organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-formyl­pyridine semicarbazone hemihydrate

aUniversidade Federal do Paraná, Departamento de Química, C.P. 19081, CEP 81531-980, Curitiba – PR, Brazil, and bUniversidade Federal do Santa Maria, Departamento de Química, CEP 97105-900, Santa Maria – RS, Brazil
*Correspondence e-mail: fsnunes@ufpr.br

Edited by M. Lopez-Rodriguez, Universidad de La Laguna, Tenerife (Received 24 March 2015; accepted 11 April 2015; online 18 April 2015)

The mol­ecule of the title compound C7H8N4O·0.5H2O, alternatively called (E)-1-(pyridin-4-yl­methyl­ene)semi­carb­azide hemihydrate, is in the E conformation and is almost planar; the r.m.s. deviation of the positions of the atoms of the pyridine ring from the best-fit plane is 0.0039 Å. The C, N and O atoms of the rest of the mol­ecule sits close on this plane with a largest deviation of 0.115 (4) Å for the O atom of the semicarbazone moiety. There is an intra­molecular N—H⋯N hydrogen bond. In the crystal, mol­ecules are linked into an infinite three-dimensional network by classical N—H⋯Os (s = semicarbazone) and Ow—H⋯N (w = water) hydrogen bonds.

1. Related literature

For the preparation of coordination compounds of 4-formyl­pyridine semicarbazone with cobalt and zinc, see: Zhou et al. (2006a[Zhou, J., Liu, X., Chen, Z.-F. & Liang, H. (2006a). Hecheng Huaxue, 14, 471-475.],b[Zhou, J., Liu, X., Li, D.-Q., Yuan, Y.-Z., Chen, Z.-F. & Zhang, Y. (2006b). Hecheng Huaxue, 14, 476-479.]). For the spectroscopic (FT–IR, NMR and UV–vis) properties of 4- and 3-formyl­pyridine semicarbazones, see: Beraldo et al. (2001[Beraldo, H., Nacif, W. F. & West, D. X. (2001). Spectrochim. Acta Part A, 57, 1847-1854.]). For the crystal structure of 4-formyl­pyridine thio­semicarbazone, see: Restivo & Palenik (1970[Restivo, R. & Palenik, G. J. (1970). Acta Cryst. B26, 1397-1402.]). For the crystal structures of 2-formyl­pyridine semicarbazone and several coordination compounds published by our group, see: Garbelini et al. (2008[Garbelini, E. R., Hörner, M., Boneberger Behm, M., Evans, D. J. & Nunes, F. S. (2008). Z. Anorg. Allg. Chem. 634, 1801-1806.], 2009[Garbelini, E. R., Hörner, M., Giglio, V. F., da Silva, A. H., Barison, A. & Nunes, F. S. (2009). Z. Anorg. Allg. Chem. 635, 1236-1241.], 2011[Garbelini, E. R., Ribeiro, R. R., Horner, M., Locatelli, A. & Nunes, F. S. (2011). Spectrochim. Acta Part A, 78, 1337-1341.], 2012[Garbelini, E. R., Martin, M. da G. M., Back, D. F., Evans, D. J., Müller-Santos, M., Ribeiro, R. R., Lang, E. S. & Nunes, F. S. (2012). J. Mol. Struct. 1008, 35-41.]). Geometrical analysis was performed with Mogul (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C7H8N4O·H2O

  • Mr = 346.36

  • Monoclinic, C 2/c

  • a = 25.0636 (13) Å

  • b = 5.3725 (3) Å

  • c = 13.0124 (7) Å

  • β = 111.717 (3)°

  • V = 1627.81 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.82 × 0.27 × 0.20 mm

2.2. Data collection

  • Bruker X8 Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS. Bruker AXS Inc , Madison, Wisconsin, USA]) Tmin = 0.860, Tmax = 0.937

  • 20739 measured reflections

  • 1795 independent reflections

  • 1502 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.094

  • S = 1.04

  • 1795 reflections

  • 127 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯N3 0.852 (18) 2.273 (18) 2.6541 (16) 107.3 (13)
N1—H1NB⋯O1i 0.917 (19) 1.998 (18) 2.9046 (15) 169.3 (16)
N2—H2N⋯O1ii 0.898 (17) 2.022 (17) 2.9141 (14) 171.9 (16)
O1W—H1WA⋯N4 0.87 (3) 2.08 (3) 2.9373 (16) 168 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS. Bruker AXS Inc , Madison, Wisconsin, USA]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT, SADABS. Bruker AXS Inc , Madison, Wisconsin, USA]); data reduction: SAINT; program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.][Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.][Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]); molecular graphics: DIAMOND (Crystal Impact, 2014[Crystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Structural commentary top

The title molecule crystallizes in the E conformation and is almost ideally planar. The root mean square deviation of the postions of the atoms of the pyridine ring (C3/C4/C5/C6/C7/N4) from the best fit plane is 0.0039 Å. The C, N & O atoms of the rest of the molecule sits close on this plane with the largest deviation of 0.115 (4) Å for O1. The torsion angles of the side arm, C1—N2—N3—C2 (-174.35 (11)°, N2—N3—C2—C3 (-177.87 (10)° and N3—C2—C3—C6 (-1.76 (18)°) reflect this planarity. The shorter bond distance between C2 and N3 of 1.2752 (15) Å compared with 1.3366 (18) Å of N2—C1 along with the double bond character of C1=O1 at 1.2399 (14) Å is in accordance with the carbonyl tautomeric form. The longer than normal double bond length for N2—N3, 1.3706 (13) Å, and shorter than normal single bond length for C2—C3, 1.4616 (15) Å, indicates a resonance of the side chain with the pyridine ring.

There is an extensive three dimensional network of hydrogen bonding inter­actions formed between the 4-formyl­pyridine semicarbazone molecules, N2—H2N···O1 = 2.022 (18)Å and N1—H1NB···O1 = 1.998 (19)Å, and between the pyridine N4 atoms of the 4-formyl­pyridine semicarbazone molecules and the water molecules, O1W—H1WA···N4 = 2.077 (18)Å.

Database survey top

An analysis of the geometry of the 4-formyl­pyridine semicarbazone molecule with Mogul (Bruno et al., 2004) showed all bond lengths, bond angles, dihedral angles and ring geometry as not unusual, with the largest |z-score| = 1.254 for the C6–C3–C2 angle.

Synthesis and crystallization top

Reagent grade chemicals were used in this work. The compound was prepared based on a similar reaction for the 2-formyl­pyridine semicarbazone (Garbelini et al. 2009).

In an round bottom flask 2.4 g (21 mmol) of semicarbazide hydro­chloride were dissolved in 20 mL of ethanol and 5 mL of water and mixed with 1.7 g (21 mmol) of sodium acetate and 15 mL of water. The mixture was kept under stirring and heating at 70°C until the complete dissolution. Then, 2.0 mL (21 mmol) of 4-formyl­pyridine was added and the resulting solution was cooled at -15 °C overnight. Colourless crystals were collected by filtration, washed with water and cold ethanol and dried under vacuum. The yield was 2.3 g (67%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. The final structure was refined with SHELXL2014 (Sheldrick, 2015) with anisotropic displacement parameters for all non-hydrogen atoms; hydrogen atoms were refined isotropically as riding atoms at their theoretical ideal positions. Drawings were made with Crystal Impact Diamond 3.

Related literature top

For the preparation of coordination compounds of 4-formylpyridine semicarbazone with cobalt and zinc, see: Zhou et al. (2006a,b). For the spectroscopic (FT–IR, NMR and UV–vis) properties of 4- and 3-formylpyridine semicarbazones, see: Beraldo et al. (2001). For the crystal structure of 4-formylpyridine thiosemicarbazone, see: Restivo & Palenik (1970). For the crystal structures of 2-formylpyridine semicarbazone and several coordination compounds published by our group, see: Garbelini et al. (2008, 2009, 2011, 2012). Geometrical analysis was performed with Mogul (Bruno et al., 2004).

Structure description top

The title molecule crystallizes in the E conformation and is almost ideally planar. The root mean square deviation of the postions of the atoms of the pyridine ring (C3/C4/C5/C6/C7/N4) from the best fit plane is 0.0039 Å. The C, N & O atoms of the rest of the molecule sits close on this plane with the largest deviation of 0.115 (4) Å for O1. The torsion angles of the side arm, C1—N2—N3—C2 (-174.35 (11)°, N2—N3—C2—C3 (-177.87 (10)° and N3—C2—C3—C6 (-1.76 (18)°) reflect this planarity. The shorter bond distance between C2 and N3 of 1.2752 (15) Å compared with 1.3366 (18) Å of N2—C1 along with the double bond character of C1=O1 at 1.2399 (14) Å is in accordance with the carbonyl tautomeric form. The longer than normal double bond length for N2—N3, 1.3706 (13) Å, and shorter than normal single bond length for C2—C3, 1.4616 (15) Å, indicates a resonance of the side chain with the pyridine ring.

There is an extensive three dimensional network of hydrogen bonding inter­actions formed between the 4-formyl­pyridine semicarbazone molecules, N2—H2N···O1 = 2.022 (18)Å and N1—H1NB···O1 = 1.998 (19)Å, and between the pyridine N4 atoms of the 4-formyl­pyridine semicarbazone molecules and the water molecules, O1W—H1WA···N4 = 2.077 (18)Å.

An analysis of the geometry of the 4-formyl­pyridine semicarbazone molecule with Mogul (Bruno et al., 2004) showed all bond lengths, bond angles, dihedral angles and ring geometry as not unusual, with the largest |z-score| = 1.254 for the C6–C3–C2 angle.

For the preparation of coordination compounds of 4-formylpyridine semicarbazone with cobalt and zinc, see: Zhou et al. (2006a,b). For the spectroscopic (FT–IR, NMR and UV–vis) properties of 4- and 3-formylpyridine semicarbazones, see: Beraldo et al. (2001). For the crystal structure of 4-formylpyridine thiosemicarbazone, see: Restivo & Palenik (1970). For the crystal structures of 2-formylpyridine semicarbazone and several coordination compounds published by our group, see: Garbelini et al. (2008, 2009, 2011, 2012). Geometrical analysis was performed with Mogul (Bruno et al., 2004).

Synthesis and crystallization top

Reagent grade chemicals were used in this work. The compound was prepared based on a similar reaction for the 2-formyl­pyridine semicarbazone (Garbelini et al. 2009).

In an round bottom flask 2.4 g (21 mmol) of semicarbazide hydro­chloride were dissolved in 20 mL of ethanol and 5 mL of water and mixed with 1.7 g (21 mmol) of sodium acetate and 15 mL of water. The mixture was kept under stirring and heating at 70°C until the complete dissolution. Then, 2.0 mL (21 mmol) of 4-formyl­pyridine was added and the resulting solution was cooled at -15 °C overnight. Colourless crystals were collected by filtration, washed with water and cold ethanol and dried under vacuum. The yield was 2.3 g (67%).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. The final structure was refined with SHELXL2014 (Sheldrick, 2015) with anisotropic displacement parameters for all non-hydrogen atoms; hydrogen atoms were refined isotropically as riding atoms at their theoretical ideal positions. Drawings were made with Crystal Impact Diamond 3.

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Crystal Impact, 2014); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. View of the title molecule.Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing viewed down the crystallograpic b axis, with the a axis pointed down, showing the three dimensional hydrogen bonding network.
(E)-1-(Pyridin-4-ylmethylene)semicarbazide hemihydrate top
Crystal data top
2C7H8N4O·H2OF(000) = 728
Mr = 346.36Dx = 1.413 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.0636 (13) ÅCell parameters from 5941 reflections
b = 5.3725 (3) Åθ = 2.8–26.2°
c = 13.0124 (7) ŵ = 0.11 mm1
β = 111.717 (3)°T = 296 K
V = 1627.81 (16) Å3Block, clear light colourless
Z = 40.82 × 0.27 × 0.20 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
1795 independent reflections
Radiation source: sealed ceramic X ray tube, Siemens KFF1502 reflections with I > 2σ(I)
Graphite crystal monochromatorRint = 0.029
Detector resolution: 8.3333 pixels mm-1θmax = 27.1°, θmin = 1.8°
0.5 ° ω & φ scansh = 3232
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 66
Tmin = 0.860, Tmax = 0.937l = 1616
20739 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.8364P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
1795 reflectionsΔρmax = 0.23 e Å3
127 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (8)
Crystal data top
2C7H8N4O·H2OV = 1627.81 (16) Å3
Mr = 346.36Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.0636 (13) ŵ = 0.11 mm1
b = 5.3725 (3) ÅT = 296 K
c = 13.0124 (7) Å0.82 × 0.27 × 0.20 mm
β = 111.717 (3)°
Data collection top
Bruker X8 Kappa APEXII
diffractometer
1795 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1502 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.937Rint = 0.029
20739 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0341 restraint
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.23 e Å3
1795 reflectionsΔρmin = 0.20 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.74966 (4)0.16017 (16)0.36432 (7)0.0411 (2)
N10.70517 (5)0.2096 (2)0.30449 (9)0.0410 (3)
H1NA0.6859 (8)0.326 (3)0.3188 (14)0.061*
H1NB0.7226 (7)0.234 (3)0.2545 (15)0.061*
N20.69806 (5)0.00971 (19)0.45499 (9)0.0373 (3)
H2N0.7110 (7)0.107 (3)0.5079 (14)0.056*
N30.66491 (4)0.20246 (18)0.46659 (8)0.0336 (3)
N40.54246 (5)0.7238 (2)0.61921 (10)0.0430 (3)
C10.71939 (5)0.0154 (2)0.37260 (9)0.0315 (3)
C20.65096 (5)0.1908 (2)0.55129 (10)0.0329 (3)
H20.66460.05960.60070.039*
C30.61410 (5)0.3783 (2)0.57272 (9)0.0309 (3)
C40.59797 (5)0.3495 (2)0.66315 (10)0.0374 (3)
H40.61080.21340.710.045*
C50.56274 (6)0.5251 (3)0.68271 (11)0.0431 (3)
H50.55260.50340.7440.052*
C60.59294 (5)0.5840 (2)0.50545 (10)0.0369 (3)
H60.60250.61060.44370.044*
C70.55757 (6)0.7483 (2)0.53140 (11)0.0411 (3)
H70.54340.88430.48510.049*
O1W0.51.0598 (3)0.750.1046 (9)
H1WA0.5078 (14)0.965 (5)0.703 (2)0.157*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0538 (6)0.0380 (5)0.0420 (5)0.0108 (4)0.0303 (4)0.0010 (4)
N10.0519 (7)0.0410 (6)0.0391 (6)0.0099 (5)0.0274 (5)0.0071 (5)
N20.0484 (6)0.0338 (5)0.0396 (6)0.0118 (5)0.0278 (5)0.0057 (4)
N30.0372 (5)0.0318 (5)0.0370 (5)0.0045 (4)0.0198 (4)0.0008 (4)
N40.0427 (6)0.0411 (6)0.0521 (7)0.0027 (5)0.0257 (5)0.0070 (5)
C10.0351 (6)0.0328 (6)0.0304 (6)0.0009 (5)0.0164 (5)0.0032 (4)
C20.0353 (6)0.0327 (6)0.0349 (6)0.0026 (5)0.0178 (5)0.0007 (4)
C30.0304 (6)0.0318 (6)0.0334 (6)0.0030 (4)0.0150 (5)0.0058 (4)
C40.0397 (7)0.0393 (6)0.0385 (6)0.0015 (5)0.0208 (5)0.0015 (5)
C50.0462 (7)0.0492 (7)0.0443 (7)0.0004 (6)0.0289 (6)0.0046 (6)
C60.0427 (7)0.0369 (6)0.0363 (6)0.0018 (5)0.0206 (5)0.0003 (5)
C70.0435 (7)0.0339 (6)0.0472 (7)0.0041 (5)0.0185 (6)0.0000 (5)
O1W0.200 (3)0.0427 (9)0.1390 (19)00.142 (2)0
Geometric parameters (Å, º) top
O1—C11.2399 (14)C2—H20.93
N1—C11.3294 (16)C3—C41.3870 (16)
N1—H1NA0.854 (18)C3—C61.3875 (17)
N1—H1NB0.917 (19)C4—C51.3789 (17)
N2—C11.3639 (15)C4—H40.93
N2—N31.3706 (13)C5—H50.93
N2—H2N0.899 (17)C6—C71.3789 (17)
N3—C21.2752 (15)C6—H60.93
N4—C51.3301 (18)C7—H70.93
N4—C71.3366 (18)O1W—H1WA0.874 (17)
C2—C31.4616 (15)
C1—N1—H1NA117.8 (12)C4—C3—C2119.22 (11)
C1—N1—H1NB120.2 (10)C6—C3—C2123.34 (10)
H1NA—N1—H1NB120.5 (16)C5—C4—C3119.20 (12)
C1—N2—N3119.97 (10)C5—C4—H4120.4
C1—N2—H2N118.8 (11)C3—C4—H4120.4
N3—N2—H2N120.3 (11)N4—C5—C4123.92 (12)
C2—N3—N2115.43 (10)N4—C5—H5118.0
C5—N4—C7116.50 (11)C4—C5—H5118.0
O1—C1—N1124.12 (11)C7—C6—C3119.07 (11)
O1—C1—N2118.79 (10)C7—C6—H6120.5
N1—C1—N2117.08 (10)C3—C6—H6120.5
N3—C2—C3121.72 (11)N4—C7—C6123.87 (12)
N3—C2—H2119.1N4—C7—H7118.1
C3—C2—H2119.1C6—C7—H7118.1
C4—C3—C6117.43 (11)
C1—N2—N3—C2174.35 (11)C2—C3—C4—C5179.38 (11)
N3—N2—C1—O1179.42 (10)C7—N4—C5—C40.5 (2)
N3—N2—C1—N11.82 (17)C3—C4—C5—N40.4 (2)
N2—N3—C2—C3177.87 (10)C4—C3—C6—C70.24 (17)
N3—C2—C3—C4176.79 (11)C2—C3—C6—C7178.81 (11)
N3—C2—C3—C61.76 (18)C5—N4—C7—C61.1 (2)
C6—C3—C4—C50.74 (18)C3—C6—C7—N40.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···N30.852 (18)2.273 (18)2.6541 (16)107.3 (13)
N1—H1NB···O1i0.917 (19)1.998 (18)2.9046 (15)169.3 (16)
N2—H2N···O1ii0.898 (17)2.022 (17)2.9141 (14)171.9 (16)
O1W—H1WA···N40.87 (3)2.08 (3)2.9373 (16)168 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1NA···N30.852 (18)2.273 (18)2.6541 (16)107.3 (13)
N1—H1NB···O1i0.917 (19)1.998 (18)2.9046 (15)169.3 (16)
N2—H2N···O1ii0.898 (17)2.022 (17)2.9141 (14)171.9 (16)
O1W—H1WA···N40.87 (3)2.08 (3)2.9373 (16)168 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1.
 

Acknowledgements

MHI, RAB and FSN thank CNPq for research fellowships. The diffractometer was supported by the Financiadora de Estudos e Projetos (FINEP, CT Infra 03/2001).

References

First citationBeraldo, H., Nacif, W. F. & West, D. X. (2001). Spectrochim. Acta Part A, 57, 1847–1854.  CSD CrossRef CAS Google Scholar
First citationBruker (2014). APEX2, SAINT, SADABS. Bruker AXS Inc , Madison, Wisconsin, USA  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCrystal Impact (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGarbelini, E. R., Hörner, M., Boneberger Behm, M., Evans, D. J. & Nunes, F. S. (2008). Z. Anorg. Allg. Chem. 634, 1801–1806.  CSD CrossRef CAS Google Scholar
First citationGarbelini, E. R., Hörner, M., Giglio, V. F., da Silva, A. H., Barison, A. & Nunes, F. S. (2009). Z. Anorg. Allg. Chem. 635, 1236–1241.  CSD CrossRef CAS Google Scholar
First citationGarbelini, E. R., Martin, M. da G. M., Back, D. F., Evans, D. J., Müller-Santos, M., Ribeiro, R. R., Lang, E. S. & Nunes, F. S. (2012). J. Mol. Struct. 1008, 35–41.  CSD CrossRef CAS Google Scholar
First citationGarbelini, E. R., Ribeiro, R. R., Horner, M., Locatelli, A. & Nunes, F. S. (2011). Spectrochim. Acta Part A, 78, 1337–1341.  CSD CrossRef Google Scholar
First citationRestivo, R. & Palenik, G. J. (1970). Acta Cryst. B26, 1397–1402.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhou, J., Liu, X., Chen, Z.-F. & Liang, H. (2006a). Hecheng Huaxue, 14, 471–475.  CAS Google Scholar
First citationZhou, J., Liu, X., Li, D.-Q., Yuan, Y.-Z., Chen, Z.-F. & Zhang, Y. (2006b). Hecheng Huaxue, 14, 476–479.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds