1, y+1, z; (ii) x, y, z-1; (iii) x+1, y-1, z-1; (iv) x, y, z+1.
[Figure 1]
Figure 1
A view of the asymmetric unit of (2b) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.
[Figure 2]
Figure 2
A view of the asymmetric unit of (3a) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.
[Figure 3]
Figure 3
A view of the asymmetric unit of (3b) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.
[Figure 4]
Figure 4
A view of the asymmetric unit of (4a) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.
[Figure 5]
Figure 5
A view of the asymmetric unit of (4d) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.
[Figure 6]
Figure 6
A view of the asymmetric unit of (4e) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 70% probability level.

Mol­ecular geometries

The values for bond lengths involving the atoms of the carboxamide residue assume the expected ranges for amides with aromatic substituents. The C3—C31 bond ranges from 1.49 to 1.51 Å, which are the typical range values for an Csp3—Csp3 bond (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The C31—O3 bond lengths range from 1.22 to 1.25 Å and the C31—N3 bond lengths are within the 1.33 to 1.37 Å inter­val, showing the the partial sp2 character of the amide nitro­gen atom attributed to those compounds.

Table 1[link] details selected dihedral angles between the mean planes of aromatic rings, θChr-Phe, between the chromone ring and the amide moiety (the plane defined by atoms O3, C31and N3), θChr-amide, and between the exocyclic phenyl ring and the amide, θPhe-amide. Those dihedral angles are primarily due to the rotation of the rings around the C3—C31 and N3—C311 bonds with exception of (3a) that assumes mainly a bent conformation between the rings. The structural analysis of (1) performed previously (Cagide et al., 2015[Cagide, F., Reis, J., Gaspar, A., Borges, F., Gomes, L. & Low, J. N. (2015). Chem. Commun. 14, 2832-2835.]) revealed that the amide moiety is practically planar with the chromone ring: it makes a dihedral angle of 4.31 (12)° with the plane defined by the O, C and N atoms of the amide residue. The loss of planarity for the overall mol­ecule results from the slight twist of the exocyclic phenyl substituent around the amidic N—C bond, which is the main factor affecting the value for the dihedral angle of 9.48 (12)° between the best plane of the exocyclic phenyl ring and the O—C—N amidic plane. The dihedral angle between the mean plane of the chromone ring and that of the exocyclic phenyl ring is 10.77 (4)°. The θChr-amide dihedral angles for the substituted compounds are below 15° for all the compounds, suggesting that the amide moiety is essentially planar with the chromone ring. The strong N3—H3⋯O4 hydrogen contact may preclude higher rotations around the C3—C31 bond in spite of its Csp3—Csp3 character. The θPhe-amide angles present more widely spread values, ranging between 2 and 33°. The substituents with oxygen atoms located at the ortho position on the exocyclic phenyl ring in (2) which, simultaneously, cause steric hindrance and act as acceptors for the hydrogen atom of the amide, thus forming an intra­molecular hydrogen bond, suggest that a tricky balance between those two factors allows the formation of several energetically accessible rotated conformations. This fact is especially noticeable in the various conformation polymorphs of (2a).

Table 1
Selected dihedral angles (°)

θChr-Phe is the dihedral angle between the mean planes of the chromene and the phenyl ring. θChr-amide is the dihedral angle between the mean planes of the chromone ring and the plane defined by atoms O3, C31 and N3. θamide-Phe is the dihedral angle between the mean planes of the phenyl ring and the plane defined by atoms O3, C31 and N3. The suffices A and B for compound (2a) denote the polymeric forms. Basic Conf. denotes the primary shape given by the relative position of the aromatic rings around the carboxamide linkage.

Compound θChr-Phe θChr-amide θamide-Phe Basic Conf.
(1) 10.77 (4) 4.31 (12) 9.48 (12) Rotation
(2a mol1A 11.64 (5) 8.72 (14) 20.35 (13) Rotation
(2a mol2A 2.47 (5) 1.75 (2) 2.2 (2) Planar
(2a mol1B 6.50 (18) 15.0 (5) 10.1 (6) Rotation
(2a mol2B 10.52 (17) 1.8 (6) 12.27 (6) Rotation
(2b) 35.96 (9) 2.35 (4) 33.6 (2) Rotation
(3a) 15.61 (8) 9.3 (3) 11.7 (2) Bent
(3b) mol1 2.68 (10) 2.0 (4) 4.0 (4) Planar
(3b) mol2 10.31 (12) 0.6 (4) 10.42 (12) Rotation
(4a) 11.48 (6) 5.2 (5) 6.5 (4) Rotation
(4b) 4.90 (10) 2.0 (4) 2.9 (4) Planar
(4c) 1.95 (7) 5.7 (3) 4.4 (3) Planar
(4d) 22.88 (4) 2.71 (8) 23.90 (5) Rotation
(44e) mol1 3.58 (17) 5.9 (2) 9.5 (3) Rotation
(44e) mol2 10.02 (15) 10.69 (2) 19.8 (2) Rotation

The remaining compounds are not constrained by steric hindrance of the ortho-substituents but they still present a wide range of values for the θPhe-amide dihedral angles (between 3 and 24°). The θChr-Phe values may be used as a measure of the relative positioning of the two aromatic rings which may define the primary conformation for the mol­ecules. The aromatic rings are usually rotated or co-planar, with exception of (3a) where they are bent with respect to each other. The chromones with halogen substituents assume the most planar conformations, probably related to the typical positive mesomeric effects on the π system. Considering the fact that the para-substituent on the exocyclic phenyl ring for chromone-3-phenyl­carboxamides has a positive effect on their activity, and the requirement of establishing the factors that can modulate the enzyme–ligand inter­action, it can be assumed their h-MAO-B activity is strongly dependent on the electronic environment of the substituent. This is not a preferred conformation that reduces or enhances the activity, so it may be assumed that the electronic environment provided by the substituent is the primary condition for the pharmacological activities displayed by those mol­ecules.

In compound (3b) there are two mol­ecules in the asymmetric unit. A calculation using Molfit with Quaternion Transformation Method (Mackay, 1984[Mackay, A. L. (1984). Acta Cryst. A40, 165-166.]) gave the following fit: weighted/unit weight r.m.s. fits: 0.133/0.144 Å for 23 atoms with mol­ecule 1 inverted on mol­ecule 2, 21 atoms. The largest individual displacement is 0.178 Å(Br13/Br23). The r.m.s. bond fit = 0.0052 Å and the r.m.s. angle fit = 0.437°.

3. Supra­molecular features

The carboxamide H atom is not involved in any inter­molecular inter­action in any of the compounds.

In (2b), the mol­ecules are linked by C8—H8⋯O32(−x, y + [{1\over 2}], −z + [{1\over 2}]), C5—H5⋯O1(−x, y − [{1\over 2}], −z + [{1\over 2}]) and C313—H313⋯O3(−x, y − [{1\over 2}], −z + [{3\over 2}]) hydrogen bonds which, by the action of twofold screw axes running parallel to the b axis, link the mol­ecules into corrugated sheets which lie parallel to the (10[\overline{1}]) plane, and which form a distorted chequerboard pattern comprised of R22(15) and R44(23) rings (Table 2[link] and Fig. 7[link]).

[Figure 7]
Figure 7
View of the sheet formed by the inter­connection of three C—H⋯O hydrogen bonded chains in compound (2b). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes (from bottom to top rows and left to right). Bottom: −x + 1, y − [{1\over 2}], −z + [{3\over 2}]; −x + 1, y + [{1\over 2}], −z + [{3\over 2}]. Middle: x, −y, z; x, y, z; x, y + 1, z. Top: −x, y − [{1\over 2}], −z + [{3\over 2}]; −x, y + [{1\over 2}], −z + [{3\over 2}].]

In (3a), the mol­ecules are linked by the C2—H2⋯O3(−x + 1, −y + 1, −z + 1) hydrogen bond, forming centrosymmetric dimers across the inversion centre at (1/2, 1/2, 1/2) (Table 3[link] and Fig. 8[link]).

[Figure 8]
Figure 8
View of the dimer formed across the inversion centre (½, ½, ½) in (3a). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity.

In (3b), independent ladders of mol­ecule 1 and mol­ecule 2 are propagated along the a-axis direction by unit translation. These are formed by chains of R22(13) rings produced by the weak Cx2—Hx2⋯Ox4(x + 1, y, z) and Cx36—Hx36⋯Ox3(x − 1, y, z) inter­actions, where x = 1 or 2 (Table 4[link] and Fig. 9[link]).

[Figure 9]
Figure 9
View of the two independent ladders formed linked R22(13) rings which run parallel to the a axis in compound (3b). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes (bottom to top): x − 1, y, z; x, y, z; x + 1, y, z.]

A common feature found for compounds with para substituents, (4a)–(4d) is the formation of a ladder structure composed of mol­ecules propagated by unit axial translations involving inter­molecular hydrogen bonds between C2 and O4 of the chromone ring and the C atom located at the ortho position of the exocyclic phenyl ring and the carboxamide O atom. This is also found in (1) and in compound (3b), which has a Br substituent located at the meta position, in which the ladder structure is supplemented by an inter­molecular hydrogen bond between C5 and O1 of the chromone moiety. In (4a), the mol­ecules are linked by C2—H2⋯O4 (x, y − 1, z) and C316—H316⋯O3 (x, y + 1, z) hydrogen bonds, forming R22(13) rings structures which are propagated along the b-axis direction by unit translation (Table 5[link] and Fig. 10[link]). In (4d), the mol­ecules are linked by C2—H2⋯O4(x + 1, y, z) and C316—H316⋯O3(x − 1, y, z) hydrogen bonds, forming R22(13) ring structures which are propagated along the a-axis direction by unit translation (Table 6[link] and Fig. 11[link]).

[Figure 10]
Figure 10
View of the ladder formed by the linked R22(13) rings which run parallel to the b axis in compound (4a). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes (bottom to top): x, y − 1, z; x, y, z; x, y + 1, z.]
[Figure 11]
Figure 11
View of the ladder formed by the linked R22(13) rings which run parallel to the a axis in compound (4d). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes (bottom to top): x − 1, y, z; x, y, z; x + 1, y, z.]

In the hydroxyl compound (4e), the mol­ecules in the asymmetric unit are linked by the O114—H114⋯O23 hydrogen bond, forming a dimer. These dimers are linked by the O214—H214⋯O13(x − 1,1 + y, z) and weak C16—H16⋯O114(x, y, z − 1), C18—H18⋯O24(x + 1, y − 1, z − 1), C26—H26⋯O214(x, y, z + 1) and C28—H28⋯O14(x, y, z + 1) hydrogen bonds, which link the mol­ecules into sheets that form a chequerboard pattern and which lie parallel to the ([\overline{1}]10) plane, comprised of R32(15) and R33(24) rings (Table 7[link] and Fig. 12[link]).

[Figure 12]
Figure 12
View of the sheet formed by the inter­connection of three C—H⋯O hydrogen-bonded chains in compound (4e). Hydrogen atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes (from bottom to top rows and left to right). Bottom: x + 1, y − 1, z − 1; x + 1, y − 1, z − 1; x + 1, y − 1, z + 1. Middle two rows: x, y, z − 1; x, y, z; x, y, z + 1. Top: x − 1, y + 1, z − 1; x − 1, y + 1,z; x − 1, y + 1, z + 1.]

Selected ππ contacts, with centroid-to-centroid distances less than 4.0 Å and with angles between planes of less than 10° for compounds (2b), (3b), (4a) and (4d) are listed in Table 8[link]. No inter­actions were found for (3a).

Table 8
Selected π–π contacts (Å, °) for compounds (2b), (3b) (mol­ecule 1), (4a) and (4d)

Cg1, Cg2 and Cg3(Cg7) are the centroids of the pyrone, of the chromone phenyl and of the carboxamide phenyl rings, respectively. * indicates contacts in which the planes involved are inclined to each other, the perpendicular distance between the planes is an average value and the angle between the planes is given in place of a slippage. Only inter­planar inter­actions with CgCg distances less than or equal to 4.0 Å or with angles between the planes of less than 10° are included.

Compound contacts distance perp. distance Slippage*
(2b) Cg1⋯Cg1iii 3.859 (3) 3.4223* 4.0 (13)*
  Cg1⋯Cg2iv 3.564 (3) 3.3951* 3.86 (13)*
  Cg2⋯Cg2iv 3.674 (3) 3.4035* 4.0 (13)*
  Cg3⋯Cg3i 3.649 (3) 3.3049 (11) 1.546
(3b) Cg1⋯Cg3v 3.6621 (17) 3.4150* 2.91 (13)
  Cg2⋯Cg3vi 3.6851 (18) 3.3587* 2.47 (14)*
  Cg2⋯Cg3v 3.7278 (17) 3.4360* 2.47 (14)*
(4a) Cg2⋯Cg3ii 3.780 (3) 3.383* 1.90 (6)*
(4d) Cg1⋯Cg1vii 3.4831 (7) 3.3257 (4) 1.035
  Cg1⋯Cg2Vii 3.6037 (7) 3.3137* 2.46 (5)*
(4e) Cg1⋯Cg3vi 3.669 (2) 3.3741* 3.50 (17)*
  Cg1⋯Cg7v 3.768 (2) 3.3792* 3.09 (17)*
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z; (iii) x, [{3\over 2}] − y, −[{1\over 2}] + z; (iv) x, [{3\over 2}] − y, [{1\over 2}] + z; (v) 1 − x, 1 − y, −z; (vi) 1 − x, −y, −z; (vii) 1 − x, −y, 1 − z.

4. Synthesis and crystallization

The compounds were obtained by synthetic strategies described elsewhere (Cagide et al., 2011[Cagide, F., Reis, J., Gaspar, A. & Borges, F. (2011). Tetrahedron Lett. 52, 6446-6449.]). Chromone-3-carboxamide derivatives were synthesized using chromone-3-carb­oxy­lic acid as starting material which, after in situ activ­ation with phospho­rus(V) oxychloride (POCl3) in di­methyl­formamide, react with the different substituted anilines. Crystals were recrystallized from ethyl­acetate forming colourless plates whose dimensions are given in Table 9[link].

Table 9
Experimental details

  (2b) (3a) (3b)
Crystal data
Chemical formula C16H10N2O5 C17H13NO4 C16H10BrNO3
Mr 310.26 295.28 344.16
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 100 100 120
a, b, c (Å) 14.104 (9), 12.692 (8), 7.340 (5) 9.6903 (2), 5.5303 (4), 24.9335 (18) 6.7435 (1), 7.3012 (1), 28.0740 (9)
α, β, γ (°) 90, 100.065 (13), 90 90, 99.162 (5), 90 85.309 (4), 89.164 (4), 70.645 (3)
V3) 1293.7 (15) 1319.15 (14) 1299.64 (5)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.12 0.11 3.17
Crystal size (mm) 0.09 × 0.02 × 0.01 0.16 × 0.11 × 0.02 0.38 × 0.34 × 0.06
 
Data collection
Diffractometer Rigaku Saturn724+ Rigaku Saturn724+ Rigaku R-AXIS conversion
Absorption correction Multi-scan (CrystalClear-SM Expert; Rigaku, 2012) Multi-scan (CrystalClear-SM Expert; Rigaku, 2012) Multi-scan (CrystalClear-SM Expert; Rigaku, 2012)
Tmin, Tmax 0.989, 0.999 0.983, 0.998 0.379, 0.833
No. of measured, independent and observed [I > 2σ(I)] reflections 8466, 2947, 2215 7859, 2665, 1952 16781, 5939, 5633
Rint 0.061 0.055 0.045
(sin θ/λ)max−1) 0.649 0.625 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.077, 0.153, 1.16 0.041, 0.108, 0.98 0.044, 0.116, 1.08
No. of reflections 2947 2665 5939
No. of parameters 212 205 379
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.31 0.27, −0.28 1.79, −0.86
  (4a) (4d) (4e)
Crystal data
Chemical formula C17H13NO4 C17H13NO3 C16H11NO4
Mr 295.28 279.28 281.26
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 100 100 100
a, b, c (Å) 14.1629 (10), 6.772 (5), 15.1898 (11) 6.6106 (5), 7.0143 (5), 15.3749 (11) 7.0756 (5), 12.5125 (9), 14.2944 (10)
α, β, γ (°) 90, 116.607 (11), 90 91.444 (6), 95.238 (6), 112.551 (8) 86.267 (8), 83.839 (8), 84.588 (8)
V3) 1302.6 (10) 654.25 (9) 1250.68 (16)
Z 4 2 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.10 0.11
Crystal size (mm) 0.15 × 0.07 × 0.01 0.16 × 0.09 × 0.02 0.14 × 0.04 × 0.04
 
Data collection
Diffractometer Rigaku Saturn724+ Rigaku Saturn724+ Rigaku Saturn724+
Absorption correction Multi-scan (CrystalClear-SM Expert; Rigaku, 2012) Multi-scan (CrystalClear-SM Expert; Rigaku, 2012) Multi-scan (CrystalClear-SM Expert; Rigaku, 2012)
Tmin, Tmax 0.984, 0.999 0.985, 0.998 0.985, 0.996
No. of measured, independent and observed [I > 2σ(I)] reflections 16554, 2987, 2617 9400, 2986, 2645 5627, 5627, 4343
Rint 0.042 0.035  
(sin θ/λ)max−1) 0.650 0.651 0.652
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 0.92 0.043, 0.123, 1.08 0.085, 0.252, 1.18
No. of reflections 2987 2986 5627
No. of parameters 204 196 392
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.18 0.33, −0.26 0.41, −0.38
Computer programs: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.]), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Flipper 25 (Oszlányi & Sütő, 2004[Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.]), OSCAIL (McArdle et al., 2004[McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 30-309.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 9[link].

In (3b) there are two mol­ecules in the asymmetric unit. The largest difference map peaks are associated with the Br atoms.

In all compounds, H atoms attached to C atoms were treated as riding atoms with C—H(aromatic) = 0.95 Å with Uiso(H) = 1.2Ueq(C); C—H(meth­yl), = 0.98 Å with Uiso= 1.5Ueq(C). In all compounds, the amino H atoms were refined with the exception of (3b) where these atoms were refined as riding atoms with N—H = 0.88 Å with Uiso = 1.2Ueq(C) and in (4e) in which the positional parameters of the amino and hydroxyl H atoms were refined but their Uiso values were constrained to be Uiso(N) = 1.2Ueq(N) and Uiso(O)b= 1.5Ueq(O). The final positions of these atoms were checked in a difference Fourier map, as were the positions of the H atoms in any methyl groups. The quality of the crystals for (4e) was poor and the crystals were twinned. The completeness is 97%. The crystal studied was refined as a two-component twin [twin law: 2-axis (001) [[\overline{1}]05], BASF = 0.40].

Supporting information


Computing details top

For all compounds, data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert (Rigaku, 2012). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Flipper 25 (Oszlányi & Sütő, 2004) for (2b), (3a), (4a), (4d), (4e); SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Flipper 25 (Oszlányi & Sütő, 2004); for (3b). Program(s) used to refine structure: OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2015) for (2b), (3a), (4a), (4d), (4e); OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011) and SHELXL (Sheldrick, 2015) for (3b). For all compounds, molecular graphics: Mercury (Macrae et al., 2006). Software used to prepare material for publication: OSCAIL (McArdle et al., 2004), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009) for (2b), (3a), (4a), (4d), (4e); OSCAIL (McArdle et al., 2004), SHELXL (Sheldrick, 2015) and PLATON (Spek, 2009) for (3b).

