organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,1′-{(do­decane-1,12-di­yl)bis­­[(aza­niumylyl­­idene)methanylyl­­idene]}bis­­(naphthalen-2-olate)

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox, Faculty of Technology, University of Ferhat Abbas Sétif, 19000 Sétif, Algeria, and bService de Radiocristallographie, Institut de Chimie de Strasbourg, UMR 7177 CNRS–Unistra, 1 rue Blaise Pascal, Strasbourg 67008, France
*Correspondence e-mail: k_ouari@yahoo.fr

Edited by J. T. Mague, Tulane University, USA (Received 20 March 2015; accepted 21 April 2015; online 25 April 2015)

The title compound, C34H40N2O2, exists in an extended conformation and has crystallographically imposed centrosymmetry. The crystal packing can be described as being composed of parallel layers stacked along [010]. The zwitterionic structure is stabilized by an intra­molecular N—H⋯O hydrogen-bond inter­action.

1. Related literature

The compound is synthesized using two procedures, the ultrasound and the conventional methods. We found that the ultrasound irradiation method is more convenient and efficient. For conventional synthesis of similar compounds, see: Ouari et al. (2015a[Ouari, K., Bendia, S., Weiss, J. & Bailly, C. (2015a). Spectrochim. Acta Part A, 135, 624-631.]); Mohammadi & Rastegari (2012[Mohammadi, K. & Rastegari, M. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, 711-716.]); Bhowmik et al. (2011[Bhowmik, P., Drew, M. G. B. & Chattopadhyay, S. (2011). Inorg. Chim. Acta, 366, 62-67.]). For ultrasonic synthesis of similar compounds, see: Rayati & Abdolalian (2013[Rayati, S. & Abdolalian, P. (2013). Appl. Catal. A, 456, 240-248.]); Khan et al. (2014[Khan, K. M., Jamil, W., Ambreen, N., Taha, M., Perveen, S. & Morales, G. A. (2014). Ultrason. Sonochem. 21, 1200-1205.]); Kanagarajan et al. (2011[Kanagarajan, V., Ezhilarasi, M. R. & Gopalakrishnan, M. (2011). Spectrochim. Acta Part A, 78, 635-639.]). For related crystal structures, see: Ouari et al. (2010[Ouari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831-836.], 2015b[Ouari, K., Bendia, S., Merzougui, M. & Bailly, C. (2015b). Acta Cryst. E71, o51-o52.]); Popović et al. (2001[Popović, Z., Roje, V., Pavlović, G., Matković-Čalogović, D. & Giester, G. (2001). J. Mol. Struct. 597, 39-47.]); Friscic et al. (1998[Friscic, T., Kaitner, B. & Mestrovic, E. (1998). Croat. Chem. Acta, 71, 87-98.]); Bi et al. (2012[Bi, S., Wang, A., Bi, C., Fan, Y., Xiao, Y., Liu, S. & Wang, Q. (2012). Inorg. Chem. Commun. 15, 167-171.]); Temel et al. (2010[Temel, E., Ağar, E. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1131.]). For their applications, see: Köse et al. (2015[Köse, M., Ceyhan, G., Tümer, M., Demirtaş, I., İbrahim, , Gönül, , İlyas, & McKee, V. (2015). Spectrochim. Acta Part A, 137, 477-485.]); Grivani et al. (2013[Grivani, G., Delkhosh, S., Fejfarová, K., Dušek, M. & Khalaji, A. D. (2013). Inorg. Chem. Commun. 27, 82-87.]); Amin et al. (2010[Amin, R., Krammer, B., Abdel-Kader, N., Verwanger, T. & El-Ansary, A. (2010). Eur. J. Med. Chem. 45, 372-378.]); Panneerselvam et al. (2009[Panneerselvam, P., Rather, B. A., Ravi Sankar Reddy, D. & Ramesh Kumar, N. (2009). Eur. J. Med. Chem. 44, 2328-2333.]); Nasr et al. (2009[Nasr, G., Petit, E., Supuran, C. T., Winum, J. Y. & Barboiu, M. (2009). Bioorg. Med. Chem. Lett. 19, 6014-6017.]); Nejo et al. (2009[Nejo, A. A., Kolawole, G. A., Opoku, A. R., Wolowska, J. & O'Brien, P. (2009). Inorg. Chim. Acta, 362, 3993-4001.]); Taha et al. (2012[Taha, Z. A., Ajlouni, A. M. & Al Momani, W. (2012). J. Lumin. 132, 2832-2841.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C34H40N2O2

  • Mr = 508.68

  • Monoclinic, C 2/c

  • a = 54.400 (5) Å

  • b = 4.7465 (4) Å

  • c = 10.7022 (9) Å

  • β = 96.318 (2)°

  • V = 2746.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.50 × 0.14 × 0.06 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.746

  • 17506 measured reflections

  • 3271 independent reflections

  • 2313 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.125

  • S = 1.04

  • 3271 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.94 (2) 1.75 (2) 2.5498 (18) 140.6 (19)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Synthesis and crystallization top

Ultrasonication method

A reaction flask containing 0.344g (2mmol) of 2-hy­droxy-1-naphthaldehyde and 0.508g (1mmol) of 1,12-di­amino­dodecane, mixed and ground to a fine powder in a mortar, was immersed in an ultrasonic bath containing water at a temperature of 50 °C. The reaction mixture was exposed to ultrasound irradiation for 40 min. Upon completion, based on TLC analysis (silica gel, CH2Cl2/MeOH, 9.5/0.5, V/V) the product was washed with methanol (3 x 3 mL) and di­ethyl ether (3 x 3 mL) and filtered. Single crystals, suitable for X-ray diffraction, were obtained after 2 days of crystallization from DMSO/MeOH.

Color: Yellow, Yield: 88 %, mp: 148°C. Analysis calculated for C34H40N2O2: C, 80.27; H, 7.92; N, 5.50%; found: C, 80.06; H, 7.80; N, 5.78%.

Conventional method

To a solution of 0.172 g (1mmol) of 2-hy­droxy-1-naphthaldehyde in 5 mL of methanol was added 0.254 g (0.5 mmol) of 1,2-di­amino­dodecane dissolved in 5 mL of the same solvent.The mixture was stirred and refluxed for 3 hours under a nitro­gen atmosphere. At completion, based on TLC analysis, the resulting compound was filtered and washed with methanol and di­ethyl ether to afford pure product in 62% yield.

Refinement top

The iminium H atom was located from a difference Fourier map and refined isotropically. C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (CH) or 0.99 Å (CH2) with Uiso(H) = 1.2Ueq (C—Har.).

Results and discussion top

Schiff base ligands can be easily synthesized using conventional or ultrasonic irradiation methods by reacting primary amines and carbonyl compounds in which the azomethine bond is formed and they can used to form complexes (Ouari et al., 2015a., Mohammadi et al., 2012; Bhowmik et al., 2011., Grivani et al., 2013; Nejo et al., 2009., Rayati et al., 2013., Khan et al., 2014., Kanagarajan et al., 2011).

The synthesis via ultrasound irradiation is an efficient, fast, high yielding method and is a more economical synthetic process for the preparation of the Schiff base compound than the conventional method.

The azomethine group >C=N of the Schiff base can form stable metal complexes by coordinating through the nitro­gen atom (Ouari et al., 2015b., Ouari et al., 2010 ). Schiff base ligands have many applications including anti-microbial agents (Köse et al., 2015., Taha et al.;2012., Panneerselvam et al., 2009), anti-tumor agents, (Nasr et al., 2009) and as xanthine oxidase inhibitors (Amin et al., 2010).

This compound crystallized in the monoclinic space group C2/c, whereas the related compounds(C26H24N2O2, C28H28N2O2) (Friscic et al., 1998), (C28H26N2O2) (Bi et al., 2012) and (C28H20N2O2—CHCL3) (Popović et al., 2001) crystallized in the orthorhombic space groups Pbca, Pbcn, P212121, and P212121, respectively. The hydrogen atom in the title compound is located on the nitro­gen atom (Fig.1). The C1—O1 bond length of 1.2802 (19)Å indicates double-bond character while the N1—C11 bond length of 1.2994 (19)Å indicates single-bond character thus confirming the zwitterionic formulation. Similar results have been reported (Temel et al., 2010]. The crystal packing can be described as parallel chains along the c axis (Fig. 2). It is stabilized by intra­molecular N—H···O hydrogen bonding (Table 1) and by weak inter­molecular C—H···π ring inter­actions. These inter­actions link the molecules within the layers and also link the layers together thereby reinforcing the cohesion of the ionic structure.

Related literature top

For conventional synthesis of similar compounds, see: Ouari et al. (2015a); Mohammadi & Rastegari (2012); Bhowmik et al. (2011). For ultrasonic synthesis of similar compounds, see: Rayati & Abdolalian (2013); Khan et al. (2014); Kanagarajan et al. (2011). For related crystal structures, see: Ouari et al. (2010, 2015b); Popović et al. (2001); Friscic et al. (1998); Bi et al. (2012); Temel et al. (2010). For their applications, see: Köse et al. (2015); Grivani et al. (2013); Amin et al. (2010); Panneerselvam et al. (2009); Nasr et al. (2009); Nejo et al. (2009); Taha et al. (2012).

Structure description top

Schiff base ligands can be easily synthesized using conventional or ultrasonic irradiation methods by reacting primary amines and carbonyl compounds in which the azomethine bond is formed and they can used to form complexes (Ouari et al., 2015a., Mohammadi et al., 2012; Bhowmik et al., 2011., Grivani et al., 2013; Nejo et al., 2009., Rayati et al., 2013., Khan et al., 2014., Kanagarajan et al., 2011).

The synthesis via ultrasound irradiation is an efficient, fast, high yielding method and is a more economical synthetic process for the preparation of the Schiff base compound than the conventional method.

The azomethine group >C=N of the Schiff base can form stable metal complexes by coordinating through the nitro­gen atom (Ouari et al., 2015b., Ouari et al., 2010 ). Schiff base ligands have many applications including anti-microbial agents (Köse et al., 2015., Taha et al.;2012., Panneerselvam et al., 2009), anti-tumor agents, (Nasr et al., 2009) and as xanthine oxidase inhibitors (Amin et al., 2010).

This compound crystallized in the monoclinic space group C2/c, whereas the related compounds(C26H24N2O2, C28H28N2O2) (Friscic et al., 1998), (C28H26N2O2) (Bi et al., 2012) and (C28H20N2O2—CHCL3) (Popović et al., 2001) crystallized in the orthorhombic space groups Pbca, Pbcn, P212121, and P212121, respectively. The hydrogen atom in the title compound is located on the nitro­gen atom (Fig.1). The C1—O1 bond length of 1.2802 (19)Å indicates double-bond character while the N1—C11 bond length of 1.2994 (19)Å indicates single-bond character thus confirming the zwitterionic formulation. Similar results have been reported (Temel et al., 2010]. The crystal packing can be described as parallel chains along the c axis (Fig. 2). It is stabilized by intra­molecular N—H···O hydrogen bonding (Table 1) and by weak inter­molecular C—H···π ring inter­actions. These inter­actions link the molecules within the layers and also link the layers together thereby reinforcing the cohesion of the ionic structure.

For conventional synthesis of similar compounds, see: Ouari et al. (2015a); Mohammadi & Rastegari (2012); Bhowmik et al. (2011). For ultrasonic synthesis of similar compounds, see: Rayati & Abdolalian (2013); Khan et al. (2014); Kanagarajan et al. (2011). For related crystal structures, see: Ouari et al. (2010, 2015b); Popović et al. (2001); Friscic et al. (1998); Bi et al. (2012); Temel et al. (2010). For their applications, see: Köse et al. (2015); Grivani et al. (2013); Amin et al. (2010); Panneerselvam et al. (2009); Nasr et al. (2009); Nejo et al. (2009); Taha et al. (2012).

Synthesis and crystallization top

Ultrasonication method

A reaction flask containing 0.344g (2mmol) of 2-hy­droxy-1-naphthaldehyde and 0.508g (1mmol) of 1,12-di­amino­dodecane, mixed and ground to a fine powder in a mortar, was immersed in an ultrasonic bath containing water at a temperature of 50 °C. The reaction mixture was exposed to ultrasound irradiation for 40 min. Upon completion, based on TLC analysis (silica gel, CH2Cl2/MeOH, 9.5/0.5, V/V) the product was washed with methanol (3 x 3 mL) and di­ethyl ether (3 x 3 mL) and filtered. Single crystals, suitable for X-ray diffraction, were obtained after 2 days of crystallization from DMSO/MeOH.

Color: Yellow, Yield: 88 %, mp: 148°C. Analysis calculated for C34H40N2O2: C, 80.27; H, 7.92; N, 5.50%; found: C, 80.06; H, 7.80; N, 5.78%.

Conventional method

To a solution of 0.172 g (1mmol) of 2-hy­droxy-1-naphthaldehyde in 5 mL of methanol was added 0.254 g (0.5 mmol) of 1,2-di­amino­dodecane dissolved in 5 mL of the same solvent.The mixture was stirred and refluxed for 3 hours under a nitro­gen atmosphere. At completion, based on TLC analysis, the resulting compound was filtered and washed with methanol and di­ethyl ether to afford pure product in 62% yield.

Refinement details top

The iminium H atom was located from a difference Fourier map and refined isotropically. C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å (CH) or 0.99 Å (CH2) with Uiso(H) = 1.2Ueq (C—Har.).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis.
1,1'-{(Dodecane-1,12-diyl)bis[(azaniumylylidene)methanylylidene]}bis(naphthalen-2-olate) top
Crystal data top
C34H40N2O2F(000) = 1096
Mr = 508.68Dx = 1.230 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 54.400 (5) ÅCell parameters from 3931 reflections
b = 4.7465 (4) Åθ = 3.0–27.8°
c = 10.7022 (9) ŵ = 0.08 mm1
β = 96.318 (2)°T = 173 K
V = 2746.6 (4) Å3Prism, yellow
Z = 40.50 × 0.14 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3271 independent reflections
Radiation source: sealed tube2313 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.036
φ and ω scansθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 7070
Tmin = 0.682, Tmax = 0.746k = 65
17506 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: mixed
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0503P)2 + 2.2119P]
where P = (Fo2 + 2Fc2)/3
3271 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C34H40N2O2V = 2746.6 (4) Å3
Mr = 508.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 54.400 (5) ŵ = 0.08 mm1
b = 4.7465 (4) ÅT = 173 K
c = 10.7022 (9) Å0.50 × 0.14 × 0.06 mm
β = 96.318 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3271 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2313 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.746Rint = 0.036
17506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
3271 reflectionsΔρmin = 0.19 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11107 (3)0.3639 (3)1.08101 (14)0.0273 (3)
C20.09446 (3)0.5389 (3)1.14296 (15)0.0345 (4)
H20.10110.66821.20560.041*
C30.06975 (3)0.5229 (4)1.11383 (17)0.0386 (4)
H30.05940.64131.15700.046*
C40.05853 (3)0.3340 (4)1.02027 (16)0.0329 (4)
C50.03264 (3)0.3230 (4)0.99173 (19)0.0448 (5)
H50.02250.44131.03620.054*
C60.02183 (3)0.1460 (5)0.90169 (19)0.0478 (5)
H60.00430.14100.88330.057*
C70.03675 (3)0.0275 (4)0.83679 (19)0.0434 (4)
H70.02930.15100.77370.052*
C80.06204 (3)0.0223 (4)0.86294 (16)0.0357 (4)
H80.07180.14280.81750.043*
C90.07384 (3)0.1580 (3)0.95574 (14)0.0267 (3)
C100.10041 (3)0.1712 (3)0.98713 (13)0.0248 (3)
C110.11636 (3)0.0138 (3)0.93099 (14)0.0261 (3)
H110.10920.14680.87140.031*
C120.15676 (3)0.2039 (3)0.90007 (15)0.0287 (3)
H12A0.16680.30920.96730.034*
H12B0.14680.34190.84670.034*
C130.17384 (3)0.0464 (3)0.82076 (15)0.0280 (3)
H13A0.16380.05940.75370.034*
H13B0.18380.09120.87430.034*
C140.19108 (3)0.2470 (3)0.76130 (15)0.0284 (3)
H14A0.20130.34920.82880.034*
H14B0.18100.38790.71020.034*
C150.20806 (3)0.0982 (3)0.67812 (14)0.0282 (3)
H15A0.21860.03700.73010.034*
H15B0.19780.01080.61290.034*
C160.22456 (3)0.2977 (3)0.61412 (14)0.0289 (3)
H16A0.23460.40900.67930.035*
H16B0.21400.43080.56110.035*
C170.24187 (3)0.1500 (3)0.53257 (14)0.0292 (3)
H17A0.25260.01860.58580.035*
H17B0.23190.03690.46800.035*
N10.14027 (2)0.0119 (3)0.95644 (12)0.0288 (3)
O10.13443 (2)0.3838 (3)1.11158 (11)0.0359 (3)
H1N0.1458 (4)0.130 (5)1.014 (2)0.065 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0341 (8)0.0276 (7)0.0212 (7)0.0011 (6)0.0076 (6)0.0064 (6)
C20.0435 (10)0.0325 (8)0.0281 (8)0.0035 (7)0.0066 (7)0.0023 (7)
C30.0423 (10)0.0389 (9)0.0367 (9)0.0129 (8)0.0131 (8)0.0029 (8)
C40.0314 (8)0.0353 (9)0.0335 (9)0.0074 (7)0.0105 (7)0.0075 (7)
C50.0312 (9)0.0536 (11)0.0510 (12)0.0139 (8)0.0115 (8)0.0061 (9)
C60.0245 (9)0.0620 (13)0.0568 (12)0.0024 (8)0.0033 (8)0.0112 (10)
C70.0336 (9)0.0506 (11)0.0449 (11)0.0052 (8)0.0008 (8)0.0043 (9)
C80.0300 (9)0.0396 (9)0.0377 (9)0.0007 (7)0.0048 (7)0.0002 (7)
C90.0273 (8)0.0277 (8)0.0262 (7)0.0021 (6)0.0075 (6)0.0076 (6)
C100.0271 (8)0.0262 (7)0.0221 (7)0.0016 (6)0.0077 (6)0.0050 (6)
C110.0281 (8)0.0282 (7)0.0231 (7)0.0020 (6)0.0073 (6)0.0030 (6)
C120.0267 (8)0.0326 (8)0.0286 (8)0.0028 (6)0.0107 (6)0.0011 (6)
C130.0259 (8)0.0324 (8)0.0271 (8)0.0001 (6)0.0097 (6)0.0008 (6)
C140.0233 (7)0.0346 (8)0.0286 (8)0.0003 (6)0.0087 (6)0.0003 (6)
C150.0265 (7)0.0341 (8)0.0253 (8)0.0002 (6)0.0092 (6)0.0001 (6)
C160.0256 (8)0.0366 (8)0.0259 (8)0.0003 (6)0.0093 (6)0.0023 (6)
C170.0270 (8)0.0354 (8)0.0267 (8)0.0002 (6)0.0096 (6)0.0008 (6)
N10.0259 (7)0.0345 (7)0.0275 (7)0.0004 (6)0.0096 (5)0.0016 (6)
O10.0323 (6)0.0435 (7)0.0317 (6)0.0024 (5)0.0026 (5)0.0042 (5)
Geometric parameters (Å, º) top
C1—O11.2802 (19)C12—N11.4553 (19)
C1—C101.433 (2)C12—C131.522 (2)
C1—C21.442 (2)C12—H12A0.9900
C2—C31.348 (2)C12—H12B0.9900
C2—H20.9500C13—C141.524 (2)
C3—C41.430 (2)C13—H13A0.9900
C3—H30.9500C13—H13B0.9900
C4—C51.409 (2)C14—C151.525 (2)
C4—C91.413 (2)C14—H14A0.9900
C5—C61.362 (3)C14—H14B0.9900
C5—H50.9500C15—C161.518 (2)
C6—C71.394 (3)C15—H15A0.9900
C6—H60.9500C15—H15B0.9900
C7—C81.374 (2)C16—C171.5232 (19)
C7—H70.9500C16—H16A0.9900
C8—C91.411 (2)C16—H16B0.9900
C8—H80.9500C17—C17i1.518 (3)
C9—C101.449 (2)C17—H17A0.9900
C10—C111.414 (2)C17—H17B0.9900
C11—N11.2994 (19)N1—H1N0.94 (2)
C11—H110.9500
O1—C1—C10122.68 (14)N1—C12—H12B109.3
O1—C1—C2119.65 (15)C13—C12—H12B109.3
C10—C1—C2117.67 (14)H12A—C12—H12B108.0
C3—C2—C1121.38 (16)C12—C13—C14111.58 (13)
C3—C2—H2119.3C12—C13—H13A109.3
C1—C2—H2119.3C14—C13—H13A109.3
C2—C3—C4122.38 (15)C12—C13—H13B109.3
C2—C3—H3118.8C14—C13—H13B109.3
C4—C3—H3118.8H13A—C13—H13B108.0
C5—C4—C9120.10 (17)C13—C14—C15113.24 (13)
C5—C4—C3120.99 (16)C13—C14—H14A108.9
C9—C4—C3118.92 (15)C15—C14—H14A108.9
C6—C5—C4121.31 (17)C13—C14—H14B108.9
C6—C5—H5119.3C15—C14—H14B108.9
C4—C5—H5119.3H14A—C14—H14B107.7
C5—C6—C7119.16 (17)C16—C15—C14113.62 (13)
C5—C6—H6120.4C16—C15—H15A108.8
C7—C6—H6120.4C14—C15—H15A108.8
C8—C7—C6120.85 (18)C16—C15—H15B108.8
C8—C7—H7119.6C14—C15—H15B108.8
C6—C7—H7119.6H15A—C15—H15B107.7
C7—C8—C9121.47 (17)C15—C16—C17113.89 (13)
C7—C8—H8119.3C15—C16—H16A108.8
C9—C8—H8119.3C17—C16—H16A108.8
C8—C9—C4117.11 (14)C15—C16—H16B108.8
C8—C9—C10123.66 (14)C17—C16—H16B108.8
C4—C9—C10119.23 (14)H16A—C16—H16B107.7
C11—C10—C1118.31 (14)C17i—C17—C16113.82 (17)
C11—C10—C9121.19 (14)C17i—C17—H17A108.8
C1—C10—C9120.43 (13)C16—C17—H17A108.8
N1—C11—C10123.61 (15)C17i—C17—H17B108.8
N1—C11—H11118.2C16—C17—H17B108.8
C10—C11—H11118.2H17A—C17—H17B107.7
N1—C12—C13111.46 (13)C11—N1—C12123.87 (14)
N1—C12—H12A109.3C11—N1—H1N112.7 (13)
C13—C12—H12A109.3C12—N1—H1N123.4 (13)
O1—C1—C2—C3179.64 (16)C2—C1—C10—C11176.23 (13)
C10—C1—C2—C30.1 (2)O1—C1—C10—C9179.73 (14)
C1—C2—C3—C40.2 (3)C2—C1—C10—C90.7 (2)
C2—C3—C4—C5179.79 (17)C8—C9—C10—C114.3 (2)
C2—C3—C4—C90.1 (2)C4—C9—C10—C11175.79 (13)
C9—C4—C5—C60.5 (3)C8—C9—C10—C1178.81 (14)
C3—C4—C5—C6179.20 (17)C4—C9—C10—C11.1 (2)
C4—C5—C6—C70.1 (3)C1—C10—C11—N12.6 (2)
C5—C6—C7—C80.2 (3)C9—C10—C11—N1179.54 (14)
C6—C7—C8—C90.1 (3)N1—C12—C13—C14179.84 (13)
C7—C8—C9—C40.3 (2)C12—C13—C14—C15178.46 (13)
C7—C8—C9—C10179.84 (16)C13—C14—C15—C16177.58 (14)
C5—C4—C9—C80.5 (2)C14—C15—C16—C17179.05 (13)
C3—C4—C9—C8179.13 (15)C15—C16—C17—C17i179.32 (17)
C5—C4—C9—C10179.57 (15)C10—C11—N1—C12179.25 (14)
C3—C4—C9—C100.8 (2)C13—C12—N1—C11116.21 (16)
O1—C1—C10—C113.3 (2)
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.94 (2)1.75 (2)2.5498 (18)140.6 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.94 (2)1.75 (2)2.5498 (18)140.6 (19)
 

Acknowledgements

The authors gratefully acknowledge the financial support from The Algerian Ministry of Higher Education and Scientific Research. They also acknowledge the help of Dr Jean WEISS from CLAC laboratory at the University of Strasbourg, France.

References

First citationAmin, R., Krammer, B., Abdel-Kader, N., Verwanger, T. & El-Ansary, A. (2010). Eur. J. Med. Chem. 45, 372–378.  CrossRef PubMed CAS Google Scholar
First citationBhowmik, P., Drew, M. G. B. & Chattopadhyay, S. (2011). Inorg. Chim. Acta, 366, 62–67.  CSD CrossRef CAS Google Scholar
First citationBi, S., Wang, A., Bi, C., Fan, Y., Xiao, Y., Liu, S. & Wang, Q. (2012). Inorg. Chem. Commun. 15, 167–171.  CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFriscic, T., Kaitner, B. & Mestrovic, E. (1998). Croat. Chem. Acta, 71, 87–98.  CAS Google Scholar
First citationGrivani, G., Delkhosh, S., Fejfarová, K., Dušek, M. & Khalaji, A. D. (2013). Inorg. Chem. Commun. 27, 82–87.  Web of Science CSD CrossRef CAS Google Scholar
First citationKanagarajan, V., Ezhilarasi, M. R. & Gopalakrishnan, M. (2011). Spectrochim. Acta Part A, 78, 635–639.  CrossRef CAS Google Scholar
First citationKhan, K. M., Jamil, W., Ambreen, N., Taha, M., Perveen, S. & Morales, G. A. (2014). Ultrason. Sonochem. 21, 1200–1205.  CrossRef CAS PubMed Google Scholar
First citationKöse, M., Ceyhan, G., Tümer, M., Demirtaş, I., İbrahim, , Gönül, , İlyas, & McKee, V. (2015). Spectrochim. Acta Part A, 137, 477–485.  Google Scholar
First citationMohammadi, K. & Rastegari, M. (2012). Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, 711–716.  CrossRef CAS PubMed Google Scholar
First citationNasr, G., Petit, E., Supuran, C. T., Winum, J. Y. & Barboiu, M. (2009). Bioorg. Med. Chem. Lett. 19, 6014–6017.  CrossRef PubMed CAS Google Scholar
First citationNejo, A. A., Kolawole, G. A., Opoku, A. R., Wolowska, J. & O'Brien, P. (2009). Inorg. Chim. Acta, 362, 3993–4001.  CrossRef CAS Google Scholar
First citationOuari, K., Bendia, S., Merzougui, M. & Bailly, C. (2015b). Acta Cryst. E71, o51–o52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuari, K., Bendia, S., Weiss, J. & Bailly, C. (2015a). Spectrochim. Acta Part A, 135, 624–631.  Web of Science CSD CrossRef CAS Google Scholar
First citationOuari, K., Ourari, A. & Weiss, J. (2010). J. Chem. Crystallogr. 40, 831–836.  Web of Science CSD CrossRef CAS Google Scholar
First citationPanneerselvam, P., Rather, B. A., Ravi Sankar Reddy, D. & Ramesh Kumar, N. (2009). Eur. J. Med. Chem. 44, 2328–2333.  CrossRef PubMed CAS Google Scholar
First citationPopović, Z., Roje, V., Pavlović, G., Matković-Čalogović, D. & Giester, G. (2001). J. Mol. Struct. 597, 39–47.  Web of Science CSD CrossRef CAS Google Scholar
First citationRayati, S. & Abdolalian, P. (2013). Appl. Catal. A, 456, 240–248.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTaha, Z. A., Ajlouni, A. M. & Al Momani, W. (2012). J. Lumin. 132, 2832–2841.  CrossRef CAS Google Scholar
First citationTemel, E., Ağar, E. & Büyükgüngör, O. (2010). Acta Cryst. E66, o1131.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds