organic compounds
of bis(3,3-dimethyl-2-oxobutyl)diphenylphosphonium bromide chloroform monosolvate
aDepartment of Chemistry, Grand Valley State University, 1 Campus Dr., Allendale, MI 49401, USA, and bCenter for Crystallographic Research, Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
*Correspondence e-mail: biross@gvsu.edu
In the title salt solvate, C24H32O2P+·Br−·CHCl3, the P atom has a distorted tetrahedral geometry, and the planes of the phenyl rings form a dihedral angle of 71.86 (14)° with one another. The bromide anion is disordered and was modelled over three positions (occupancy ratio 0.50:0.35:0.15). The crystal also contains one disordered chloroform solvent molecule that was modeled over three positions (occupancy ratio 0.50:0.35:0.15). Weak intermolecular interactions (C—H⋯Br and C—H⋯O) exist between the complex cation and the bromide anion fragments. The resulting supramolecular structure is an oval-shaped arrangement of phosphonium salt molecules that surround the disordered bromide anion.
Keywords: crystal structure; phosphonium bromide salt; isopropoxydiphenylphosphane; bromopinacolone; Arbuzov reaction.
CCDC reference: 1060276
1. Related literature
The title compound was synthesized using an Arbuzov reaction, as described by Schuster et al. (2009). The Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014) contains four structures of acyclic tetravalent phosphonium salts where the P atom is bonded to two phenyl rings and two β-carbonyl groups. In each structure, the phosphonium salt is coordinated to a silver(I) (Vicente et al., 1989) or palladium(II) (Vicente et al., 1990) metal center via the carbon α to the P atom.
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2013); cell SAINT (Bruker, 2013); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).
Supporting information
CCDC reference: 1060276
https://doi.org/10.1107/S205698901500763X/pk2549sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698901500763X/pk2549Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698901500763X/pk2549Isup3.cml
The molecular structure of I is shown in Figure 1, along with the atom numbering scheme. Compound I crystallized in the monoclinic
C2/c, and the contains the entire molecule along with one disordered bromide anion and one disordered molecule of chloroform. Atom P1 has a distorted tetrahedral geometry with C—P—C bond angles ranging from 106.37 (18) to 113.10 (18)°.Weak intermolecular C—H···Br and C—H···O interactions can be found throughout the
(Table 1). CH···O hydrogen bonds (2.43 Å) exist between the carbonyl oxygen O1 and an aromatic hydrogen H16 (Figure 2). The bromide ion is engaged in a variety of weak interactions with nearby hydrogen atoms, with interatomic H···Br distances ranging from 2.70 to 2.97 Å. In the fragment that has the highest occupancy ratio (50%), a weak CH···Br interaction is also present between the chloroform molecule and bromide ion. Based on the amount of disorder present in this structure, it is clear these intermolecular interactions are quite weak in nature.The title compound was prepared via an Arbuzov reaction between bromopinacolone and an excess of iso-propoxydiphenyl phosphane following the procedure of Schuster et al. (2009). 1H NMR (CDCl3, 300 MHz), δ 7.95-7.27 (m, 10H), 5.47 (d, JHP =6 Hz, 4H), 3.6 (d, J=2 Hz, 2H), 1.1 (s, 18 H). Crystals of I suitable for analysis by X-Ray diffraction were grown from vapor diffusion of ethyl acetate into a solution of CHCl3 containing Tb(NO3)3.
Crystal data, data collection and structure
details are summarized in Table 1. The positions of all hydrogen atoms were calculated geometrically and refined to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for methine, methylene and and Uiso(H) = 1.5Ueq(C) for methyl groups.The disordered bromide ion was modelled over three positions with a 50:35:15 occupancy ratio. An EADP instruction was included in the
to constrain the thermal ellipoids of these fragments to the same size and shape. The disordered chloroform molecule was also modelled in three parts with a 50:35:15 occupancy ratio. To restrain the CHCl3 geometry to accepted values, each C—Cl bond length was restrained with a DFIX instruction to 1.78 Å, and the Cl—Cl interatomic bond distances were restrained with a DANG instruction to 2.87 Å. Finally, each chlofororm fragment was treated with SIMU and DELU instructions to ensure uniform thermal ellipsoids.The molecular structure of I is shown in Figure 1, along with the atom numbering scheme. Compound I crystallized in the monoclinic
C2/c, and the contains the entire molecule along with one disordered bromide anion and one disordered molecule of chloroform. Atom P1 has a distorted tetrahedral geometry with C—P—C bond angles ranging from 106.37 (18) to 113.10 (18)°.Weak intermolecular C—H···Br and C—H···O interactions can be found throughout the
(Table 1). CH···O hydrogen bonds (2.43 Å) exist between the carbonyl oxygen O1 and an aromatic hydrogen H16 (Figure 2). The bromide ion is engaged in a variety of weak interactions with nearby hydrogen atoms, with interatomic H···Br distances ranging from 2.70 to 2.97 Å. In the fragment that has the highest occupancy ratio (50%), a weak CH···Br interaction is also present between the chloroform molecule and bromide ion. Based on the amount of disorder present in this structure, it is clear these intermolecular interactions are quite weak in nature.The title compound was synthesized following using an Arbuzov reaction, as described by Schuster et al. (2009). The Cambridge Structural Database (CSD, Version 5.36, November 2014; Groom & Allen, 2014) contains four structures of acyclic tetravalent phosphonium salts where the P atom is bonded to two phenyl rings and two β-carbonyl groups. In each structure, the phosphonium salt is coordinated to a silver(I) (Vicente et al., 1989) or palladium(II) (Vicente et al., 1990) metal center via the carbon α to the P atom.
The title compound was prepared via an Arbuzov reaction between bromopinacolone and an excess of iso-propoxydiphenyl phosphane following the procedure of Schuster et al. (2009). 1H NMR (CDCl3, 300 MHz), δ 7.95-7.27 (m, 10H), 5.47 (d, JHP =6 Hz, 4H), 3.6 (d, J=2 Hz, 2H), 1.1 (s, 18 H). Crystals of I suitable for analysis by X-Ray diffraction were grown from vapor diffusion of ethyl acetate into a solution of CHCl3 containing Tb(NO3)3.
detailsCrystal data, data collection and structure
details are summarized in Table 1. The positions of all hydrogen atoms were calculated geometrically and refined to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for methine, methylene and and Uiso(H) = 1.5Ueq(C) for methyl groups.The disordered bromide ion was modelled over three positions with a 50:35:15 occupancy ratio. An EADP instruction was included in the
to constrain the thermal ellipoids of these fragments to the same size and shape. The disordered chloroform molecule was also modelled in three parts with a 50:35:15 occupancy ratio. To restrain the CHCl3 geometry to accepted values, each C—Cl bond length was restrained with a DFIX instruction to 1.78 Å, and the Cl—Cl interatomic bond distances were restrained with a DANG instruction to 2.87 Å. Finally, each chlofororm fragment was treated with SIMU and DELU instructions to ensure uniform thermal ellipsoids.Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalMaker (Palmer, 2007); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009; Bourhis et al., 2015).Fig. 1. Structure of the asymmetric unit of I along with the atom numbering scheme. This drawing is done with 50% probability ellipsoids using standard CPK colors; only one position of the disordered bromide ion and chloroform molecule is shown, and all hydrogen atoms have been omitted for clarity. | |
Fig. 2. Weak intermolecular interactions (denoted with dashed lines) found throughout the crystal lattice of the title compound (Table 1). Only the major position of the disordered fragments are shown. The aryl rings, tert-butyl groups, and all hydrogen atoms not involved in these interactions have been omitted for clarity. This drawing is done as a ball and stick with standard CPK colors. Symmetry codes: (i) 3/2 - x, -1/2 + y, 3/2 - z; (ii) 3/2 - x, 1/2 - y, 1 - z. |
C24H32O2P+·Br−·CHCl3 | F(000) = 2400 |
Mr = 582.74 | Dx = 1.395 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 23.6380 (18) Å | Cell parameters from 9180 reflections |
b = 13.6273 (10) Å | θ = 2.3–25.3° |
c = 18.1817 (13) Å | µ = 1.85 mm−1 |
β = 108.702 (1)° | T = 173 K |
V = 5547.5 (7) Å3 | Plate, colourless |
Z = 8 | 0.34 × 0.15 × 0.09 mm |
Bruker SMART APEX CCD area-detector diffractometer | 5090 independent reflections |
Radiation source: sealed tube | 3862 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 8 pixels mm-1 | θmax = 25.4°, θmin = 1.8° |
ω and φ scans | h = −28→28 |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | k = −15→16 |
Tmin = 0.667, Tmax = 0.745 | l = −19→21 |
25767 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.064 | H-atom parameters constrained |
wR(F2) = 0.206 | w = 1/[σ2(Fo2) + (0.1214P)2 + 22.4904P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
5090 reflections | Δρmax = 1.30 e Å−3 |
373 parameters | Δρmin = −1.10 e Å−3 |
66 restraints |
C24H32O2P+·Br−·CHCl3 | V = 5547.5 (7) Å3 |
Mr = 582.74 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 23.6380 (18) Å | µ = 1.85 mm−1 |
b = 13.6273 (10) Å | T = 173 K |
c = 18.1817 (13) Å | 0.34 × 0.15 × 0.09 mm |
β = 108.702 (1)° |
Bruker SMART APEX CCD area-detector diffractometer | 5090 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2013) | 3862 reflections with I > 2σ(I) |
Tmin = 0.667, Tmax = 0.745 | Rint = 0.040 |
25767 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 66 restraints |
wR(F2) = 0.206 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.1214P)2 + 22.4904P] where P = (Fo2 + 2Fc2)/3 |
5090 reflections | Δρmax = 1.30 e Å−3 |
373 parameters | Δρmin = −1.10 e Å−3 |
Experimental. SADABS-2012/1 (Bruker, 2013) was used for absorption correction. wR2(int) was 0.0613 before and 0.0433 after correction. The Ratio of minimum to maximum transmission is 0.8956. The λ/2 correction factor is 0.0015. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.69139 (4) | 0.39763 (7) | 0.58769 (6) | 0.0214 (3) | |
O1 | 0.80869 (13) | 0.3191 (2) | 0.60430 (17) | 0.0309 (7) | |
O2 | 0.58476 (13) | 0.3136 (2) | 0.46946 (18) | 0.0305 (7) | |
C1 | 0.81047 (17) | 0.3556 (3) | 0.6659 (2) | 0.0243 (9) | |
C2 | 0.75533 (17) | 0.4046 (3) | 0.6746 (2) | 0.0254 (9) | |
H2A | 0.7644 | 0.4745 | 0.6883 | 0.030* | |
H2B | 0.7452 | 0.3731 | 0.7178 | 0.030* | |
C3 | 0.67433 (17) | 0.2690 (3) | 0.5678 (2) | 0.0233 (8) | |
H3A | 0.7025 | 0.2410 | 0.5432 | 0.028* | |
H3B | 0.6805 | 0.2342 | 0.6176 | 0.028* | |
C4 | 0.61055 (17) | 0.2511 (3) | 0.5150 (2) | 0.0237 (8) | |
C5 | 0.86786 (19) | 0.3561 (3) | 0.7359 (2) | 0.0306 (10) | |
C6 | 0.9052 (3) | 0.2661 (5) | 0.7318 (4) | 0.0618 (17) | |
H6A | 0.8827 | 0.2065 | 0.7342 | 0.093* | |
H6B | 0.9424 | 0.2670 | 0.7757 | 0.093* | |
H6C | 0.9145 | 0.2671 | 0.6830 | 0.093* | |
C7 | 0.9016 (3) | 0.4498 (5) | 0.7256 (4) | 0.0568 (15) | |
H7A | 0.8757 | 0.5071 | 0.7213 | 0.085* | |
H7B | 0.9129 | 0.4440 | 0.6784 | 0.085* | |
H7C | 0.9377 | 0.4577 | 0.7707 | 0.085* | |
C8 | 0.8561 (3) | 0.3630 (6) | 0.8130 (3) | 0.0650 (18) | |
H8A | 0.8354 | 0.4247 | 0.8152 | 0.098* | |
H8B | 0.8942 | 0.3613 | 0.8555 | 0.098* | |
H8C | 0.8313 | 0.3076 | 0.8181 | 0.098* | |
C9 | 0.63073 (18) | 0.4559 (3) | 0.6102 (2) | 0.0273 (9) | |
C10 | 0.6175 (2) | 0.4284 (5) | 0.6759 (3) | 0.0496 (14) | |
H10 | 0.6406 | 0.3793 | 0.7095 | 0.060* | |
C11 | 0.5699 (3) | 0.4733 (6) | 0.6925 (4) | 0.0682 (19) | |
H11 | 0.5607 | 0.4554 | 0.7379 | 0.082* | |
C12 | 0.5360 (2) | 0.5440 (4) | 0.6428 (4) | 0.0560 (16) | |
H12 | 0.5036 | 0.5745 | 0.6542 | 0.067* | |
C13 | 0.5489 (2) | 0.5695 (4) | 0.5781 (4) | 0.0557 (16) | |
H13 | 0.5254 | 0.6176 | 0.5440 | 0.067* | |
C14 | 0.5961 (2) | 0.5261 (4) | 0.5616 (3) | 0.0458 (13) | |
H14 | 0.6049 | 0.5447 | 0.5160 | 0.055* | |
C15 | 0.70589 (17) | 0.4604 (3) | 0.5093 (2) | 0.0240 (8) | |
C16 | 0.69455 (19) | 0.4162 (3) | 0.4366 (2) | 0.0291 (9) | |
H16 | 0.6794 | 0.3512 | 0.4281 | 0.035* | |
C17 | 0.7055 (2) | 0.4676 (4) | 0.3773 (3) | 0.0365 (11) | |
H17 | 0.6985 | 0.4374 | 0.3281 | 0.044* | |
C18 | 0.7268 (2) | 0.5631 (4) | 0.3890 (3) | 0.0402 (11) | |
H18 | 0.7330 | 0.5989 | 0.3474 | 0.048* | |
C19 | 0.7389 (2) | 0.6061 (4) | 0.4609 (3) | 0.0411 (12) | |
H19 | 0.7543 | 0.6710 | 0.4689 | 0.049* | |
C20 | 0.7288 (2) | 0.5556 (3) | 0.5220 (3) | 0.0353 (10) | |
H20 | 0.7374 | 0.5854 | 0.5716 | 0.042* | |
C21 | 0.58202 (18) | 0.1535 (3) | 0.5240 (3) | 0.0285 (9) | |
C22 | 0.6255 (2) | 0.0693 (4) | 0.5296 (3) | 0.0435 (12) | |
H22A | 0.6409 | 0.0723 | 0.4856 | 0.065* | |
H22B | 0.6049 | 0.0067 | 0.5285 | 0.065* | |
H22C | 0.6588 | 0.0747 | 0.5783 | 0.065* | |
C23 | 0.5652 (2) | 0.1610 (4) | 0.5987 (3) | 0.0456 (12) | |
H23A | 0.6016 | 0.1661 | 0.6435 | 0.068* | |
H23B | 0.5428 | 0.1024 | 0.6040 | 0.068* | |
H23C | 0.5404 | 0.2194 | 0.5962 | 0.068* | |
C24 | 0.5254 (2) | 0.1393 (4) | 0.4537 (3) | 0.0427 (12) | |
H24A | 0.4981 | 0.1943 | 0.4506 | 0.064* | |
H24B | 0.5058 | 0.0778 | 0.4596 | 0.064* | |
H24C | 0.5364 | 0.1367 | 0.4061 | 0.064* | |
Cl1A | 0.61055 (18) | 0.1585 (4) | 0.9366 (2) | 0.1062 (18) | 0.5 |
Cl2A | 0.53420 (17) | 0.1851 (3) | 0.77966 (18) | 0.0794 (11) | 0.5 |
Cl3A | 0.5717 (5) | 0.3487 (3) | 0.8797 (5) | 0.094 (3) | 0.5 |
C1A | 0.5960 (3) | 0.2348 (4) | 0.8538 (3) | 0.061 (3) | 0.5 |
H1A | 0.6319 | 0.2423 | 0.8365 | 0.074* | 0.5 |
Cl1B | 0.5809 (3) | 0.1342 (3) | 0.8669 (5) | 0.0963 (18) | 0.35 |
Cl2B | 0.6295 (4) | 0.2351 (6) | 1.0065 (4) | 0.061 (2) | 0.35 |
Cl3B | 0.5721 (5) | 0.3442 (4) | 0.8666 (6) | 0.096 (5) | 0.35 |
C1B | 0.6172 (5) | 0.2428 (4) | 0.9116 (10) | 0.078 (4) | 0.35 |
H1B | 0.6565 | 0.2479 | 0.9022 | 0.093* | 0.35 |
Cl1C | 0.6129 (8) | 0.2150 (13) | 0.9961 (6) | 0.060 (5) | 0.15 |
Cl2C | 0.5472 (5) | 0.3486 (8) | 0.8770 (10) | 0.045 (3) | 0.15 |
Cl3C | 0.6339 (3) | 0.2186 (5) | 0.8493 (5) | 0.0368 (17) | 0.15 |
C1C | 0.5777 (5) | 0.2284 (8) | 0.8944 (7) | 0.051 (5) | 0.15 |
H1C | 0.5460 | 0.1775 | 0.8740 | 0.061* | 0.15 |
Br1B | 0.7228 (3) | 0.1780 (6) | 0.7727 (5) | 0.0420 (5) | 0.35 |
Br1C | 0.7376 (2) | 0.1642 (3) | 0.7613 (3) | 0.0420 (5) | 0.15 |
Br1A | 0.7134 (2) | 0.1856 (4) | 0.7786 (3) | 0.0420 (5) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0198 (5) | 0.0230 (5) | 0.0183 (5) | 0.0017 (4) | 0.0015 (4) | −0.0006 (4) |
O1 | 0.0306 (16) | 0.0357 (17) | 0.0222 (16) | 0.0038 (13) | 0.0026 (12) | −0.0079 (13) |
O2 | 0.0246 (15) | 0.0291 (16) | 0.0307 (17) | 0.0039 (12) | −0.0011 (13) | 0.0053 (13) |
C1 | 0.023 (2) | 0.023 (2) | 0.024 (2) | 0.0004 (16) | 0.0030 (16) | 0.0006 (17) |
C2 | 0.0222 (19) | 0.030 (2) | 0.0189 (19) | −0.0005 (16) | 0.0000 (15) | −0.0048 (16) |
C3 | 0.0196 (19) | 0.0214 (19) | 0.024 (2) | −0.0006 (15) | 0.0004 (16) | −0.0012 (16) |
C4 | 0.0218 (19) | 0.026 (2) | 0.022 (2) | 0.0043 (16) | 0.0049 (16) | −0.0032 (17) |
C5 | 0.026 (2) | 0.039 (2) | 0.021 (2) | 0.0037 (18) | −0.0012 (17) | −0.0057 (18) |
C6 | 0.042 (3) | 0.072 (4) | 0.054 (4) | 0.024 (3) | −0.009 (3) | −0.006 (3) |
C7 | 0.042 (3) | 0.064 (4) | 0.057 (4) | −0.012 (3) | 0.006 (3) | −0.011 (3) |
C8 | 0.036 (3) | 0.120 (6) | 0.029 (3) | 0.009 (3) | −0.004 (2) | −0.007 (3) |
C9 | 0.024 (2) | 0.025 (2) | 0.029 (2) | −0.0022 (16) | 0.0042 (17) | −0.0087 (17) |
C10 | 0.037 (3) | 0.078 (4) | 0.034 (3) | 0.015 (3) | 0.013 (2) | 0.008 (3) |
C11 | 0.049 (3) | 0.122 (6) | 0.042 (3) | 0.011 (4) | 0.025 (3) | −0.014 (4) |
C12 | 0.033 (3) | 0.059 (4) | 0.078 (4) | 0.004 (3) | 0.021 (3) | −0.032 (3) |
C13 | 0.038 (3) | 0.039 (3) | 0.092 (5) | 0.016 (2) | 0.025 (3) | 0.002 (3) |
C14 | 0.043 (3) | 0.042 (3) | 0.059 (3) | 0.014 (2) | 0.025 (3) | 0.011 (2) |
C15 | 0.0220 (19) | 0.027 (2) | 0.021 (2) | 0.0041 (16) | 0.0036 (16) | 0.0037 (16) |
C16 | 0.030 (2) | 0.029 (2) | 0.027 (2) | 0.0009 (17) | 0.0077 (18) | −0.0013 (18) |
C17 | 0.040 (3) | 0.048 (3) | 0.022 (2) | 0.006 (2) | 0.0098 (19) | 0.004 (2) |
C18 | 0.037 (3) | 0.045 (3) | 0.043 (3) | 0.005 (2) | 0.017 (2) | 0.016 (2) |
C19 | 0.041 (3) | 0.030 (2) | 0.055 (3) | −0.005 (2) | 0.018 (2) | 0.005 (2) |
C20 | 0.037 (2) | 0.033 (2) | 0.035 (3) | −0.0035 (19) | 0.010 (2) | −0.006 (2) |
C21 | 0.023 (2) | 0.029 (2) | 0.029 (2) | −0.0031 (17) | 0.0013 (17) | 0.0030 (18) |
C22 | 0.040 (3) | 0.030 (2) | 0.055 (3) | 0.000 (2) | 0.008 (2) | 0.004 (2) |
C23 | 0.041 (3) | 0.058 (3) | 0.039 (3) | −0.010 (2) | 0.014 (2) | 0.003 (2) |
C24 | 0.034 (3) | 0.040 (3) | 0.043 (3) | −0.012 (2) | −0.004 (2) | 0.002 (2) |
Cl1A | 0.066 (2) | 0.165 (5) | 0.081 (3) | 0.035 (3) | 0.014 (2) | 0.074 (3) |
Cl2A | 0.096 (3) | 0.090 (3) | 0.0519 (19) | 0.032 (2) | 0.0233 (18) | −0.0061 (17) |
Cl3A | 0.105 (8) | 0.092 (6) | 0.077 (4) | 0.007 (5) | 0.017 (5) | −0.015 (4) |
C1A | 0.057 (8) | 0.071 (9) | 0.061 (8) | 0.013 (7) | 0.026 (7) | 0.022 (7) |
Cl1B | 0.082 (4) | 0.084 (4) | 0.119 (5) | −0.001 (3) | 0.028 (4) | −0.001 (4) |
Cl2B | 0.062 (4) | 0.056 (5) | 0.069 (3) | 0.008 (3) | 0.029 (3) | 0.020 (3) |
Cl3B | 0.078 (8) | 0.092 (7) | 0.094 (7) | −0.011 (6) | −0.005 (5) | 0.041 (5) |
C1B | 0.076 (9) | 0.075 (8) | 0.082 (7) | −0.009 (7) | 0.025 (8) | 0.020 (8) |
Cl1C | 0.063 (10) | 0.029 (6) | 0.099 (10) | 0.001 (7) | 0.039 (7) | 0.023 (6) |
Cl2C | 0.052 (7) | 0.028 (4) | 0.047 (6) | 0.008 (4) | 0.006 (6) | 0.004 (4) |
Cl3C | 0.033 (4) | 0.034 (4) | 0.049 (4) | −0.002 (3) | 0.022 (3) | −0.017 (3) |
C1C | 0.048 (10) | 0.031 (9) | 0.081 (10) | 0.004 (9) | 0.033 (8) | −0.001 (10) |
Br1B | 0.0474 (16) | 0.0398 (10) | 0.0380 (10) | 0.0058 (9) | 0.0124 (8) | 0.0082 (7) |
Br1C | 0.0474 (16) | 0.0398 (10) | 0.0380 (10) | 0.0058 (9) | 0.0124 (8) | 0.0082 (7) |
Br1A | 0.0474 (16) | 0.0398 (10) | 0.0380 (10) | 0.0058 (9) | 0.0124 (8) | 0.0082 (7) |
P1—C2 | 1.805 (4) | C15—C16 | 1.398 (6) |
P1—C3 | 1.809 (4) | C15—C20 | 1.397 (6) |
P1—C9 | 1.798 (4) | C16—H16 | 0.9500 |
P1—C15 | 1.786 (4) | C16—C17 | 1.379 (6) |
O1—C1 | 1.214 (5) | C17—H17 | 0.9500 |
O2—C4 | 1.208 (5) | C17—C18 | 1.387 (7) |
C1—C2 | 1.517 (6) | C18—H18 | 0.9500 |
C1—C5 | 1.534 (6) | C18—C19 | 1.376 (7) |
C2—H2A | 0.9900 | C19—H19 | 0.9500 |
C2—H2B | 0.9900 | C19—C20 | 1.391 (7) |
C3—H3A | 0.9900 | C20—H20 | 0.9500 |
C3—H3B | 0.9900 | C21—C22 | 1.522 (6) |
C3—C4 | 1.526 (5) | C21—C23 | 1.536 (7) |
C4—C21 | 1.523 (6) | C21—C24 | 1.537 (6) |
C5—C6 | 1.526 (7) | C22—H22A | 0.9800 |
C5—C7 | 1.549 (8) | C22—H22B | 0.9800 |
C5—C8 | 1.517 (7) | C22—H22C | 0.9800 |
C6—H6A | 0.9800 | C23—H23A | 0.9800 |
C6—H6B | 0.9800 | C23—H23B | 0.9800 |
C6—H6C | 0.9800 | C23—H23C | 0.9800 |
C7—H7A | 0.9800 | C24—H24A | 0.9800 |
C7—H7B | 0.9800 | C24—H24B | 0.9800 |
C7—H7C | 0.9800 | C24—H24C | 0.9800 |
C8—H8A | 0.9800 | Cl1A—C1A | 1.770 (5) |
C8—H8B | 0.9800 | Cl2A—Cl2Ai | 1.631 (7) |
C8—H8C | 0.9800 | Cl2A—C1A | 1.774 (5) |
C9—C10 | 1.379 (7) | Cl3A—C1A | 1.772 (5) |
C9—C14 | 1.380 (7) | C1A—H1A | 1.0000 |
C10—H10 | 0.9500 | Cl1B—C1B | 1.772 (5) |
C10—C11 | 1.397 (8) | Cl2B—C1B | 1.66 (2) |
C11—H11 | 0.9500 | Cl3B—C1B | 1.776 (5) |
C11—C12 | 1.386 (10) | C1B—H1B | 1.0000 |
C12—H12 | 0.9500 | Cl1C—C1C | 1.778 (5) |
C12—C13 | 1.351 (9) | Cl2C—C1C | 1.777 (5) |
C13—H13 | 0.9500 | Cl3C—C1C | 1.776 (5) |
C13—C14 | 1.378 (7) | C1C—H1C | 1.0000 |
C14—H14 | 0.9500 | ||
C2—P1—C3 | 107.24 (19) | C13—C14—C9 | 120.9 (5) |
C9—P1—C2 | 106.40 (19) | C13—C14—H14 | 119.6 |
C9—P1—C3 | 109.30 (19) | C16—C15—P1 | 121.4 (3) |
C15—P1—C2 | 110.60 (19) | C20—C15—P1 | 118.4 (3) |
C15—P1—C3 | 113.08 (19) | C20—C15—C16 | 120.2 (4) |
C15—P1—C9 | 110.0 (2) | C15—C16—H16 | 120.2 |
O1—C1—C2 | 120.0 (4) | C17—C16—C15 | 119.6 (4) |
O1—C1—C5 | 121.8 (4) | C17—C16—H16 | 120.2 |
C2—C1—C5 | 118.2 (3) | C16—C17—H17 | 119.8 |
P1—C2—H2A | 109.0 | C16—C17—C18 | 120.4 (4) |
P1—C2—H2B | 109.0 | C18—C17—H17 | 119.8 |
C1—C2—P1 | 113.1 (3) | C17—C18—H18 | 120.0 |
C1—C2—H2A | 109.0 | C19—C18—C17 | 120.0 (4) |
C1—C2—H2B | 109.0 | C19—C18—H18 | 120.0 |
H2A—C2—H2B | 107.8 | C18—C19—H19 | 119.6 |
P1—C3—H3A | 108.9 | C18—C19—C20 | 120.8 (4) |
P1—C3—H3B | 108.9 | C20—C19—H19 | 119.6 |
H3A—C3—H3B | 107.8 | C15—C20—H20 | 120.5 |
C4—C3—P1 | 113.1 (3) | C19—C20—C15 | 118.9 (4) |
C4—C3—H3A | 108.9 | C19—C20—H20 | 120.5 |
C4—C3—H3B | 108.9 | C4—C21—C23 | 106.6 (4) |
O2—C4—C3 | 119.9 (4) | C4—C21—C24 | 108.5 (4) |
O2—C4—C21 | 123.1 (4) | C22—C21—C4 | 110.6 (3) |
C21—C4—C3 | 117.0 (3) | C22—C21—C23 | 110.6 (4) |
C1—C5—C7 | 104.9 (4) | C22—C21—C24 | 110.5 (4) |
C6—C5—C1 | 109.2 (4) | C23—C21—C24 | 109.9 (4) |
C6—C5—C7 | 109.2 (5) | C21—C22—H22A | 109.5 |
C8—C5—C1 | 113.1 (4) | C21—C22—H22B | 109.5 |
C8—C5—C6 | 112.0 (5) | C21—C22—H22C | 109.5 |
C8—C5—C7 | 108.3 (5) | H22A—C22—H22B | 109.5 |
C5—C6—H6A | 109.5 | H22A—C22—H22C | 109.5 |
C5—C6—H6B | 109.5 | H22B—C22—H22C | 109.5 |
C5—C6—H6C | 109.5 | C21—C23—H23A | 109.5 |
H6A—C6—H6B | 109.5 | C21—C23—H23B | 109.5 |
H6A—C6—H6C | 109.5 | C21—C23—H23C | 109.5 |
H6B—C6—H6C | 109.5 | H23A—C23—H23B | 109.5 |
C5—C7—H7A | 109.5 | H23A—C23—H23C | 109.5 |
C5—C7—H7B | 109.5 | H23B—C23—H23C | 109.5 |
C5—C7—H7C | 109.5 | C21—C24—H24A | 109.5 |
H7A—C7—H7B | 109.5 | C21—C24—H24B | 109.5 |
H7A—C7—H7C | 109.5 | C21—C24—H24C | 109.5 |
H7B—C7—H7C | 109.5 | H24A—C24—H24B | 109.5 |
C5—C8—H8A | 109.5 | H24A—C24—H24C | 109.5 |
C5—C8—H8B | 109.5 | H24B—C24—H24C | 109.5 |
C5—C8—H8C | 109.5 | Cl2Ai—Cl2A—C1A | 154.5 (3) |
H8A—C8—H8B | 109.5 | Cl1A—C1A—Cl2A | 108.1 (4) |
H8A—C8—H8C | 109.5 | Cl1A—C1A—Cl3A | 106.2 (4) |
H8B—C8—H8C | 109.5 | Cl1A—C1A—H1A | 112.0 |
C10—C9—P1 | 119.7 (4) | Cl2A—C1A—H1A | 112.0 |
C10—C9—C14 | 119.4 (4) | Cl3A—C1A—Cl2A | 106.2 (4) |
C14—C9—P1 | 120.8 (4) | Cl3A—C1A—H1A | 112.0 |
C9—C10—H10 | 120.4 | Cl1B—C1B—Cl3B | 107.9 (4) |
C9—C10—C11 | 119.3 (5) | Cl1B—C1B—H1B | 108.7 |
C11—C10—H10 | 120.4 | Cl2B—C1B—Cl1B | 108.7 (10) |
C10—C11—H11 | 120.0 | Cl2B—C1B—Cl3B | 114.0 (10) |
C12—C11—C10 | 120.1 (6) | Cl2B—C1B—H1B | 108.7 |
C12—C11—H11 | 120.0 | Cl3B—C1B—H1B | 108.7 |
C11—C12—H12 | 120.0 | Cl1C—C1C—H1C | 111.1 |
C13—C12—C11 | 120.1 (5) | Cl2C—C1C—Cl1C | 107.9 (4) |
C13—C12—H12 | 120.0 | Cl2C—C1C—H1C | 111.1 |
C12—C13—H13 | 119.9 | Cl3C—C1C—Cl1C | 107.6 (4) |
C12—C13—C14 | 120.3 (5) | Cl3C—C1C—Cl2C | 107.9 (4) |
C14—C13—H13 | 119.9 | Cl3C—C1C—H1C | 111.1 |
C9—C14—H14 | 119.6 | ||
P1—C3—C4—O2 | 26.8 (5) | C3—C4—C21—C22 | −44.8 (5) |
P1—C3—C4—C21 | −152.1 (3) | C3—C4—C21—C23 | 75.5 (4) |
P1—C9—C10—C11 | −179.3 (5) | C3—C4—C21—C24 | −166.2 (4) |
P1—C9—C14—C13 | 178.9 (4) | C5—C1—C2—P1 | −179.7 (3) |
P1—C15—C16—C17 | 179.1 (3) | C9—P1—C2—C1 | 178.4 (3) |
P1—C15—C20—C19 | −178.4 (3) | C9—P1—C3—C4 | 44.9 (3) |
O1—C1—C2—P1 | 1.7 (5) | C9—P1—C15—C16 | −112.2 (3) |
O1—C1—C5—C6 | −29.7 (6) | C9—P1—C15—C20 | 67.6 (4) |
O1—C1—C5—C7 | 87.1 (5) | C9—C10—C11—C12 | 0.7 (10) |
O1—C1—C5—C8 | −155.1 (5) | C10—C9—C14—C13 | 0.6 (8) |
O2—C4—C21—C22 | 136.3 (4) | C10—C11—C12—C13 | 0.0 (10) |
O2—C4—C21—C23 | −103.4 (5) | C11—C12—C13—C14 | −0.5 (9) |
O2—C4—C21—C24 | 14.9 (6) | C12—C13—C14—C9 | 0.2 (9) |
C2—P1—C3—C4 | 159.8 (3) | C14—C9—C10—C11 | −1.1 (8) |
C2—P1—C9—C10 | −51.0 (4) | C15—P1—C2—C1 | −62.2 (3) |
C2—P1—C9—C14 | 130.8 (4) | C15—P1—C3—C4 | −78.0 (3) |
C2—P1—C15—C16 | 130.6 (3) | C15—P1—C9—C10 | −170.8 (4) |
C2—P1—C15—C20 | −49.7 (4) | C15—P1—C9—C14 | 11.0 (4) |
C2—C1—C5—C6 | 151.7 (4) | C15—C16—C17—C18 | −1.1 (7) |
C2—C1—C5—C7 | −91.5 (5) | C16—C15—C20—C19 | 1.3 (7) |
C2—C1—C5—C8 | 26.3 (6) | C16—C17—C18—C19 | 2.1 (7) |
C3—P1—C2—C1 | 61.5 (3) | C17—C18—C19—C20 | −1.4 (7) |
C3—P1—C9—C10 | 64.5 (4) | C18—C19—C20—C15 | −0.3 (7) |
C3—P1—C9—C14 | −113.7 (4) | C20—C15—C16—C17 | −0.7 (6) |
C3—P1—C15—C16 | 10.3 (4) | Cl2Ai—Cl2A—C1A—Cl1A | 113.6 (8) |
C3—P1—C15—C20 | −169.9 (3) | Cl2Ai—Cl2A—C1A—Cl3A | 0.0 (11) |
Symmetry code: (i) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···Br1Bii | 0.99 | 2.85 | 3.840 (9) | 174 |
C2—H2A···Br1Cii | 0.99 | 2.75 | 3.712 (6) | 164 |
C2—H2A···Br1Aii | 0.99 | 2.95 | 3.941 (7) | 177 |
C2—H2B···Br1B | 0.99 | 2.95 | 3.767 (9) | 141 |
C2—H2B···Br1C | 0.99 | 2.97 | 3.717 (6) | 133 |
C2—H2B···Br1A | 0.99 | 2.97 | 3.831 (7) | 145 |
C3—H3B···Br1B | 0.99 | 2.78 | 3.740 (9) | 163 |
C3—H3B···Br1C | 0.99 | 2.70 | 3.644 (6) | 159 |
C3—H3B···Br1A | 0.99 | 2.86 | 3.816 (7) | 164 |
C16—H16···O1iii | 0.95 | 2.43 | 3.287 (5) | 150 |
C1A—H1A···Br1A | 1.00 | 2.59 | 3.527 (9) | 156 |
Symmetry codes: (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+3/2, −y+1/2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2A···Br1Bi | 0.99 | 2.85 | 3.840 (9) | 173.7 |
C2—H2A···Br1Ci | 0.99 | 2.75 | 3.712 (6) | 164.3 |
C2—H2A···Br1Ai | 0.99 | 2.95 | 3.941 (7) | 176.9 |
C2—H2B···Br1B | 0.99 | 2.95 | 3.767 (9) | 140.9 |
C2—H2B···Br1C | 0.99 | 2.97 | 3.717 (6) | 132.6 |
C2—H2B···Br1A | 0.99 | 2.97 | 3.831 (7) | 145.3 |
C3—H3B···Br1B | 0.99 | 2.78 | 3.740 (9) | 163.4 |
C3—H3B···Br1C | 0.99 | 2.70 | 3.644 (6) | 159.1 |
C3—H3B···Br1A | 0.99 | 2.86 | 3.816 (7) | 163.7 |
C16—H16···O1ii | 0.95 | 2.43 | 3.287 (5) | 149.5 |
C1A—H1A···Br1A | 1.00 | 2.59 | 3.527 (9) | 156.0 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+3/2; (ii) −x+3/2, −y+1/2, −z+1. |
Acknowledgements
The authors thank GVSU for financial support (Weldon Fund, CSCE, OURS) and the NSF for student support (REU-1062944). The CCD-based X-ray diffractometers at Michigan State University were upgraded and/or replaced by departmental funds.
References
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, Oxfordshire, England. Google Scholar
Schuster, E. M., Nisnevich, G., Botoshansky, M. & Gandelman, M. (2009). Organometallics, 28, 5025–5031. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Vicente, J., Chicote, M. T., Saura-Llamas, I. & Jones, P. G. (1989). Organometallics, 8, 767–770. CSD CrossRef CAS Google Scholar
Vicente, J., Chicote, M.-T., Saura-Llamas, I., Lopez-Munoz, M.-J. & Jones, P. G. (1990). J. Chem. Soc. Dalton Trans. pp. 3683–3689. CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.