(2b) N-(2-Nitrophenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C16H10N2O5F(000) = 640
Mr = 310.26Dx = 1.593 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
a = 14.104 (9) ÅCell parameters from 3262 reflections
b = 12.692 (8) Åθ = 2.2–31.3°
c = 7.340 (5) ŵ = 0.12 mm1
β = 100.065 (13)°T = 100 K
V = 1293.7 (15) Å3Rod, yellow
Z = 40.09 × 0.02 × 0.01 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2947 independent reflections
Radiation source: Rotating Anode2215 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.061
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.9°
profile data from ω–scansh = 1818
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
k = 1615
Tmin = 0.989, Tmax = 0.999l = 99
8466 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.077H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0365P)2 + 1.6526P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
2947 reflectionsΔρmax = 0.24 e Å3
212 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06264 (13)0.90167 (15)0.2131 (3)0.0216 (5)
O30.33472 (14)0.85362 (16)0.4843 (3)0.0253 (5)
O40.15266 (14)0.59520 (16)0.2912 (3)0.0261 (5)
O310.37222 (16)0.41995 (16)0.8305 (3)0.0296 (5)
O320.27802 (14)0.48771 (16)0.5956 (3)0.0261 (5)
N30.32255 (17)0.67310 (19)0.4733 (3)0.0200 (5)
H30.278 (3)0.616 (3)0.447 (5)0.049 (11)*
N310.35685 (17)0.48317 (19)0.7022 (3)0.0219 (6)
C20.1510 (2)0.8769 (2)0.3047 (4)0.0209 (6)
H20.19180.93370.35230.025*
C30.18677 (19)0.7789 (2)0.3351 (4)0.0180 (6)
C40.1266 (2)0.6879 (2)0.2674 (4)0.0201 (6)
C4A0.03017 (19)0.7160 (2)0.1659 (4)0.0191 (6)
C50.0351 (2)0.6377 (2)0.0908 (4)0.0206 (6)
H50.01800.56550.10710.025*
C60.1244 (2)0.6653 (2)0.0068 (4)0.0249 (7)
H60.16810.61190.05880.030*
C70.1509 (2)0.7710 (3)0.0296 (4)0.0246 (7)
H70.21260.78890.09690.030*
C80.0884 (2)0.8501 (2)0.0448 (4)0.0232 (6)
H80.10630.92220.03110.028*
C8A0.0017 (2)0.8203 (2)0.1405 (4)0.0212 (6)
C310.2891 (2)0.7728 (2)0.4371 (4)0.0211 (6)
C3110.4162 (2)0.6460 (2)0.5629 (4)0.0202 (6)
C3120.43423 (19)0.5536 (2)0.6708 (4)0.0196 (6)
C3130.5268 (2)0.5248 (2)0.7552 (4)0.0221 (6)
H3130.53670.46270.82840.027*
C3140.6038 (2)0.5870 (2)0.7320 (4)0.0250 (7)
H3140.66730.56770.78800.030*
C3150.5883 (2)0.6778 (2)0.6266 (4)0.0236 (7)
H3150.64160.72030.61030.028*
C3160.4957 (2)0.7078 (2)0.5439 (4)0.0223 (6)
H3160.48660.77110.47390.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0174 (10)0.0192 (10)0.0275 (12)0.0018 (8)0.0020 (8)0.0005 (9)
O30.0215 (11)0.0186 (10)0.0348 (13)0.0029 (9)0.0027 (9)0.0010 (9)
O40.0214 (11)0.0163 (10)0.0381 (13)0.0011 (9)0.0016 (9)0.0017 (9)
O310.0355 (12)0.0219 (11)0.0300 (13)0.0006 (10)0.0022 (10)0.0077 (10)
O320.0190 (10)0.0229 (11)0.0341 (13)0.0012 (9)0.0017 (9)0.0027 (9)
N30.0160 (12)0.0170 (12)0.0258 (14)0.0010 (10)0.0004 (10)0.0022 (10)
N310.0217 (12)0.0191 (12)0.0256 (14)0.0015 (10)0.0057 (11)0.0013 (10)
C20.0169 (14)0.0236 (15)0.0223 (16)0.0015 (12)0.0033 (12)0.0012 (12)
C30.0173 (13)0.0185 (13)0.0182 (14)0.0004 (12)0.0029 (11)0.0009 (12)
C40.0190 (14)0.0209 (14)0.0210 (15)0.0016 (12)0.0053 (11)0.0029 (12)
C4A0.0162 (13)0.0221 (14)0.0189 (15)0.0015 (12)0.0028 (11)0.0005 (12)
C50.0209 (14)0.0182 (14)0.0229 (15)0.0010 (12)0.0042 (12)0.0002 (12)
C60.0233 (15)0.0272 (16)0.0238 (16)0.0018 (13)0.0033 (12)0.0020 (13)
C70.0187 (14)0.0318 (16)0.0236 (16)0.0039 (14)0.0044 (12)0.0003 (13)
C80.0238 (15)0.0252 (15)0.0215 (15)0.0046 (13)0.0062 (12)0.0007 (13)
C8A0.0197 (14)0.0231 (15)0.0212 (15)0.0005 (12)0.0048 (11)0.0019 (12)
C310.0204 (14)0.0217 (14)0.0220 (16)0.0012 (12)0.0063 (12)0.0004 (12)
C3110.0174 (13)0.0217 (14)0.0207 (15)0.0014 (12)0.0014 (11)0.0012 (12)
C3120.0177 (13)0.0187 (14)0.0225 (15)0.0012 (12)0.0034 (11)0.0003 (12)
C3130.0230 (15)0.0211 (14)0.0216 (16)0.0023 (12)0.0021 (12)0.0018 (12)
C3140.0199 (14)0.0270 (16)0.0264 (17)0.0041 (13)0.0005 (12)0.0063 (13)
C3150.0175 (14)0.0263 (15)0.0273 (16)0.0025 (13)0.0048 (12)0.0057 (13)
C3160.0181 (14)0.0217 (15)0.0269 (17)0.0006 (12)0.0033 (12)0.0016 (12)
Geometric parameters (Å, º) top
O1—C21.346 (3)C5—H50.9500
O1—C8A1.389 (3)C6—C71.395 (4)
O3—C311.228 (4)C6—H60.9500
O4—C41.235 (3)C7—C81.384 (4)
O31—N311.227 (3)C7—H70.9500
O32—N311.244 (3)C8—C8A1.392 (4)
N3—C311.360 (4)C8—H80.9500
N3—C3111.411 (4)C311—C3161.396 (4)
N3—H30.96 (4)C311—C3121.413 (4)
N31—C3121.460 (4)C312—C3131.392 (4)
C2—C31.346 (4)C313—C3141.378 (4)
C2—H20.9500C313—H3130.9500
C3—C41.468 (4)C314—C3151.383 (4)
C3—C311.508 (4)C314—H3140.9500
C4—C4A1.476 (4)C315—C3161.394 (4)
C4A—C8A1.385 (4)C315—H3150.9500
C4A—C51.401 (4)C316—H3160.9500
C5—C61.381 (4)
C2—O1—C8A118.3 (2)C7—C8—C8A117.7 (3)
C31—N3—C311125.6 (2)C7—C8—H8121.2
C31—N3—H3118 (2)C8A—C8—H8121.2
C311—N3—H3116 (2)C4A—C8A—O1120.9 (3)
O31—N31—O32122.1 (2)C4A—C8A—C8123.0 (3)
O31—N31—C312119.0 (2)O1—C8A—C8116.1 (3)
O32—N31—C312118.9 (2)O3—C31—N3125.1 (3)
O1—C2—C3125.9 (3)O3—C31—C3120.4 (3)
O1—C2—H2117.1N3—C31—C3114.5 (2)
C3—C2—H2117.1C316—C311—N3121.3 (3)
C2—C3—C4119.6 (3)C316—C311—C312117.0 (3)
C2—C3—C31115.4 (3)N3—C311—C312121.8 (3)
C4—C3—C31125.0 (3)C313—C312—C311122.0 (3)
O4—C4—C3124.2 (3)C313—C312—N31115.9 (3)
O4—C4—C4A121.8 (3)C311—C312—N31122.0 (2)
C3—C4—C4A114.0 (2)C314—C313—C312119.5 (3)
C8A—C4A—C5118.0 (3)C314—C313—H313120.2
C8A—C4A—C4121.3 (3)C312—C313—H313120.2
C5—C4A—C4120.7 (3)C313—C314—C315119.7 (3)
C6—C5—C4A120.1 (3)C313—C314—H314120.2
C6—C5—H5120.0C315—C314—H314120.2
C4A—C5—H5120.0C314—C315—C316121.1 (3)
C5—C6—C7120.5 (3)C314—C315—H315119.5
C5—C6—H6119.8C316—C315—H315119.5
C7—C6—H6119.8C315—C316—C311120.7 (3)
C8—C7—C6120.7 (3)C315—C316—H316119.7
C8—C7—H7119.6C311—C316—H316119.7
C6—C7—H7119.6
C8A—O1—C2—C30.6 (4)C311—N3—C31—O33.2 (5)
O1—C2—C3—C40.9 (5)C311—N3—C31—C3178.5 (3)
O1—C2—C3—C31178.3 (3)C2—C3—C31—O31.0 (4)
C2—C3—C4—O4178.8 (3)C4—C3—C31—O3178.1 (3)
C31—C3—C4—O42.0 (5)C2—C3—C31—N3177.3 (3)
C2—C3—C4—C4A1.3 (4)C4—C3—C31—N33.5 (4)
C31—C3—C4—C4A177.9 (3)C31—N3—C311—C31632.2 (4)
O4—C4—C4A—C8A179.8 (3)C31—N3—C311—C312149.8 (3)
C3—C4—C4A—C8A0.3 (4)C316—C311—C312—C3130.1 (4)
O4—C4—C4A—C50.7 (4)N3—C311—C312—C313178.1 (3)
C3—C4—C4A—C5179.2 (3)C316—C311—C312—N31179.4 (3)
C8A—C4A—C5—C60.7 (4)N3—C311—C312—N312.6 (4)
C4—C4A—C5—C6178.8 (3)O31—N31—C312—C31317.2 (4)
C4A—C5—C6—C70.8 (4)O32—N31—C312—C313161.3 (3)
C5—C6—C7—C80.1 (5)O31—N31—C312—C311162.2 (3)
C6—C7—C8—C8A0.8 (4)O32—N31—C312—C31119.3 (4)
C5—C4A—C8A—O1179.3 (3)C311—C312—C313—C3140.8 (4)
C4—C4A—C8A—O11.2 (4)N31—C312—C313—C314179.8 (3)
C5—C4A—C8A—C80.2 (4)C312—C313—C314—C3150.6 (4)
C4—C4A—C8A—C8179.7 (3)C313—C314—C315—C3160.3 (5)
C2—O1—C8A—C4A1.7 (4)C314—C315—C316—C3111.1 (5)
C2—O1—C8A—C8179.2 (3)N3—C311—C316—C315177.2 (3)
C7—C8—C8A—C4A0.9 (5)C312—C311—C316—C3150.8 (4)
C7—C8—C8A—O1179.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.96 (4)1.95 (4)2.718 (3)136 (3)
N3—H3···O320.96 (4)1.96 (4)2.633 (3)126 (3)
C316—H316···O30.952.402.902 (4)113
C8—H8···O32i0.952.583.210 (4)124
C5—H5···O1ii0.952.603.375 (4)139
C313—H313···O3iii0.952.493.299 (4)143
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x+1, y1/2, z+3/2.
(3a) N-(3-Methoxyphenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C17H13NO4F(000) = 616
Mr = 295.28Dx = 1.487 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 9.6903 (2) ÅCell parameters from 7535 reflections
b = 5.5303 (4) Åθ = 2.4–27.5°
c = 24.9335 (18) ŵ = 0.11 mm1
β = 99.162 (5)°T = 100 K
V = 1319.15 (14) Å3Plate, yellow
Z = 40.16 × 0.11 × 0.02 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2665 independent reflections
Graphite Monochromator monochromator1952 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.055
profile data from ω–scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 812
Tmin = 0.983, Tmax = 0.998k = 64
7859 measured reflectionsl = 3131
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0608P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2665 reflectionsΔρmax = 0.27 e Å3
205 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26521 (11)0.7928 (2)0.57868 (4)0.0171 (3)
O30.44760 (12)0.7936 (2)0.44346 (5)0.0232 (3)
O40.18474 (11)0.2131 (2)0.47561 (5)0.0180 (3)
O310.59354 (12)0.7141 (2)0.26613 (5)0.0203 (3)
N30.35790 (14)0.4246 (3)0.41394 (6)0.0165 (3)
H30.301 (2)0.299 (4)0.4246 (9)0.041 (6)*
C20.32706 (16)0.7700 (3)0.53426 (7)0.0161 (4)
H20.39190.89170.52800.022 (5)*
C30.30423 (16)0.5879 (3)0.49791 (6)0.0142 (4)
C40.20852 (16)0.3913 (3)0.50574 (6)0.0142 (4)
C4A0.13765 (16)0.4230 (3)0.55341 (6)0.0145 (4)
C50.03520 (16)0.2597 (3)0.56506 (7)0.0166 (4)
H50.01340.12140.54270.020*
C60.03398 (17)0.2980 (3)0.60851 (7)0.0171 (4)
H60.10320.18680.61590.020*
C70.00212 (17)0.5010 (3)0.64171 (7)0.0187 (4)
H70.05080.52750.67140.022*
C80.09905 (17)0.6627 (3)0.63182 (7)0.0177 (4)
H80.12210.79860.65480.021*
C8A0.16685 (16)0.6224 (3)0.58735 (7)0.0152 (4)
C310.37825 (16)0.6126 (3)0.44949 (6)0.0159 (4)
C3110.39490 (16)0.4120 (3)0.36136 (6)0.0158 (4)
C3120.48345 (16)0.5805 (3)0.34230 (7)0.0158 (4)
H3120.52420.70800.36500.019*
C3130.51050 (16)0.5572 (3)0.28940 (7)0.0160 (4)
C3140.45126 (17)0.3717 (3)0.25555 (7)0.0181 (4)
H3140.46950.35990.21930.022*
C3150.36543 (17)0.2046 (3)0.27535 (7)0.0190 (4)
H3150.32560.07630.25270.023*
C3160.33721 (17)0.2231 (3)0.32799 (7)0.0181 (4)
H3160.27870.10740.34130.022*
C3170.67728 (17)0.8800 (3)0.30136 (7)0.0203 (4)
H31A0.73690.97240.28050.030*
H31B0.73590.79020.33030.030*
H31C0.61640.99110.31740.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0184 (6)0.0160 (6)0.0181 (6)0.0038 (5)0.0064 (5)0.0022 (5)
O30.0268 (7)0.0212 (7)0.0243 (7)0.0100 (6)0.0118 (5)0.0044 (5)
O40.0198 (6)0.0159 (6)0.0192 (6)0.0040 (5)0.0059 (5)0.0033 (5)
O310.0223 (6)0.0216 (7)0.0188 (6)0.0063 (5)0.0087 (5)0.0010 (5)
N30.0148 (7)0.0169 (8)0.0192 (8)0.0037 (6)0.0064 (6)0.0013 (6)
C20.0131 (8)0.0182 (9)0.0174 (9)0.0007 (7)0.0036 (7)0.0043 (7)
C30.0110 (8)0.0155 (8)0.0162 (8)0.0008 (7)0.0019 (6)0.0021 (7)
C40.0121 (8)0.0160 (9)0.0136 (8)0.0028 (7)0.0011 (6)0.0031 (7)
C4A0.0119 (8)0.0149 (8)0.0165 (8)0.0022 (7)0.0012 (6)0.0022 (7)
C50.0144 (8)0.0162 (9)0.0184 (9)0.0013 (7)0.0001 (7)0.0020 (7)
C60.0133 (8)0.0195 (9)0.0185 (9)0.0010 (7)0.0026 (7)0.0056 (7)
C70.0172 (9)0.0224 (10)0.0171 (9)0.0040 (7)0.0049 (7)0.0043 (7)
C80.0199 (9)0.0152 (9)0.0176 (9)0.0020 (7)0.0020 (7)0.0010 (7)
C8A0.0119 (8)0.0150 (9)0.0183 (8)0.0009 (7)0.0015 (6)0.0050 (7)
C310.0118 (8)0.0171 (9)0.0185 (9)0.0001 (7)0.0012 (6)0.0021 (7)
C3110.0123 (8)0.0175 (9)0.0179 (9)0.0032 (7)0.0037 (6)0.0009 (7)
C3120.0123 (8)0.0162 (9)0.0188 (9)0.0007 (7)0.0026 (6)0.0006 (7)
C3130.0108 (8)0.0166 (9)0.0213 (9)0.0024 (7)0.0047 (6)0.0023 (7)
C3140.0172 (9)0.0209 (9)0.0169 (8)0.0036 (7)0.0049 (7)0.0003 (7)
C3150.0168 (9)0.0185 (9)0.0214 (9)0.0011 (7)0.0024 (7)0.0050 (7)
C3160.0152 (8)0.0167 (9)0.0235 (9)0.0018 (7)0.0068 (7)0.0004 (7)
C3170.0174 (9)0.0210 (10)0.0232 (9)0.0051 (7)0.0056 (7)0.0001 (8)
Geometric parameters (Å, º) top
O1—C21.3464 (18)C6—H60.9500
O1—C8A1.3815 (19)C7—C81.378 (2)
O3—C311.228 (2)C7—H70.9500
O4—C41.239 (2)C8—C8A1.394 (2)
O31—C3131.3733 (19)C8—H80.9500
O31—C3171.430 (2)C311—C3161.396 (2)
N3—C311.360 (2)C311—C3121.400 (2)
N3—C3111.4146 (19)C312—C3131.391 (2)
N3—H30.95 (2)C312—H3120.9500
C2—C31.349 (2)C313—C3141.393 (2)
C2—H20.9500C314—C3151.386 (2)
C3—C41.462 (2)C314—H3140.9500
C3—C311.506 (2)C315—C3161.386 (2)
C4—C4A1.475 (2)C315—H3150.9500
C4A—C8A1.391 (2)C316—H3160.9500
C4A—C51.406 (2)C317—H31A0.9800
C5—C61.378 (2)C317—H31B0.9800
C5—H50.9500C317—H31C0.9800
C6—C71.400 (2)
C2—O1—C8A118.25 (13)O1—C8A—C8116.09 (14)
C313—O31—C317117.35 (13)C4A—C8A—C8122.32 (15)
C31—N3—C311127.55 (14)O3—C31—N3124.66 (14)
C31—N3—H3114.0 (13)O3—C31—C3120.80 (15)
C311—N3—H3117.9 (13)N3—C31—C3114.51 (14)
O1—C2—C3125.13 (15)C316—C311—C312120.30 (14)
O1—C2—H2117.4C316—C311—N3116.92 (14)
C3—C2—H2117.4C312—C311—N3122.78 (15)
C2—C3—C4120.32 (14)C313—C312—C311118.59 (15)
C2—C3—C31115.01 (15)C313—C312—H312120.7
C4—C3—C31124.61 (14)C311—C312—H312120.7
O4—C4—C3124.85 (14)O31—C313—C312123.62 (15)
O4—C4—C4A121.19 (14)O31—C313—C314114.96 (14)
C3—C4—C4A113.96 (14)C312—C313—C314121.40 (15)
C8A—C4A—C5117.72 (14)C315—C314—C313119.22 (15)
C8A—C4A—C4120.57 (14)C315—C314—H314120.4
C5—C4A—C4121.67 (15)C313—C314—H314120.4
C6—C5—C4A120.76 (16)C314—C315—C316120.53 (16)
C6—C5—H5119.6C314—C315—H315119.7
C4A—C5—H5119.6C316—C315—H315119.7
C5—C6—C7119.94 (15)C315—C316—C311119.94 (15)
C5—C6—H6120.0C315—C316—H316120.0
C7—C6—H6120.0C311—C316—H316120.0
C8—C7—C6120.73 (15)O31—C317—H31A109.5
C8—C7—H7119.6O31—C317—H31B109.5
C6—C7—H7119.6H31A—C317—H31B109.5
C7—C8—C8A118.52 (15)O31—C317—H31C109.5
C7—C8—H8120.7H31A—C317—H31C109.5
C8A—C8—H8120.7H31B—C317—H31C109.5
O1—C8A—C4A121.59 (14)
C8A—O1—C2—C32.3 (2)C7—C8—C8A—O1178.69 (14)
O1—C2—C3—C41.6 (3)C7—C8—C8A—C4A1.2 (3)
O1—C2—C3—C31175.74 (14)C311—N3—C31—O38.8 (3)
C2—C3—C4—O4177.46 (16)C311—N3—C31—C3169.44 (14)
C31—C3—C4—O45.5 (3)C2—C3—C31—O33.5 (2)
C2—C3—C4—C4A3.5 (2)C4—C3—C31—O3173.63 (15)
C31—C3—C4—C4A173.52 (14)C2—C3—C31—N3178.11 (15)
O4—C4—C4A—C8A179.08 (15)C4—C3—C31—N34.7 (2)
C3—C4—C4A—C8A1.8 (2)C31—N3—C311—C316166.55 (16)
O4—C4—C4A—C53.4 (2)C31—N3—C311—C31212.6 (2)
C3—C4—C4A—C5175.72 (14)C316—C311—C312—C3131.0 (2)
C8A—C4A—C5—C60.4 (2)N3—C311—C312—C313178.12 (14)
C4—C4A—C5—C6177.26 (15)C317—O31—C313—C31212.6 (2)
C4A—C5—C6—C70.2 (2)C317—O31—C313—C314168.72 (14)
C5—C6—C7—C80.7 (3)C311—C312—C313—O31178.79 (15)
C6—C7—C8—C8A1.3 (2)C311—C312—C313—C3140.2 (2)
C2—O1—C8A—C4A4.0 (2)O31—C313—C314—C315179.81 (14)
C2—O1—C8A—C8175.85 (14)C312—C313—C314—C3151.1 (2)
C5—C4A—C8A—O1179.53 (14)C313—C314—C315—C3160.8 (2)
C4—C4A—C8A—O11.9 (2)C314—C315—C316—C3110.3 (2)
C5—C4A—C8A—C80.4 (2)C312—C311—C316—C3151.2 (2)
C4—C4A—C8A—C8178.01 (15)N3—C311—C316—C315177.90 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.95 (2)1.89 (2)2.7147 (17)143.8 (18)
C312—H312···O30.952.252.855 (2)121
C2—H2···O3i0.952.373.243 (2)153
Symmetry code: (i) x+1, y+2, z+1.
(3b) N-(3-Bromophenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C16H10BrNO3Z = 4
Mr = 344.16F(000) = 688
Triclinic, P1Dx = 1.759 Mg m3
a = 6.7435 (1) ÅMo Kα radiation, λ = 0.71075 Å
b = 7.3012 (1) ÅCell parameters from 6848 reflections
c = 28.0740 (9) Åθ = 1.5–27.5°
α = 85.309 (4)°µ = 3.17 mm1
β = 89.164 (4)°T = 120 K
γ = 70.645 (3)°Plate, colourless
V = 1299.64 (5) Å30.38 × 0.34 × 0.06 mm
Data collection top
Rigaku RAXIS conversion
diffractometer
5939 independent reflections
Radiation source: Sealed Tube5633 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.045
Detector resolution: 10.0000 pixels mm-1θmax = 27.5°, θmin = 1.5°
profile data from ω–scansh = 78
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
k = 99
Tmin = 0.379, Tmax = 0.833l = 3636
16781 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0487P)2 + 2.2824P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
5939 reflectionsΔρmax = 1.79 e Å3
379 parametersΔρmin = 0.86 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br130.19823 (5)0.50533 (5)0.21591 (2)0.02468 (10)
O110.1612 (3)0.1960 (3)0.09282 (8)0.0234 (5)
O140.7153 (3)0.1950 (3)0.03480 (8)0.0242 (5)
O1310.1525 (4)0.3349 (4)0.04468 (8)0.0256 (5)
N130.5020 (4)0.3021 (4)0.04552 (9)0.0199 (5)
H130.61340.27580.02720.024*
C120.1726 (5)0.2403 (4)0.04764 (10)0.0213 (6)
H120.04700.27210.02970.026*
C130.3488 (5)0.2431 (4)0.02576 (10)0.0187 (6)
C140.5473 (5)0.1936 (4)0.05181 (10)0.0182 (6)
C14A0.5333 (5)0.1413 (4)0.10070 (10)0.0193 (6)
C150.7097 (5)0.0851 (4)0.12974 (11)0.0217 (6)
H150.84290.07890.11770.026*
C160.6925 (5)0.0387 (5)0.17555 (11)0.0258 (7)
H160.81310.00220.19510.031*
C170.4978 (5)0.0448 (5)0.19347 (11)0.0248 (6)
H170.48730.01140.22510.030*
C180.3209 (5)0.0991 (4)0.16563 (11)0.0227 (6)
H180.18820.10430.17780.027*
C18A0.3417 (5)0.1459 (4)0.11934 (10)0.0203 (6)
C1310.5316 (5)0.3428 (4)0.09256 (10)0.0185 (6)
C1320.3685 (5)0.4007 (4)0.12504 (10)0.0190 (6)
H1320.22780.41660.11630.023*
C1330.4191 (5)0.4344 (4)0.17065 (10)0.0203 (6)
C1340.6201 (5)0.4156 (4)0.18499 (11)0.0224 (6)
H1340.64880.44030.21640.027*
C1350.7799 (5)0.3588 (5)0.15156 (11)0.0234 (6)
H1350.92000.34470.16040.028*
C1360.7379 (5)0.3226 (4)0.10580 (11)0.0217 (6)
H1360.84830.28420.08350.026*
C1370.3224 (5)0.2985 (4)0.02492 (10)0.0192 (6)
Br230.07137 (5)1.08718 (5)0.28460 (2)0.02772 (10)
O210.0747 (3)0.5655 (3)0.59280 (7)0.0223 (4)
O240.4533 (4)0.6676 (3)0.54070 (8)0.0259 (5)
O2310.1079 (4)0.8225 (4)0.45807 (8)0.0276 (5)
N230.2310 (4)0.8203 (4)0.45937 (9)0.0218 (5)
H230.34520.78170.47750.026*
C220.0700 (5)0.6501 (4)0.54886 (10)0.0211 (6)
H220.19520.68610.53010.025*
C230.0968 (5)0.6891 (4)0.52871 (10)0.0202 (6)
C240.2927 (5)0.6380 (4)0.55608 (11)0.0204 (6)
C24A0.2867 (5)0.5466 (4)0.60466 (10)0.0197 (6)
C250.4612 (5)0.4903 (4)0.63557 (11)0.0224 (6)
H250.58760.51110.62540.027*
C260.4502 (5)0.4048 (5)0.68070 (11)0.0249 (6)
H260.56920.36710.70150.030*
C270.2653 (5)0.3732 (5)0.69597 (11)0.0244 (6)
H270.25940.31490.72720.029*
C280.0911 (5)0.4256 (5)0.66619 (11)0.0231 (6)
H280.03450.40310.67630.028*
C28A0.1050 (5)0.5124 (4)0.62079 (10)0.0206 (6)
C2310.2488 (5)0.9119 (4)0.41434 (11)0.0213 (6)
C2320.0957 (5)0.9487 (4)0.37790 (10)0.0212 (6)
H2320.02740.91380.38260.025*
C2330.1333 (5)1.0386 (5)0.33470 (11)0.0230 (6)
C2340.3077 (5)1.0949 (5)0.32614 (11)0.0253 (6)
H2340.32571.15830.29630.030*
C2350.4566 (5)1.0555 (5)0.36291 (12)0.0259 (7)
H2350.57881.09170.35800.031*
C2360.4281 (5)0.9640 (5)0.40655 (11)0.0239 (6)
H2360.53150.93670.43120.029*
C2370.0609 (5)0.7833 (4)0.47874 (10)0.0208 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br130.02787 (18)0.03148 (18)0.01601 (16)0.01088 (13)0.00215 (11)0.00539 (12)
O110.0200 (11)0.0311 (12)0.0190 (10)0.0076 (9)0.0011 (8)0.0052 (9)
O140.0211 (11)0.0323 (12)0.0204 (11)0.0096 (9)0.0003 (8)0.0056 (9)
O1310.0242 (11)0.0364 (13)0.0187 (10)0.0122 (10)0.0021 (8)0.0068 (9)
N130.0217 (13)0.0238 (13)0.0145 (11)0.0073 (10)0.0007 (9)0.0039 (9)
C120.0237 (15)0.0239 (15)0.0160 (13)0.0072 (12)0.0009 (11)0.0038 (11)
C130.0200 (14)0.0178 (13)0.0183 (13)0.0062 (11)0.0012 (10)0.0016 (10)
C140.0221 (14)0.0149 (13)0.0169 (13)0.0054 (11)0.0001 (10)0.0002 (10)
C14A0.0245 (15)0.0157 (13)0.0174 (13)0.0063 (11)0.0011 (11)0.0006 (10)
C150.0210 (15)0.0207 (14)0.0227 (15)0.0061 (11)0.0019 (11)0.0015 (11)
C160.0332 (17)0.0206 (15)0.0210 (15)0.0051 (12)0.0065 (12)0.0039 (11)
C170.0367 (18)0.0205 (15)0.0155 (14)0.0070 (13)0.0001 (12)0.0027 (11)
C180.0271 (16)0.0200 (14)0.0190 (14)0.0052 (12)0.0045 (11)0.0008 (11)
C18A0.0265 (15)0.0173 (13)0.0155 (13)0.0052 (11)0.0008 (11)0.0001 (10)
C1310.0253 (15)0.0158 (13)0.0148 (13)0.0075 (11)0.0018 (11)0.0000 (10)
C1320.0221 (14)0.0183 (14)0.0164 (13)0.0067 (11)0.0004 (11)0.0004 (10)
C1330.0247 (15)0.0177 (13)0.0177 (14)0.0055 (11)0.0009 (11)0.0023 (10)
C1340.0292 (16)0.0195 (14)0.0180 (14)0.0069 (12)0.0052 (11)0.0024 (11)
C1350.0196 (15)0.0237 (15)0.0276 (16)0.0077 (12)0.0059 (11)0.0026 (12)
C1360.0212 (15)0.0223 (15)0.0217 (14)0.0072 (11)0.0006 (11)0.0016 (11)
C1370.0226 (14)0.0177 (14)0.0169 (13)0.0059 (11)0.0011 (11)0.0016 (10)
Br230.02983 (19)0.03229 (19)0.01703 (16)0.00573 (13)0.00026 (12)0.00149 (12)
O210.0225 (11)0.0276 (11)0.0171 (10)0.0087 (9)0.0008 (8)0.0010 (8)
O240.0219 (11)0.0330 (13)0.0234 (11)0.0108 (9)0.0011 (8)0.0012 (9)
O2310.0235 (12)0.0375 (13)0.0202 (11)0.0089 (10)0.0036 (9)0.0018 (9)
N230.0230 (13)0.0256 (13)0.0151 (11)0.0061 (10)0.0028 (9)0.0005 (10)
C220.0247 (15)0.0206 (14)0.0169 (13)0.0057 (11)0.0007 (11)0.0039 (11)
C230.0229 (15)0.0192 (14)0.0164 (13)0.0038 (11)0.0002 (11)0.0029 (11)
C240.0218 (15)0.0175 (13)0.0203 (14)0.0039 (11)0.0002 (11)0.0040 (11)
C24A0.0220 (14)0.0170 (13)0.0192 (14)0.0046 (11)0.0007 (11)0.0041 (10)
C250.0223 (15)0.0206 (14)0.0230 (15)0.0046 (11)0.0018 (11)0.0048 (11)
C260.0281 (16)0.0216 (15)0.0228 (15)0.0046 (12)0.0040 (12)0.0046 (12)
C270.0324 (17)0.0221 (15)0.0160 (14)0.0056 (12)0.0003 (12)0.0012 (11)
C280.0262 (16)0.0231 (15)0.0196 (14)0.0072 (12)0.0022 (11)0.0035 (11)
C28A0.0213 (14)0.0201 (14)0.0188 (14)0.0039 (11)0.0013 (11)0.0042 (11)
C2310.0247 (15)0.0174 (14)0.0191 (14)0.0030 (11)0.0021 (11)0.0026 (11)
C2320.0245 (15)0.0185 (14)0.0183 (14)0.0039 (11)0.0022 (11)0.0018 (11)
C2330.0219 (15)0.0219 (15)0.0204 (14)0.0007 (11)0.0027 (11)0.0026 (11)
C2340.0273 (16)0.0222 (15)0.0229 (15)0.0040 (12)0.0069 (12)0.0010 (12)
C2350.0272 (16)0.0223 (15)0.0281 (16)0.0076 (12)0.0073 (12)0.0060 (12)
C2360.0240 (15)0.0225 (15)0.0245 (15)0.0065 (12)0.0006 (12)0.0039 (12)
C2370.0247 (15)0.0194 (14)0.0169 (13)0.0050 (11)0.0003 (11)0.0030 (11)
Geometric parameters (Å, º) top
Br13—C1331.909 (3)Br23—C2331.913 (3)
O11—C121.344 (4)O21—C221.339 (4)
O11—C18A1.376 (4)O21—C28A1.380 (4)
O14—C141.240 (4)O24—C241.238 (4)
O131—C1371.223 (4)O231—C2371.221 (4)
N13—C1371.359 (4)N23—C2371.359 (4)
N13—C1311.408 (4)N23—C2311.404 (4)
N13—H130.8800N23—H230.8800
C12—C131.352 (4)C22—C231.354 (4)
C12—H120.9500C22—H220.9500
C13—C141.467 (4)C23—C241.460 (4)
C13—C1371.503 (4)C23—C2371.497 (4)
C14—C14A1.467 (4)C24—C24A1.475 (4)
C14A—C18A1.390 (4)C24A—C28A1.391 (4)
C14A—C151.397 (4)C24A—C251.399 (4)
C15—C161.373 (4)C25—C261.378 (5)
C15—H150.9500C25—H250.9500
C16—C171.398 (5)C26—C271.397 (5)
C16—H160.9500C26—H260.9500
C17—C181.379 (5)C27—C281.380 (5)
C17—H170.9500C27—H270.9500
C18—C18A1.391 (4)C28—C28A1.393 (4)
C18—H180.9500C28—H280.9500
C131—C1321.395 (4)C231—C2361.392 (5)
C131—C1361.402 (4)C231—C2321.409 (4)
C132—C1331.391 (4)C232—C2331.392 (4)
C132—H1320.9500C232—H2320.9500
C133—C1341.379 (5)C233—C2341.380 (5)
C134—C1351.397 (5)C234—C2351.395 (5)
C134—H1340.9500C234—H2340.9500
C135—C1361.384 (4)C235—C2361.389 (5)
C135—H1350.9500C235—H2350.9500
C136—H1360.9500C236—H2360.9500
C12—O11—C18A118.6 (2)C22—O21—C28A118.1 (2)
C137—N13—C131128.0 (3)C237—N23—C231128.6 (3)
C137—N13—H13116.0C237—N23—H23115.7
C131—N13—H13116.0C231—N23—H23115.7
O11—C12—C13125.2 (3)O21—C22—C23126.0 (3)
O11—C12—H12117.4O21—C22—H22117.0
C13—C12—H12117.4C23—C22—H22117.0
C12—C13—C14119.6 (3)C22—C23—C24119.3 (3)
C12—C13—C137115.5 (3)C22—C23—C237115.3 (3)
C14—C13—C137124.9 (3)C24—C23—C237125.4 (3)
O14—C14—C13123.9 (3)O24—C24—C23124.0 (3)
O14—C14—C14A121.5 (3)O24—C24—C24A121.4 (3)
C13—C14—C14A114.6 (3)C23—C24—C24A114.6 (3)
C18A—C14A—C15118.1 (3)C28A—C24A—C25118.1 (3)
C18A—C14A—C14120.3 (3)C28A—C24A—C24120.2 (3)
C15—C14A—C14121.6 (3)C25—C24A—C24121.7 (3)
C16—C15—C14A120.6 (3)C26—C25—C24A120.2 (3)
C16—C15—H15119.7C26—C25—H25119.9
C14A—C15—H15119.7C24A—C25—H25119.9
C15—C16—C17120.2 (3)C25—C26—C27120.4 (3)
C15—C16—H16119.9C25—C26—H26119.8
C17—C16—H16119.9C27—C26—H26119.8
C18—C17—C16120.6 (3)C28—C27—C26120.8 (3)
C18—C17—H17119.7C28—C27—H27119.6
C16—C17—H17119.7C26—C27—H27119.6
C17—C18—C18A118.3 (3)C27—C28—C28A117.9 (3)
C17—C18—H18120.8C27—C28—H28121.0
C18A—C18—H18120.8C28A—C28—H28121.0
O11—C18A—C14A121.8 (3)O21—C28A—C24A121.8 (3)
O11—C18A—C18116.0 (3)O21—C28A—C28115.6 (3)
C14A—C18A—C18122.2 (3)C24A—C28A—C28122.6 (3)
C132—C131—C136120.4 (3)C236—C231—N23116.9 (3)
C132—C131—N13123.3 (3)C236—C231—C232120.5 (3)
C136—C131—N13116.3 (3)N23—C231—C232122.5 (3)
C133—C132—C131117.7 (3)C233—C232—C231116.8 (3)
C133—C132—H132121.2C233—C232—H232121.6
C131—C132—H132121.2C231—C232—H232121.6
C134—C133—C132123.5 (3)C234—C233—C232124.0 (3)
C134—C133—Br13118.6 (2)C234—C233—Br23118.6 (2)
C132—C133—Br13117.9 (2)C232—C233—Br23117.4 (2)
C133—C134—C135117.5 (3)C233—C234—C235117.6 (3)
C133—C134—H134121.3C233—C234—H234121.2
C135—C134—H134121.3C235—C234—H234121.2
C136—C135—C134121.2 (3)C236—C235—C234120.7 (3)
C136—C135—H135119.4C236—C235—H235119.6
C134—C135—H135119.4C234—C235—H235119.6
C135—C136—C131119.7 (3)C235—C236—C231120.2 (3)
C135—C136—H136120.2C235—C236—H236119.9
C131—C136—H136120.2C231—C236—H236119.9
O131—C137—N13124.8 (3)O231—C237—N23124.2 (3)
O131—C137—C13121.3 (3)O231—C237—C23121.8 (3)
N13—C137—C13113.8 (3)N23—C237—C23114.0 (3)
C18A—O11—C12—C131.2 (5)C28A—O21—C22—C230.2 (4)
O11—C12—C13—C140.5 (5)O21—C22—C23—C240.4 (5)
O11—C12—C13—C137179.6 (3)O21—C22—C23—C237179.5 (3)
C12—C13—C14—O14179.0 (3)C22—C23—C24—O24179.9 (3)
C137—C13—C14—O141.2 (5)C237—C23—C24—O240.0 (5)
C12—C13—C14—C14A0.9 (4)C22—C23—C24—C24A0.2 (4)
C137—C13—C14—C14A179.0 (3)C237—C23—C24—C24A179.9 (3)
O14—C14—C14A—C18A178.3 (3)O24—C24—C24A—C28A179.1 (3)
C13—C14—C14A—C18A1.6 (4)C23—C24—C24A—C28A1.1 (4)
O14—C14—C14A—C152.0 (5)O24—C24—C24A—C250.3 (4)
C13—C14—C14A—C15178.2 (3)C23—C24—C24A—C25179.5 (3)
C18A—C14A—C15—C160.9 (5)C28A—C24A—C25—C260.4 (4)
C14—C14A—C15—C16179.3 (3)C24—C24A—C25—C26179.8 (3)
C14A—C15—C16—C170.8 (5)C24A—C25—C26—C270.1 (5)
C15—C16—C17—C180.6 (5)C25—C26—C27—C280.4 (5)
C16—C17—C18—C18A0.4 (5)C26—C27—C28—C28A0.7 (5)
C12—O11—C18A—C14A0.4 (4)C22—O21—C28A—C24A0.7 (4)
C12—O11—C18A—C18179.2 (3)C22—O21—C28A—C28179.8 (3)
C15—C14A—C18A—O11178.8 (3)C25—C24A—C28A—O21179.2 (3)
C14—C14A—C18A—O111.0 (4)C24—C24A—C28A—O211.4 (4)
C15—C14A—C18A—C180.8 (4)C25—C24A—C28A—C280.2 (4)
C14—C14A—C18A—C18179.4 (3)C24—C24A—C28A—C28179.6 (3)
C17—C18—C18A—O11179.0 (3)C27—C28—C28A—O21178.7 (3)
C17—C18—C18A—C14A0.6 (5)C27—C28—C28A—C24A0.3 (5)
C137—N13—C131—C1324.7 (5)C237—N23—C231—C236168.5 (3)
C137—N13—C131—C136175.4 (3)C237—N23—C231—C23212.4 (5)
C136—C131—C132—C1330.8 (4)C236—C231—C232—C2330.2 (4)
N13—C131—C132—C133179.3 (3)N23—C231—C232—C233179.3 (3)
C131—C132—C133—C1340.7 (5)C231—C232—C233—C2341.0 (4)
C131—C132—C133—Br13178.0 (2)C231—C232—C233—Br23179.4 (2)
C132—C133—C134—C1350.3 (5)C232—C233—C234—C2351.3 (5)
Br13—C133—C134—C135178.4 (2)Br23—C233—C234—C235179.0 (2)
C133—C134—C135—C1360.1 (5)C233—C234—C235—C2360.4 (5)
C134—C135—C136—C1310.1 (5)C234—C235—C236—C2310.7 (5)
C132—C131—C136—C1350.5 (5)N23—C231—C236—C235179.9 (3)
N13—C131—C136—C135179.6 (3)C232—C231—C236—C2351.0 (4)
C131—N13—C137—O1311.5 (5)C231—N23—C237—O2312.0 (5)
C131—N13—C137—C13178.2 (3)C231—N23—C237—C23177.8 (3)
C12—C13—C137—O1311.1 (4)C22—C23—C237—O2310.4 (4)
C14—C13—C137—O131178.8 (3)C24—C23—C237—O231179.8 (3)
C12—C13—C137—N13179.2 (3)C22—C23—C237—N23179.8 (3)
C14—C13—C137—N130.9 (4)C24—C23—C237—N230.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O140.881.932.686 (3)143
N23—H23···O240.881.942.698 (3)143
C12—H12···O1310.952.342.727 (4)104
C22—H22···O2310.952.332.725 (4)104
C132—H132···O1310.952.262.860 (4)121
C232—H232···O2310.952.282.865 (4)119
C12—H12···O14i0.952.493.221 (4)134
C22—H22···O24i0.952.433.185 (4)136
C15—H15···O11ii0.952.683.587 (4)160
C25—H25···O21ii0.952.583.530 (4)177
C136—H136···O131ii0.952.433.282 (4)149
C236—H236···O231ii0.952.413.270 (4)151
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
(4a) N-(4-Methoxyphenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C17H13NO4F(000) = 616
Mr = 295.28Dx = 1.506 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
a = 14.1629 (10) ÅCell parameters from 15826 reflections
b = 6.772 (5) Åθ = 2.6–27.5°
c = 15.1898 (11) ŵ = 0.11 mm1
β = 116.607 (11)°T = 100 K
V = 1302.6 (10) Å3Plate, colourless
Z = 40.15 × 0.07 × 0.01 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2987 independent reflections
Graphite Monochromator monochromator2617 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1Rint = 0.042
profile data from ω–scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 1816
Tmin = 0.984, Tmax = 0.999k = 88
16554 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.664P]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max = 0.005
2987 reflectionsΔρmax = 0.39 e Å3
204 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61512 (6)0.04824 (12)0.04192 (6)0.0222 (2)
O40.63888 (6)0.60878 (12)0.15264 (6)0.0221 (2)
O3140.64113 (7)0.68423 (13)0.66556 (6)0.0260 (2)
O30.61112 (8)0.10549 (13)0.30685 (7)0.0281 (2)
N30.63425 (8)0.44104 (15)0.31133 (7)0.0206 (2)
H30.6347 (12)0.541 (3)0.2725 (12)0.034 (4)*
C20.62017 (9)0.08077 (18)0.13108 (8)0.0207 (2)
H20.61930.03160.16810.025*
C30.62644 (8)0.26035 (17)0.17274 (8)0.0196 (2)
C40.63203 (8)0.43834 (17)0.12051 (8)0.0187 (2)
C4A0.62683 (8)0.40077 (17)0.02284 (8)0.0192 (2)
C50.62976 (9)0.55604 (18)0.03704 (9)0.0219 (2)
H50.63820.68810.01360.026*
C60.62051 (9)0.51790 (19)0.12981 (9)0.0239 (3)
H60.62330.62350.16970.029*
C70.60702 (9)0.32347 (19)0.16527 (9)0.0241 (3)
H70.59930.29870.22970.029*
C80.60487 (9)0.16788 (18)0.10756 (9)0.0233 (3)
H80.59610.03610.13140.028*
C8A0.61592 (8)0.20886 (17)0.01329 (8)0.0199 (2)
C310.62381 (9)0.25962 (17)0.27073 (9)0.0206 (2)
C3110.63093 (8)0.49421 (17)0.40033 (8)0.0194 (2)
C3120.64385 (9)0.36073 (18)0.47503 (8)0.0218 (2)
H3120.65150.22370.46650.026*
C3130.64547 (9)0.42952 (18)0.56178 (9)0.0221 (2)
H3130.65420.33850.61250.027*
C3140.63439 (9)0.63048 (18)0.57565 (8)0.0207 (2)
C3150.61990 (9)0.76285 (17)0.50058 (8)0.0215 (2)
H3150.61100.89960.50860.026*
C3160.61854 (9)0.69445 (17)0.41378 (8)0.0208 (2)
H3160.60900.78540.36290.025*
C3170.62986 (11)0.88959 (19)0.67957 (9)0.0273 (3)
H31A0.63890.91180.74660.041*
H31B0.55940.93380.63210.041*
H31C0.68350.96430.66960.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0260 (4)0.0173 (4)0.0241 (4)0.0006 (3)0.0119 (3)0.0015 (3)
O40.0272 (4)0.0173 (4)0.0224 (4)0.0011 (3)0.0116 (3)0.0010 (3)
O3140.0354 (5)0.0222 (4)0.0223 (4)0.0018 (4)0.0148 (4)0.0009 (3)
O30.0406 (5)0.0187 (4)0.0294 (5)0.0028 (4)0.0195 (4)0.0016 (3)
N30.0246 (5)0.0176 (5)0.0194 (5)0.0011 (4)0.0097 (4)0.0011 (4)
C20.0205 (5)0.0191 (5)0.0222 (5)0.0002 (4)0.0092 (4)0.0010 (4)
C30.0186 (5)0.0182 (5)0.0208 (5)0.0003 (4)0.0077 (4)0.0007 (4)
C40.0158 (5)0.0180 (5)0.0205 (5)0.0001 (4)0.0065 (4)0.0002 (4)
C4A0.0166 (5)0.0198 (5)0.0206 (5)0.0007 (4)0.0077 (4)0.0000 (4)
C50.0211 (5)0.0204 (5)0.0242 (5)0.0006 (4)0.0100 (4)0.0008 (4)
C60.0234 (5)0.0251 (6)0.0240 (6)0.0016 (5)0.0114 (5)0.0033 (5)
C70.0224 (5)0.0301 (7)0.0209 (5)0.0009 (5)0.0106 (4)0.0019 (5)
C80.0210 (5)0.0241 (6)0.0245 (6)0.0003 (4)0.0100 (4)0.0039 (5)
C8A0.0170 (5)0.0196 (5)0.0227 (5)0.0003 (4)0.0084 (4)0.0002 (4)
C310.0192 (5)0.0194 (5)0.0222 (5)0.0001 (4)0.0084 (4)0.0008 (4)
C3110.0184 (5)0.0203 (5)0.0187 (5)0.0014 (4)0.0077 (4)0.0004 (4)
C3120.0223 (5)0.0187 (5)0.0231 (6)0.0004 (4)0.0089 (4)0.0017 (4)
C3130.0236 (6)0.0207 (6)0.0218 (5)0.0001 (4)0.0100 (4)0.0041 (4)
C3140.0195 (5)0.0230 (6)0.0193 (5)0.0011 (4)0.0085 (4)0.0001 (4)
C3150.0219 (5)0.0189 (5)0.0226 (5)0.0008 (4)0.0088 (4)0.0002 (4)
C3160.0217 (5)0.0189 (5)0.0201 (5)0.0005 (4)0.0077 (4)0.0033 (4)
C3170.0366 (7)0.0231 (6)0.0255 (6)0.0020 (5)0.0166 (5)0.0013 (5)
Geometric parameters (Å, º) top
O1—C21.3420 (14)C6—H60.9500
O1—C8A1.3767 (15)C7—C81.3797 (19)
O4—C41.2399 (16)C7—H70.9500
O314—C3141.3747 (14)C8—C8A1.3969 (16)
O314—C3171.4266 (18)C8—H80.9500
O3—C311.2293 (16)C311—C3161.3941 (19)
N3—C311.3528 (17)C311—C3121.3971 (16)
N3—C3111.4201 (15)C312—C3131.3881 (17)
N3—H30.901 (17)C312—H3120.9500
C2—C31.3553 (18)C313—C3141.3967 (19)
C2—H20.9500C313—H3130.9500
C3—C41.4645 (17)C314—C3151.3916 (17)
C3—C311.5055 (16)C315—C3161.3894 (16)
C4—C4A1.4742 (16)C315—H3150.9500
C4A—C8A1.3921 (18)C316—H3160.9500
C4A—C51.4031 (17)C317—H31A0.9800
C5—C61.3799 (17)C317—H31B0.9800
C5—H50.9500C317—H31C0.9800
C6—C71.403 (2)
C2—O1—C8A118.29 (10)O1—C8A—C8116.09 (11)
C314—O314—C317116.34 (9)C4A—C8A—C8122.10 (11)
C31—N3—C311128.37 (10)O3—C31—N3125.15 (11)
C31—N3—H3114.6 (10)O3—C31—C3121.16 (11)
C311—N3—H3116.4 (10)N3—C31—C3113.68 (10)
O1—C2—C3125.53 (11)C316—C311—C312119.31 (11)
O1—C2—H2117.2C316—C311—N3116.50 (10)
C3—C2—H2117.2C312—C311—N3124.13 (11)
C2—C3—C4119.58 (11)C313—C312—C311119.62 (12)
C2—C3—C31115.67 (10)C313—C312—H312120.2
C4—C3—C31124.72 (10)C311—C312—H312120.2
O4—C4—C3124.51 (11)C312—C313—C314121.00 (11)
O4—C4—C4A121.10 (10)C312—C313—H313119.5
C3—C4—C4A114.37 (10)C314—C313—H313119.5
C8A—C4A—C5118.31 (11)O314—C314—C315124.24 (12)
C8A—C4A—C4120.31 (10)O314—C314—C313116.45 (10)
C5—C4A—C4121.36 (11)C315—C314—C313119.30 (11)
C6—C5—C4A120.33 (11)C316—C315—C314119.81 (12)
C6—C5—H5119.8C316—C315—H315120.1
C4A—C5—H5119.8C314—C315—H315120.1
C5—C6—C7120.14 (11)C315—C316—C311120.94 (11)
C5—C6—H6119.9C315—C316—H316119.5
C7—C6—H6119.9C311—C316—H316119.5
C8—C7—C6120.71 (12)O314—C317—H31A109.5
C8—C7—H7119.6O314—C317—H31B109.5
C6—C7—H7119.6H31A—C317—H31B109.5
C7—C8—C8A118.38 (12)O314—C317—H31C109.5
C7—C8—H8120.8H31A—C317—H31C109.5
C8A—C8—H8120.8H31B—C317—H31C109.5
O1—C8A—C4A121.81 (11)
C8A—O1—C2—C30.22 (17)C7—C8—C8A—O1178.88 (10)
O1—C2—C3—C42.25 (18)C7—C8—C8A—C4A1.28 (17)
O1—C2—C3—C31176.01 (10)C311—N3—C31—O31.40 (19)
C2—C3—C4—O4179.33 (11)C311—N3—C31—C3177.21 (10)
C31—C3—C4—O42.58 (18)C2—C3—C31—O33.68 (17)
C2—C3—C4—C4A1.79 (15)C4—C3—C31—O3174.48 (11)
C31—C3—C4—C4A176.31 (10)C2—C3—C31—N3177.65 (10)
O4—C4—C4A—C8A178.03 (10)C4—C3—C31—N34.19 (16)
C3—C4—C4A—C8A0.89 (15)C31—N3—C311—C316165.10 (11)
O4—C4—C4A—C50.21 (17)C31—N3—C311—C31217.83 (18)
C3—C4—C4A—C5179.13 (10)C316—C311—C312—C3130.79 (17)
C8A—C4A—C5—C60.89 (17)N3—C311—C312—C313176.21 (10)
C4—C4A—C5—C6177.38 (10)C311—C312—C313—C3140.02 (17)
C4A—C5—C6—C70.64 (18)C317—O314—C314—C3151.46 (16)
C5—C6—C7—C81.26 (18)C317—O314—C314—C313179.96 (11)
C6—C7—C8—C8A0.31 (17)C312—C313—C314—O314177.58 (10)
C2—O1—C8A—C4A3.11 (15)C312—C313—C314—C3151.00 (17)
C2—O1—C8A—C8176.72 (9)O314—C314—C315—C316177.30 (10)
C5—C4A—C8A—O1178.30 (10)C313—C314—C315—C3161.16 (17)
C4—C4A—C8A—O13.41 (16)C314—C315—C316—C3110.36 (17)
C5—C4A—C8A—C81.88 (16)C312—C311—C316—C3150.63 (17)
C4—C4A—C8A—C8176.42 (10)N3—C311—C316—C315176.60 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.901 (17)1.903 (16)2.6919 (13)145.0 (15)
C312—H312···O30.952.372.9441 (17)119
C2—H2···O4i0.952.473.212 (3)134
C316—H316···O3ii0.952.333.201 (2)152
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
(4d) N-(4-Methylphenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C17H13NO3Z = 2
Mr = 279.28F(000) = 292
Triclinic, P1Dx = 1.418 Mg m3
a = 6.6106 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 7.0143 (5) ÅCell parameters from 8940 reflections
c = 15.3749 (11) Åθ = 3.2–27.5°
α = 91.444 (6)°µ = 0.10 mm1
β = 95.238 (6)°T = 100 K
γ = 112.551 (8)°Plate, colourless
V = 654.25 (9) Å30.16 × 0.09 × 0.02 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
2986 independent reflections
Radiation source: Sealed Tube2645 reflections with I > 2σ(I)
Mirrors monochromatorRint = 0.035
Detector resolution: 28.5714 pixels mm-1θmax = 27.6°, θmin = 3.2°
profile data from ω–scansh = 88
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
k = 98
Tmin = 0.985, Tmax = 0.998l = 1919
9400 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0687P)2 + 0.1454P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.004
2986 reflectionsΔρmax = 0.33 e Å3
196 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82225 (13)0.28691 (13)0.53040 (5)0.0234 (2)
O30.75229 (13)0.36263 (14)0.27108 (6)0.0285 (2)
O40.21316 (13)0.23497 (13)0.42176 (5)0.0245 (2)
N30.38310 (16)0.28969 (15)0.26610 (6)0.0217 (2)
H30.282 (3)0.276 (3)0.3036 (11)0.043 (5)*
C20.78092 (18)0.30515 (17)0.44464 (8)0.0220 (2)
H20.89850.32860.40970.032 (4)*
C30.58640 (17)0.29301 (16)0.40379 (7)0.0197 (2)
C40.39777 (18)0.24920 (16)0.45362 (7)0.0198 (2)
C4A0.44234 (18)0.22256 (16)0.54690 (7)0.0197 (2)
C50.27553 (19)0.17259 (18)0.60293 (8)0.0230 (2)
H50.12980.15280.58030.028*
C60.3225 (2)0.15213 (19)0.69049 (8)0.0264 (3)
H60.20860.11600.72790.032*
C70.5381 (2)0.18446 (19)0.72459 (8)0.0274 (3)
H70.56970.17340.78530.033*
C80.7048 (2)0.23214 (18)0.67093 (8)0.0256 (3)
H80.85090.25410.69390.031*
C8A0.65314 (18)0.24727 (17)0.58227 (8)0.0210 (2)
C3110.32431 (18)0.28817 (17)0.17506 (7)0.0222 (2)
C3120.4436 (2)0.24849 (19)0.11163 (8)0.0271 (3)
H3120.57590.22890.12840.032*
C3130.3675 (2)0.23785 (19)0.02375 (8)0.0296 (3)
H3130.45020.21180.01910.036*
C3140.1735 (2)0.26422 (18)0.00357 (8)0.0273 (3)
C3150.0570 (2)0.30296 (19)0.06084 (8)0.0263 (3)
H3150.07620.32080.04400.032*
C3160.13057 (19)0.31625 (18)0.14920 (8)0.0241 (3)
H3160.04890.34450.19190.029*
C3170.0915 (2)0.2486 (2)0.09925 (8)0.0335 (3)
H31C0.04320.27660.10570.050*
H31D0.05980.10900.12440.050*
H31E0.20450.35000.12990.050*
C310.58315 (18)0.31961 (17)0.30716 (8)0.0216 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0174 (4)0.0264 (4)0.0264 (4)0.0091 (3)0.0004 (3)0.0004 (3)
O30.0202 (4)0.0359 (5)0.0297 (5)0.0098 (4)0.0080 (3)0.0047 (4)
O40.0174 (4)0.0332 (5)0.0252 (4)0.0120 (3)0.0028 (3)0.0048 (3)
N30.0194 (5)0.0256 (5)0.0213 (5)0.0096 (4)0.0042 (4)0.0033 (4)
C20.0188 (5)0.0203 (5)0.0261 (6)0.0068 (4)0.0027 (4)0.0001 (4)
C30.0182 (5)0.0166 (5)0.0245 (6)0.0069 (4)0.0033 (4)0.0010 (4)
C40.0178 (5)0.0172 (5)0.0249 (5)0.0073 (4)0.0021 (4)0.0013 (4)
C4A0.0201 (5)0.0168 (5)0.0226 (5)0.0080 (4)0.0011 (4)0.0001 (4)
C50.0222 (5)0.0221 (5)0.0264 (6)0.0104 (4)0.0031 (4)0.0011 (4)
C60.0296 (6)0.0267 (6)0.0254 (6)0.0129 (5)0.0060 (5)0.0014 (4)
C70.0343 (6)0.0268 (6)0.0221 (5)0.0140 (5)0.0007 (5)0.0006 (4)
C80.0251 (6)0.0250 (6)0.0267 (6)0.0114 (5)0.0042 (4)0.0026 (4)
C8A0.0202 (5)0.0175 (5)0.0257 (6)0.0078 (4)0.0020 (4)0.0004 (4)
C3110.0224 (5)0.0203 (5)0.0218 (5)0.0058 (4)0.0036 (4)0.0020 (4)
C3120.0245 (6)0.0278 (6)0.0285 (6)0.0091 (5)0.0059 (4)0.0011 (5)
C3130.0313 (6)0.0297 (6)0.0253 (6)0.0077 (5)0.0102 (5)0.0003 (5)
C3140.0318 (6)0.0217 (5)0.0228 (6)0.0040 (5)0.0037 (5)0.0019 (4)
C3150.0269 (6)0.0256 (6)0.0253 (6)0.0093 (5)0.0012 (4)0.0025 (4)
C3160.0245 (6)0.0252 (6)0.0233 (6)0.0099 (5)0.0044 (4)0.0020 (4)
C3170.0425 (7)0.0301 (6)0.0224 (6)0.0083 (6)0.0029 (5)0.0009 (5)
C310.0201 (5)0.0198 (5)0.0257 (6)0.0078 (4)0.0047 (4)0.0026 (4)
Geometric parameters (Å, º) top
O1—C21.3414 (14)C7—C81.3799 (18)
O1—C8A1.3779 (14)C7—H70.9500
O3—C311.2296 (14)C8—C8A1.3914 (16)
O4—C41.2386 (13)C8—H80.9500
N3—C311.3488 (14)C311—C3161.3935 (16)
N3—C3111.4168 (14)C311—C3121.3948 (16)
N3—H30.900 (18)C312—C3131.3878 (17)
C2—C31.3494 (15)C312—H3120.9500
C2—H20.9500C313—C3141.3939 (18)
C3—C41.4590 (15)C313—H3130.9500
C3—C311.5013 (16)C314—C3151.3907 (17)
C4—C4A1.4688 (15)C314—C3171.5068 (16)
C4A—C8A1.3926 (15)C315—C3161.3889 (16)
C4A—C51.4047 (16)C315—H3150.9500
C5—C61.3773 (16)C316—H3160.9500
C5—H50.9500C317—H31C0.9800
C6—C71.4023 (17)C317—H31D0.9800
C6—H60.9500C317—H31E0.9800
C2—O1—C8A118.52 (9)O1—C8A—C4A121.24 (10)
C31—N3—C311127.52 (10)C8—C8A—C4A122.38 (11)
C31—N3—H3112.7 (11)C316—C311—C312119.49 (11)
C311—N3—H3119.7 (11)C316—C311—N3117.29 (10)
O1—C2—C3125.51 (10)C312—C311—N3123.11 (10)
O1—C2—H2117.2C313—C312—C311119.44 (11)
C3—C2—H2117.2C313—C312—H312120.3
C2—C3—C4119.57 (10)C311—C312—H312120.3
C2—C3—C31115.13 (10)C312—C313—C314122.04 (11)
C4—C3—C31125.27 (10)C312—C313—H313119.0
O4—C4—C3124.11 (10)C314—C313—H313119.0
O4—C4—C4A121.31 (10)C315—C314—C313117.49 (11)
C3—C4—C4A114.58 (9)C315—C314—C317121.24 (12)
C8A—C4A—C5118.12 (10)C313—C314—C317121.26 (12)
C8A—C4A—C4120.48 (10)C316—C315—C314121.62 (11)
C5—C4A—C4121.39 (10)C316—C315—H315119.2
C6—C5—C4A120.25 (11)C314—C315—H315119.2
C6—C5—H5119.9C315—C316—C311119.91 (11)
C4A—C5—H5119.9C315—C316—H316120.0
C5—C6—C7120.20 (11)C311—C316—H316120.0
C5—C6—H6119.9C314—C317—H31C109.5
C7—C6—H6119.9C314—C317—H31D109.5
C8—C7—C6120.76 (11)H31C—C317—H31D109.5
C8—C7—H7119.6C314—C317—H31E109.5
C6—C7—H7119.6H31C—C317—H31E109.5
C7—C8—C8A118.23 (11)H31D—C317—H31E109.5
C7—C8—H8120.9O3—C31—N3124.93 (11)
C8A—C8—H8120.9O3—C31—C3120.73 (10)
O1—C8A—C8116.38 (10)N3—C31—C3114.33 (9)
C8A—O1—C2—C31.72 (17)C4—C4A—C8A—O13.26 (16)
O1—C2—C3—C42.37 (17)C5—C4A—C8A—C82.55 (17)
O1—C2—C3—C31179.75 (9)C4—C4A—C8A—C8177.21 (10)
C2—C3—C4—O4179.91 (10)C31—N3—C311—C316161.26 (11)
C31—C3—C4—O42.27 (18)C31—N3—C311—C31222.52 (18)
C2—C3—C4—C4A0.18 (15)C316—C311—C312—C3130.07 (18)
C31—C3—C4—C4A177.83 (9)N3—C311—C312—C313176.21 (10)
O4—C4—C4A—C8A177.42 (10)C311—C312—C313—C3140.46 (19)
C3—C4—C4A—C8A2.48 (15)C312—C313—C314—C3150.26 (19)
O4—C4—C4A—C52.32 (17)C312—C313—C314—C317178.96 (11)
C3—C4—C4A—C5177.77 (10)C313—C314—C315—C3160.35 (18)
C8A—C4A—C5—C60.93 (17)C317—C314—C315—C316179.57 (11)
C4—C4A—C5—C6178.83 (10)C314—C315—C316—C3110.73 (18)
C4A—C5—C6—C71.07 (18)C312—C311—C316—C3150.51 (18)
C5—C6—C7—C81.57 (18)N3—C311—C316—C315175.85 (10)
C6—C7—C8—C8A0.02 (18)C311—N3—C31—O34.35 (19)
C2—O1—C8A—C8179.25 (9)C311—N3—C31—C3174.78 (10)
C2—O1—C8A—C4A1.19 (15)C2—C3—C31—O34.51 (16)
C7—C8—C8A—O1177.48 (10)C4—C3—C31—O3177.76 (10)
C7—C8—C8A—C4A2.07 (17)C2—C3—C31—N3174.67 (10)
C5—C4A—C8A—O1176.98 (10)C4—C3—C31—N33.07 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O40.900 (18)1.916 (18)2.7098 (13)146.1 (15)
C312—H312···O30.952.372.9240 (16)116
C2—H2···O4i0.952.403.1280 (14)133
C316—H316···O3ii0.952.443.3644 (14)164
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
(4e) N-(4-Hydroxyphenyl)-4-oxo-4H-chromene-3-carboxamide top
Crystal data top
C16H11NO4Z = 4
Mr = 281.26F(000) = 584
Triclinic, P1Dx = 1.494 Mg m3
a = 7.0756 (5) ÅMo Kα radiation, λ = 0.71075 Å
b = 12.5125 (9) ÅCell parameters from 14545 reflections
c = 14.2944 (10) Åθ = 2.9–27.5°
α = 86.267 (8)°µ = 0.11 mm1
β = 83.839 (8)°T = 100 K
γ = 84.588 (8)°Block, colourless
V = 1250.68 (16) Å30.14 × 0.04 × 0.04 mm
Data collection top
Rigaku Saturn724+ (2x2 bin mode)
diffractometer
5627 measured reflections
Radiation source: Sealed Tube5627 independent reflections
Mirrors monochromator4343 reflections with I > 2σ(I)
Detector resolution: 28.5714 pixels mm-1θmax = 27.6°, θmin = 2.9°
profile data from ω–scansh = 99
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
k = 1616
Tmin = 0.985, Tmax = 0.996l = 418
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.085H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.252 w = 1/[σ2(Fo2) + (0.1127P)2 + 0.9725P]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
5627 reflectionsΔρmax = 0.41 e Å3
392 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component twin. 2-axis (0 0 1) [-1 0 5], Angle () [] = 3.22 Deg, Freq = 48 ************* (-1.000 0.000 0.000) (h1) (h2) Nr Overlap = 1085 (0.000 - 1.000 0.000) * (k1) = (k2) BASF = 0.40 (-0.412 - 0.127 1.000) (l1) (l2) DEL-R =-0.068

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.8738 (4)0.0689 (2)0.21765 (17)0.0295 (6)
O130.7750 (4)0.0154 (2)0.06141 (17)0.0339 (6)
O140.5168 (4)0.1945 (2)0.14104 (17)0.0311 (6)
O1140.4248 (4)0.2817 (2)0.40213 (18)0.0379 (7)
H1140.353 (8)0.344 (5)0.412 (4)0.057*
N130.5991 (4)0.1441 (2)0.0370 (2)0.0270 (6)
H130.546 (6)0.188 (3)0.011 (3)0.032*
C120.8371 (5)0.0430 (3)0.1277 (2)0.0280 (7)
H120.89830.08830.08200.034*
C130.7215 (5)0.0413 (3)0.0963 (2)0.0254 (7)
C140.6239 (5)0.1147 (3)0.1638 (2)0.0258 (7)
C14A0.6635 (5)0.0847 (3)0.2619 (2)0.0259 (7)
C150.5814 (5)0.1460 (3)0.3350 (3)0.0311 (8)
H150.49980.20900.32120.037*
C160.6177 (6)0.1161 (3)0.4271 (3)0.0342 (8)
H160.56020.15780.47610.041*
C170.7399 (6)0.0235 (3)0.4478 (3)0.0360 (8)
H170.76440.00310.51110.043*
C180.8250 (5)0.0382 (3)0.3772 (3)0.0330 (8)
H180.90830.10050.39100.040*
C18A0.7842 (5)0.0058 (3)0.2852 (2)0.0274 (7)
C1110.5570 (5)0.1758 (3)0.1308 (2)0.0252 (7)
C1120.6421 (5)0.1236 (3)0.2077 (2)0.0282 (7)
H1120.73150.06260.19850.034*
C1130.5955 (5)0.1611 (3)0.2966 (2)0.0294 (7)
H1130.65440.12590.34820.035*
C1140.4642 (5)0.2494 (3)0.3121 (2)0.0288 (7)
C1150.3799 (5)0.3017 (3)0.2363 (3)0.0295 (8)
H1150.29100.36280.24580.035*
C1160.4259 (5)0.2644 (3)0.1463 (2)0.0288 (7)
H1160.36690.29990.09480.035*
C1310.7013 (5)0.0543 (3)0.0076 (2)0.0256 (7)
O210.3577 (4)0.4196 (2)0.68202 (17)0.0291 (6)
O230.2438 (4)0.4764 (2)0.40951 (18)0.0340 (6)
O240.0699 (4)0.7076 (2)0.61185 (18)0.0329 (6)
O2140.0597 (4)0.7840 (2)0.07027 (17)0.0335 (6)
H2140.127 (7)0.846 (4)0.061 (4)0.050*
N230.1222 (4)0.6485 (2)0.4321 (2)0.0271 (6)
H230.083 (6)0.697 (4)0.476 (3)0.033*
C220.3224 (5)0.4471 (3)0.5933 (2)0.0279 (7)
H220.36920.39770.54670.033*
C230.2255 (5)0.5396 (3)0.5643 (2)0.0251 (7)
C240.1521 (5)0.6191 (3)0.6325 (2)0.0269 (7)
C24A0.1811 (5)0.5846 (3)0.7308 (2)0.0265 (7)
C250.1072 (5)0.6482 (3)0.8058 (2)0.0292 (7)
H250.03770.71540.79340.035*
C260.1346 (6)0.6140 (3)0.8973 (3)0.0339 (8)
H260.08330.65740.94760.041*
C270.2386 (6)0.5147 (3)0.9163 (3)0.0358 (9)
H270.25670.49130.97960.043*
C280.3146 (6)0.4509 (3)0.8432 (3)0.0310 (8)
H280.38660.38440.85520.037*
C28A0.2824 (5)0.4874 (3)0.7521 (2)0.0269 (7)
C2110.0775 (5)0.6804 (3)0.3389 (2)0.0267 (7)
C2120.1618 (5)0.6283 (3)0.2592 (2)0.0282 (7)
H2120.25250.56800.26580.034*
C2130.1131 (5)0.6645 (3)0.1709 (3)0.0310 (8)
H2130.16990.62840.11700.037*
C2140.0177 (5)0.7531 (3)0.1599 (2)0.0273 (7)
C2150.0999 (5)0.8059 (3)0.2387 (2)0.0281 (7)
H2150.18870.86700.23170.034*
C2160.0524 (5)0.7694 (3)0.3276 (2)0.0279 (7)
H2160.10930.80570.38130.033*
C2310.1984 (5)0.5522 (3)0.4620 (2)0.0257 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0371 (14)0.0262 (13)0.0243 (12)0.0048 (10)0.0052 (10)0.0025 (10)
O130.0470 (16)0.0281 (14)0.0255 (12)0.0065 (11)0.0081 (11)0.0009 (10)
O140.0372 (14)0.0265 (13)0.0289 (12)0.0033 (11)0.0047 (10)0.0017 (10)
O1140.0536 (17)0.0314 (15)0.0277 (13)0.0109 (12)0.0098 (12)0.0072 (11)
N130.0329 (15)0.0240 (15)0.0234 (13)0.0013 (12)0.0042 (11)0.0009 (11)
C120.0331 (18)0.0278 (18)0.0233 (16)0.0015 (14)0.0053 (13)0.0008 (13)
C130.0286 (16)0.0230 (16)0.0253 (16)0.0045 (13)0.0052 (13)0.0004 (13)
C140.0253 (16)0.0244 (17)0.0273 (16)0.0035 (13)0.0028 (13)0.0024 (13)
C14A0.0292 (17)0.0231 (17)0.0254 (16)0.0047 (13)0.0022 (13)0.0001 (13)
C150.0351 (19)0.0292 (19)0.0286 (17)0.0024 (15)0.0032 (14)0.0005 (14)
C160.041 (2)0.035 (2)0.0261 (17)0.0012 (16)0.0059 (15)0.0024 (15)
C170.045 (2)0.039 (2)0.0234 (16)0.0030 (17)0.0032 (15)0.0015 (15)
C180.037 (2)0.033 (2)0.0286 (17)0.0003 (15)0.0015 (15)0.0049 (15)
C18A0.0289 (17)0.0305 (18)0.0231 (15)0.0050 (14)0.0048 (13)0.0033 (13)
C1110.0290 (17)0.0232 (16)0.0240 (15)0.0033 (13)0.0029 (13)0.0034 (13)
C1120.0320 (18)0.0245 (17)0.0281 (16)0.0012 (14)0.0050 (13)0.0032 (13)
C1130.0398 (19)0.0228 (17)0.0259 (16)0.0016 (14)0.0096 (14)0.0006 (13)
C1140.0355 (18)0.0255 (17)0.0258 (16)0.0010 (14)0.0038 (14)0.0053 (13)
C1150.0342 (18)0.0230 (17)0.0313 (18)0.0040 (14)0.0077 (14)0.0039 (14)
C1160.0353 (18)0.0248 (17)0.0266 (16)0.0008 (14)0.0072 (14)0.0022 (13)
C1310.0300 (17)0.0216 (16)0.0253 (16)0.0020 (13)0.0045 (13)0.0003 (13)
O210.0383 (14)0.0233 (12)0.0252 (12)0.0029 (10)0.0067 (10)0.0012 (10)
O230.0462 (15)0.0276 (13)0.0275 (12)0.0057 (11)0.0067 (11)0.0044 (10)
O240.0414 (15)0.0269 (13)0.0299 (13)0.0050 (11)0.0084 (11)0.0028 (10)
O2140.0446 (15)0.0296 (14)0.0250 (12)0.0064 (11)0.0081 (11)0.0007 (10)
N230.0357 (16)0.0221 (15)0.0238 (14)0.0006 (12)0.0068 (12)0.0009 (11)
C220.0329 (18)0.0267 (18)0.0249 (16)0.0022 (14)0.0055 (13)0.0031 (14)
C230.0281 (16)0.0226 (16)0.0248 (15)0.0009 (13)0.0047 (13)0.0030 (13)
C240.0298 (17)0.0245 (17)0.0270 (16)0.0016 (13)0.0065 (13)0.0005 (13)
C24A0.0296 (17)0.0243 (17)0.0261 (16)0.0035 (13)0.0035 (13)0.0015 (13)
C250.0345 (18)0.0258 (18)0.0276 (17)0.0008 (14)0.0055 (14)0.0027 (14)
C260.043 (2)0.0299 (19)0.0290 (18)0.0007 (16)0.0042 (15)0.0051 (15)
C270.050 (2)0.034 (2)0.0243 (17)0.0014 (17)0.0085 (16)0.0007 (15)
C280.041 (2)0.0238 (17)0.0287 (17)0.0023 (15)0.0056 (15)0.0010 (14)
C28A0.0318 (17)0.0247 (17)0.0247 (16)0.0036 (14)0.0038 (13)0.0027 (13)
C2110.0302 (17)0.0250 (17)0.0253 (16)0.0033 (13)0.0052 (13)0.0005 (13)
C2120.0314 (17)0.0239 (17)0.0285 (17)0.0038 (13)0.0046 (14)0.0017 (14)
C2130.0369 (19)0.0283 (18)0.0270 (17)0.0025 (15)0.0021 (14)0.0042 (14)
C2140.0312 (17)0.0262 (17)0.0246 (16)0.0014 (14)0.0066 (13)0.0018 (13)
C2150.0305 (17)0.0229 (17)0.0306 (17)0.0006 (13)0.0054 (14)0.0005 (13)
C2160.0328 (18)0.0247 (17)0.0263 (16)0.0014 (14)0.0041 (13)0.0026 (13)
C2310.0292 (17)0.0243 (17)0.0236 (15)0.0003 (13)0.0046 (12)0.0022 (13)
Geometric parameters (Å, º) top
O11—C121.339 (4)O21—C221.336 (4)
O11—C18A1.377 (4)O21—C28A1.384 (4)
O13—C1311.241 (4)O23—C2311.244 (4)
O14—C141.235 (4)O24—C241.234 (4)
O114—C1141.366 (4)O214—C2141.369 (4)
O114—H1140.91 (6)O214—H2140.88 (5)
N13—C1311.343 (4)N23—C2311.337 (4)
N13—C1111.416 (4)N23—C2111.424 (4)
N13—H130.94 (4)N23—H230.90 (4)
C12—C131.343 (5)C22—C231.353 (5)
C12—H120.9500C22—H220.9500
C13—C141.469 (5)C23—C241.459 (5)
C13—C1311.495 (5)C23—C2311.492 (5)
C14—C14A1.466 (5)C24—C24A1.473 (5)
C14A—C18A1.389 (5)C24A—C28A1.386 (5)
C14A—C151.401 (5)C24A—C251.403 (5)
C15—C161.383 (5)C25—C261.377 (5)
C15—H150.9500C25—H250.9500
C16—C171.406 (6)C26—C271.409 (5)
C16—H160.9500C26—H260.9500
C17—C181.385 (5)C27—C281.388 (5)
C17—H170.9500C27—H270.9500
C18—C18A1.394 (5)C28—C28A1.387 (5)
C18—H180.9500C28—H280.9500
C111—C1161.390 (5)C211—C2161.388 (5)
C111—C1121.405 (5)C211—C2121.399 (5)
C112—C1131.379 (5)C212—C2131.381 (5)
C112—H1120.9500C212—H2120.9500
C113—C1141.388 (5)C213—C2141.387 (5)
C113—H1130.9500C213—H2130.9500
C114—C1151.389 (5)C214—C2151.388 (5)
C115—C1161.392 (5)C215—C2161.388 (5)
C115—H1150.9500C215—H2150.9500
C116—H1160.9500C216—H2160.9500
C12—O11—C18A118.3 (3)C22—O21—C28A118.5 (3)
C114—O114—H114119 (3)C214—O214—H214118 (3)
C131—N13—C111127.5 (3)C231—N23—C211126.8 (3)
C131—N13—H13114 (3)C231—N23—H23118 (3)
C111—N13—H13118 (3)C211—N23—H23115 (3)
O11—C12—C13125.8 (3)O21—C22—C23125.3 (3)
O11—C12—H12117.1O21—C22—H22117.3
C13—C12—H12117.1C23—C22—H22117.3
C12—C13—C14119.6 (3)C22—C23—C24119.8 (3)
C12—C13—C131116.6 (3)C22—C23—C231116.2 (3)
C14—C13—C131123.8 (3)C24—C23—C231124.0 (3)
O14—C14—C14A122.2 (3)O24—C24—C23124.3 (3)
O14—C14—C13123.7 (3)O24—C24—C24A121.5 (3)
C14A—C14—C13114.0 (3)C23—C24—C24A114.2 (3)
C18A—C14A—C15117.8 (3)C28A—C24A—C25117.8 (3)
C18A—C14A—C14120.9 (3)C28A—C24A—C24120.7 (3)
C15—C14A—C14121.3 (3)C25—C24A—C24121.6 (3)
C16—C15—C14A120.8 (4)C26—C25—C24A120.6 (3)
C16—C15—H15119.6C26—C25—H25119.7
C14A—C15—H15119.6C24A—C25—H25119.7
C15—C16—C17119.7 (3)C25—C26—C27120.1 (3)
C15—C16—H16120.2C25—C26—H26120.0
C17—C16—H16120.2C27—C26—H26120.0
C18—C17—C16121.0 (3)C28—C27—C26120.3 (3)
C18—C17—H17119.5C28—C27—H27119.8
C16—C17—H17119.5C26—C27—H27119.8
C17—C18—C18A117.7 (4)C28A—C28—C27118.0 (3)
C17—C18—H18121.1C28A—C28—H28121.0
C18A—C18—H18121.1C27—C28—H28121.0
O11—C18A—C14A121.3 (3)O21—C28A—C24A121.2 (3)
O11—C18A—C18115.6 (3)O21—C28A—C28115.6 (3)
C14A—C18A—C18123.1 (3)C24A—C28A—C28123.2 (3)
C116—C111—C112118.9 (3)C216—C211—C212119.1 (3)
C116—C111—N13117.5 (3)C216—C211—N23117.7 (3)
C112—C111—N13123.5 (3)C212—C211—N23123.2 (3)
C113—C112—C111119.7 (3)C213—C212—C211120.0 (3)
C113—C112—H112120.1C213—C212—H212120.0
C111—C112—H112120.1C211—C212—H212120.0
C112—C113—C114121.3 (3)C212—C213—C214120.8 (3)
C112—C113—H113119.3C212—C213—H213119.6
C114—C113—H113119.3C214—C213—H213119.6
O114—C114—C113117.9 (3)O214—C214—C213117.5 (3)
O114—C114—C115122.8 (3)O214—C214—C215123.1 (3)
C113—C114—C115119.3 (3)C213—C214—C215119.4 (3)
C114—C115—C116119.8 (3)C216—C215—C214120.0 (3)
C114—C115—H115120.1C216—C215—H215120.0
C116—C115—H115120.1C214—C215—H215120.0
C111—C116—C115120.9 (3)C215—C216—C211120.7 (3)
C111—C116—H116119.5C215—C216—H216119.7
C115—C116—H116119.5C211—C216—H216119.7
O13—C131—N13123.6 (3)O23—C231—N23123.3 (3)
O13—C131—C13120.5 (3)O23—C231—C23121.0 (3)
N13—C131—C13115.9 (3)N23—C231—C23115.6 (3)
C18A—O11—C12—C131.2 (5)C28A—O21—C22—C233.5 (5)
O11—C12—C13—C140.4 (6)O21—C22—C23—C240.6 (6)
O11—C12—C13—C131179.8 (3)O21—C22—C23—C231178.4 (3)
C12—C13—C14—O14179.3 (3)C22—C23—C24—O24176.5 (4)
C131—C13—C14—O140.5 (5)C231—C23—C24—O244.6 (6)
C12—C13—C14—C14A1.1 (5)C22—C23—C24—C24A4.4 (5)
C131—C13—C14—C14A179.2 (3)C231—C23—C24—C24A174.6 (3)
O14—C14—C14A—C18A179.8 (3)O24—C24—C24A—C28A176.6 (3)
C13—C14—C14A—C18A0.2 (5)C23—C24—C24A—C28A4.3 (5)
O14—C14—C14A—C150.2 (5)O24—C24—C24A—C253.7 (5)
C13—C14—C14A—C15179.9 (3)C23—C24—C24A—C25175.4 (3)
C18A—C14A—C15—C161.0 (5)C28A—C24A—C25—C260.3 (5)
C14—C14A—C15—C16179.1 (3)C24—C24A—C25—C26179.4 (3)
C14A—C15—C16—C170.6 (6)C24A—C25—C26—C270.4 (6)
C15—C16—C17—C180.1 (6)C25—C26—C27—C280.2 (6)
C16—C17—C18—C18A0.4 (6)C26—C27—C28—C28A0.9 (6)
C12—O11—C18A—C14A2.1 (5)C22—O21—C28A—C24A3.5 (5)
C12—O11—C18A—C18178.7 (3)C22—O21—C28A—C28176.2 (3)
C15—C14A—C18A—O11178.6 (3)C25—C24A—C28A—O21179.2 (3)
C14—C14A—C18A—O111.4 (5)C24—C24A—C28A—O210.5 (5)
C15—C14A—C18A—C180.6 (5)C25—C24A—C28A—C280.5 (5)
C14—C14A—C18A—C18179.4 (3)C24—C24A—C28A—C28179.8 (3)
C17—C18—C18A—O11179.3 (3)C27—C28—C28A—O21178.6 (3)
C17—C18—C18A—C14A0.1 (6)C27—C28—C28A—C24A1.1 (6)
C131—N13—C111—C116170.9 (3)C231—N23—C211—C216160.2 (3)
C131—N13—C111—C1129.9 (6)C231—N23—C211—C21221.6 (6)
C116—C111—C112—C1130.4 (5)C216—C211—C212—C2131.0 (5)
N13—C111—C112—C113178.8 (3)N23—C211—C212—C213179.2 (3)
C111—C112—C113—C1140.6 (6)C211—C212—C213—C2140.6 (6)
C112—C113—C114—O114179.8 (3)C212—C213—C214—O214179.6 (3)
C112—C113—C114—C1150.8 (6)C212—C213—C214—C2150.2 (6)
O114—C114—C115—C116179.8 (4)O214—C214—C215—C216179.2 (3)
C113—C114—C115—C1160.8 (6)C213—C214—C215—C2160.6 (5)
C112—C111—C116—C1150.5 (5)C214—C215—C216—C2110.2 (5)
N13—C111—C116—C115178.8 (3)C212—C211—C216—C2150.6 (5)
C114—C115—C116—C1110.7 (6)N23—C211—C216—C215178.9 (3)
C111—N13—C131—O130.1 (6)C211—N23—C231—O231.2 (6)
C111—N13—C131—C13179.5 (3)C211—N23—C231—C23178.4 (3)
C12—C13—C131—O136.3 (5)C22—C23—C231—O237.8 (5)
C14—C13—C131—O13173.9 (3)C24—C23—C231—O23171.1 (3)
C12—C13—C131—N13174.3 (3)C22—C23—C231—N23172.6 (3)
C14—C13—C131—N135.5 (5)C24—C23—C231—N238.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O140.94 (4)1.88 (4)2.693 (4)143 (4)
N23—H23···O240.90 (4)1.95 (4)2.698 (4)139 (4)
C112—H112···O130.952.232.833 (4)121
C212—H212···O230.952.282.845 (4)117
O114—H114···O230.91 (6)1.76 (6)2.647 (4)167 (5)
O214—H214···O13i0.88 (5)1.81 (5)2.668 (4)165 (5)
C16—H16···O114ii0.952.463.411 (5)174
C18—H18···O24iii0.952.563.481 (5)163
C22—H22···O1140.952.583.508 (4)166
C26—H26···O214iv0.952.513.454 (5)175
C28—H28···O14iv0.952.463.391 (5)165
Symmetry codes: (i) x1, y+1, z; (ii) x, y, z1; (iii) x+1, y1, z1; (iv) x, y, z+1.
Selected dihedral angles (°) top
θChr-Phe is the dihedral angle between the mean planes of the chromene and the phenyl ring. θChr-amide is the dihedral angle between the mean planes of the chromone ring and the plane defined by atoms O3, C31 and N3. θamide-Phe is the dihedral angle between the mean planes of the phenyl ring and the plane defined by atoms O3, C31 and N3. The suffices A and B for compound (2a) denote the polymeric forms. Basic Conf. denotes the primary shape given by the relative position of the aromatic rings around the carboxamide linkage.
CompoundθChr-PheθChr-amideθamide-PheBasic Conf.
(1)10.77 (4)4.31 (12)9.48 (12)Rotation
(2a mol1A11.64 (5)8.72 (14)20.35 (13)Rotation
(2a mol2A2.47 (5)1.75 (2)2.2 (2)Planar
(2a mol1B6.50 (18)15.0 (5)10.1 (6)Rotation
(2a mol2B10.52 (17)1.8 (6)12.27 (6)Rotation
(2b)35.96 (9)2.35 (4)33.6 (2)Rotation
(3a)15.61 (8)9.3 (3)11.7 (2)Bent
(3b) mol12.68 (10)2.0 (4)4.0 (4)Planar
(3b) mol210.31 (12)0.6 (4)10.42 (12)Rotation
(4a)11.48 (6)5.2 (5)6.5 (4)Rotation
(4b)4.90 (10)2.0 (4)2.9 (4)Planar
(4c)1.95 (7)5.7 (3)4.4 (3)Planar
(4d)22.88 (4)2.71 (8)23.90 (5)Rotation
(44e) mol13.58 (17)5.9 (2)9.5 (3)Rotation
(44e) mol210.02 (15)10.69 (2)19.8 (2)Rotation
Selected ππ contacts for compounds (2b), (3b) (molecule 1), (4a) and (4d) top
Cg1, Cg2 and Cg3(Cg7) are the centroids of the pyrone, of the chromone phenyl and of the carboxamide phenyl rings, respectively. * indicates contacts in which the planes involved are inclined to each other, the perpendicular distance between the planes is an average value and the angle between the planes is given in place of a slippage. Only interplanar interactions with Cg···Cg distances less than or equal to 4.0 Å or with angles between the planes of less than 10° are included.
Compoundcontactsdistanceperp. distanceSlippage*
(2b)Cg1···Cg1iii3.859 (3)3.4223*)4.0 (13)*
Cg1···Cg2iv3.564 (3)3.3951*3.86 (13)*
Cg2···Cg2iv3.674 (3)3.4035*4.0 (13)*
Cg3···Cg3i3.649 (3)3.3049 (11)1.546
(3b)Cg1···Cg3v3.6621 (17)3.4150*2.91 (13)
Cg2···Cg3vi3.6851 (18)3.3587*'2.47 (14)*
Cg2···Cg3v3.7278 (17)3.4360*2.47 (14)*
(4a)Cg2···Cg3ii3.780 (3)3.383*1.90 (6)*
(4d)Cg1···Cg1vii3.4831 (7)3.3257 (4)1.035
Cg1···Cg2Vii3.6037 (7)3.3137*2.46 (5)*
(4e)Cg1···Cg3vi3.669 (2)3.3741*)3.50 (17)*
Cg1···Cg7v3.768 (2)3.3792*3.09 (17)*
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 3/2 - x, -1/2 + y, 1/2 - z; (iii) x, 3/2 - y, -1/2 + z; (iv) x, 3/2 - y, 1/2 + z; (v) 1 - x, 1 - y, -z; (vi) 1 - x, -y, -z; (vii) 1 - x, -y, 1 - z.
 

Acknowledgements

The authors thank the National Crystallographic Service, University of Southampton for the data collection and for their help and advice (Coles & Gale, 2012[Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683-689.]) and the Foundation for Science and Technology (FCT), Portugal, for financial support. FC (grant SFRH/BPDF/QUI-QUI/74491/2010) is also supported by the FCT.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCagide, F., Reis, J., Gaspar, A. & Borges, F. (2011). Tetrahedron Lett. 52, 6446–6449.  Web of Science CrossRef CAS Google Scholar
First citationCagide, F., Reis, J., Gaspar, A., Borges, F., Gomes, L. & Low, J. N. (2015). Chem. Commun. 14, 2832–2835.  CSD CrossRef Google Scholar
First citationColes, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationGomes, L. R., Low, J. N., Borges, F. & Cagide, F. (2013). Acta Cryst. C69, 927–933.  CSD CrossRef IUCr Journals Google Scholar
First citationGomes, L. R., Low, J. N., Cagide, F. & Borges, F. (2015). Acta Cryst. E71, 88–93.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMackay, A. L. (1984). Acta Cryst. A40, 165–166.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 30–309.  Web of Science CSD CrossRef Google Scholar
First citationOszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds