research communications
κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3]cobalt(II)
of bis(azido-aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: salaheddine_guesmi@yahoo.fr
In the mononuclear title complex, [Co(N3)2(C12H8N4S)2], the cobalt(II) atom is located on an inversion centre and displays an axially weakly compressed octahedral coordination geometry. The equatorial positions are occupied by the N atoms of two 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole ligands, whereas the axial positions are occupied by N atoms of the azide anions. The thiadiazole and pyridine rings linked to the metal are almost coplanar, with a maximum deviation from the mean plane of 0.0273 (16) Å. The cohesion of the crystal is ensured by weak C—H⋯N hydrogen bonds and by π–π interactions between pyridine rings [intercentroid distance = 3.6356 (11) Å], forming a layered arrangement parallel to (001). The structure of the title compound is isotypic with that of the analogous nickel(II) complex [Laachir et al. (2013). Acta Cryst. E69, m351–m352].
Keywords: crystal structure; transition metal; 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole ligand; azide compounds; hydrogen bonding; π–π interactions.
CCDC reference: 1057234
1. Chemical context
In recent years, the use of the ligand 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole has been studied for the synthesis of numerous complexes with transition-metal salts. An interesting feature of the metal–ligand chemistry of these compounds is that the resulting complexes can be mononuclear (Bentiss et al., 2011a; 2012; Kaase et al., 2014) or binuclear (Bentiss et al., 2004; Laachir et al., 2013). Another preparation method involves the use of the organic ligand and pseudohalide ions, especially the azide ion which is known to exhibit different coordination modes (Nath & Baruah, 2012; Ray et al., 2011).
2. Structural commentary
The structure of the title compound (Fig. 1) is isotypic with its nickel(II) analogue (Laachir et al., 2015) and similar to that of the homologous compound, [Co(C12H8N4S)2(H2O)2]·2BF4, in which the water molecules are substituted by azide ions which at the same time neutralize the positive charge of Co2+ (Bentiss et al., 2011b). The main difference between the two structures lies in the values of the dihedral angle between the two pyridine rings: this is 18.72 (6)° in the hydrated molecule, whereas it is 3.03 (2)° in the title molecule, (I). The dihedral angles formed by the thiadiazole ring and the pyridine rings N1/C1–C4 and N2/C8–C11 in (I) are 2.87 (9) and 1.1 (2)°, respectively. The cobalt cation, which is located on an inversion centre, shows an axially weakly compressed octahedral coordination geometry with the equatorial plane provided by four nitrogen atoms belonging to the pyridine and thiadiazole rings of two organic ligands [Co1—N3 = 2.1301 (14) and Co1—N4 = 2.1535 (14) Å] and the axial positions occupied by two nitrogen atoms from azide anions [Co1—N5 = 2.1132 (17) Å].
3. Supramolecular features
In the crystal, the molecules are linked by π–π interactions between pyridine rings [intercentroid distance = 3.6356 (11) Å] and by weak C—H⋯N hydrogen bonds (Table 1), forming a layered arrangement parallel to (001) (Fig. 2). The layers are connected by further C—H⋯N hydrogen bonds into a three-dimensional network.
4. Synthesis and crystallization
The ligand 2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole (noted L) was synthesized as described previously by Lebrini et al. (2005). The complex [CoL2(N3)2] was synthesized in bulk quantity by dropwise addition with constant stirring at room temperature of an aqueous solution of NaN3 (0.4 mmol, 26 mg) to an ethanol/water solution (1:1 v/v) of L (0.1 mmol, 24 mg) and CoCl2·6H2O (0.1 mmol, 24 mg). The red-coloured solid precipitated was filtered and washed with cold ethanol. Single crystals of the title compound suitable for X-ray data collection were obtained by slow interdiffusion of a solution of CoCl2·6H2O and L in acetonitrile into NaN3 dissolved in water. Red block-shaped single crystals appeared after one month. The crystals were washed with water and dried under vacuum (yield 60%). Analysis calculated for C24H16N14CoS2: C, 46.23; H, 2.59; N, 31.45 S, 10.28. Found: C, 46.42; H, 2.63; N, 31.35; S, 10.51.
CAUTION! Azide compounds are potentially explosive. Only a small amount of material should be prepared and handled with care.
5. Refinement
Crystal data, data collection and structure . H atoms were located in a difference Fourier map and treated as riding, with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). Two outliers (002 and 24) were omitted in the last cycles of refinement.
details are summarized in Table 2Supporting information
CCDC reference: 1057234
https://doi.org/10.1107/S2056989015006544/rz5153sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015006544/rz5153Isup2.hkl
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).[Co(N3)2(C12H8N4S)2] | F(000) = 634 |
Mr = 623.56 | Dx = 1.587 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3667 reflections |
a = 7.8004 (3) Å | θ = 2.6–29.6° |
b = 8.2439 (3) Å | µ = 0.86 mm−1 |
c = 20.3222 (8) Å | T = 296 K |
β = 92.910 (2)° | Block, red |
V = 1305.15 (9) Å3 | 0.39 × 0.31 × 0.18 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 3667 independent reflections |
Radiation source: fine-focus sealed tube | 2884 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
φ and ω scans | θmax = 29.6°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→10 |
Tmin = 0.640, Tmax = 0.747 | k = −11→11 |
27415 measured reflections | l = −28→28 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0381P)2 + 0.5683P] where P = (Fo2 + 2Fc2)/3 |
3667 reflections | (Δ/σ)max < 0.001 |
187 parameters | Δρmax = 0.70 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7907 (3) | 0.4986 (3) | 0.07266 (12) | 0.0486 (5) | |
H1 | 0.8731 | 0.5035 | 0.0412 | 0.058* | |
C2 | 0.8166 (3) | 0.5770 (3) | 0.13200 (13) | 0.0540 (6) | |
H2 | 0.9169 | 0.6353 | 0.1416 | 0.065* | |
C3 | 0.6910 (3) | 0.5672 (3) | 0.17662 (13) | 0.0568 (6) | |
H3 | 0.7097 | 0.6203 | 0.2167 | 0.068* | |
N1 | 0.5445 (2) | 0.4873 (2) | 0.16646 (9) | 0.0448 (4) | |
C5 | 0.5212 (2) | 0.4114 (2) | 0.10851 (9) | 0.0316 (4) | |
C6 | 0.3585 (2) | 0.3225 (2) | 0.10077 (8) | 0.0298 (4) | |
C7 | 0.0891 (2) | 0.1991 (2) | 0.11550 (8) | 0.0285 (3) | |
C8 | −0.0761 (2) | 0.1314 (2) | 0.13257 (8) | 0.0276 (3) | |
C9 | −0.1510 (2) | 0.1627 (2) | 0.19143 (8) | 0.0338 (4) | |
H9 | −0.0963 | 0.2283 | 0.2233 | 0.041* | |
C10 | −0.3087 (2) | 0.0943 (2) | 0.20186 (9) | 0.0369 (4) | |
H10 | −0.3623 | 0.1133 | 0.2410 | 0.044* | |
C11 | −0.3856 (2) | −0.0022 (2) | 0.15379 (10) | 0.0382 (4) | |
H11 | −0.4920 | −0.0493 | 0.1599 | 0.046* | |
C12 | −0.3022 (2) | −0.0285 (2) | 0.09601 (9) | 0.0348 (4) | |
H12 | −0.3547 | −0.0941 | 0.0637 | 0.042* | |
C4 | 0.6406 (2) | 0.4123 (2) | 0.06039 (10) | 0.0383 (4) | |
H4 | 0.6204 | 0.3565 | 0.0210 | 0.046* | |
N2 | 0.30958 (18) | 0.23430 (19) | 0.05046 (7) | 0.0314 (3) | |
N3 | 0.15296 (18) | 0.16405 (19) | 0.05884 (7) | 0.0307 (3) | |
N4 | −0.14945 (18) | 0.03680 (18) | 0.08497 (7) | 0.0285 (3) | |
N5 | 0.1294 (2) | −0.1959 (2) | 0.04761 (8) | 0.0425 (4) | |
N6 | 0.1687 (2) | −0.1872 (2) | 0.10472 (8) | 0.0394 (4) | |
N7 | 0.2046 (3) | −0.1805 (3) | 0.16093 (9) | 0.0650 (6) | |
S1 | 0.21579 (6) | 0.32700 (6) | 0.16328 (2) | 0.03604 (12) | |
Co1 | 0.0000 | 0.0000 | 0.0000 | 0.02677 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0316 (10) | 0.0552 (13) | 0.0600 (14) | −0.0009 (10) | 0.0134 (9) | 0.0183 (11) |
C2 | 0.0366 (11) | 0.0422 (12) | 0.0829 (17) | −0.0157 (10) | 0.0016 (11) | 0.0003 (12) |
C3 | 0.0475 (13) | 0.0543 (14) | 0.0687 (15) | −0.0162 (11) | 0.0041 (11) | −0.0261 (12) |
N1 | 0.0358 (9) | 0.0484 (10) | 0.0508 (10) | −0.0103 (8) | 0.0086 (8) | −0.0184 (8) |
C5 | 0.0270 (8) | 0.0304 (9) | 0.0371 (9) | −0.0022 (7) | 0.0009 (7) | 0.0008 (7) |
C6 | 0.0269 (8) | 0.0349 (9) | 0.0278 (8) | −0.0020 (7) | 0.0028 (7) | 0.0002 (7) |
C7 | 0.0292 (8) | 0.0349 (9) | 0.0213 (7) | −0.0025 (7) | 0.0004 (6) | −0.0024 (6) |
C8 | 0.0277 (8) | 0.0330 (9) | 0.0223 (7) | −0.0009 (7) | 0.0028 (6) | 0.0013 (6) |
C9 | 0.0368 (9) | 0.0432 (10) | 0.0216 (8) | −0.0008 (8) | 0.0040 (7) | −0.0026 (7) |
C10 | 0.0371 (9) | 0.0468 (11) | 0.0280 (9) | 0.0032 (9) | 0.0118 (7) | 0.0033 (8) |
C11 | 0.0308 (9) | 0.0445 (11) | 0.0403 (10) | −0.0032 (8) | 0.0112 (8) | 0.0055 (8) |
C12 | 0.0310 (9) | 0.0393 (10) | 0.0342 (9) | −0.0060 (8) | 0.0042 (7) | −0.0026 (7) |
C4 | 0.0353 (9) | 0.0443 (11) | 0.0355 (10) | 0.0012 (8) | 0.0029 (8) | 0.0038 (8) |
N2 | 0.0284 (7) | 0.0407 (8) | 0.0252 (7) | −0.0078 (6) | 0.0032 (6) | −0.0028 (6) |
N3 | 0.0281 (7) | 0.0411 (8) | 0.0229 (7) | −0.0064 (6) | 0.0028 (6) | −0.0027 (6) |
N4 | 0.0283 (7) | 0.0340 (7) | 0.0235 (7) | −0.0032 (6) | 0.0034 (6) | −0.0012 (6) |
N5 | 0.0489 (10) | 0.0472 (10) | 0.0316 (8) | 0.0043 (8) | 0.0037 (7) | 0.0004 (7) |
N6 | 0.0301 (8) | 0.0476 (10) | 0.0404 (9) | −0.0064 (7) | 0.0010 (7) | 0.0125 (7) |
N7 | 0.0610 (13) | 0.0935 (17) | 0.0391 (10) | −0.0169 (12) | −0.0125 (9) | 0.0198 (10) |
S1 | 0.0322 (2) | 0.0481 (3) | 0.0282 (2) | −0.0092 (2) | 0.00487 (17) | −0.01202 (19) |
Co1 | 0.02599 (16) | 0.03633 (19) | 0.01818 (15) | −0.00561 (14) | 0.00290 (11) | −0.00329 (13) |
C1—C2 | 1.374 (3) | C9—H9 | 0.9300 |
C1—C4 | 1.382 (3) | C10—C11 | 1.374 (3) |
C1—H1 | 0.9300 | C10—H10 | 0.9300 |
C2—C3 | 1.371 (3) | C11—C12 | 1.388 (3) |
C2—H2 | 0.9300 | C11—H11 | 0.9300 |
C3—N1 | 1.326 (3) | C12—N4 | 1.337 (2) |
C3—H3 | 0.9300 | C12—H12 | 0.9300 |
N1—C5 | 1.338 (2) | C4—H4 | 0.9300 |
C5—C4 | 1.384 (3) | N2—N3 | 1.3704 (19) |
C5—C6 | 1.467 (2) | N3—Co1 | 2.1301 (14) |
C6—N2 | 1.297 (2) | N4—Co1 | 2.1535 (14) |
C6—S1 | 1.7317 (16) | N5—N6 | 1.187 (2) |
C7—N3 | 1.310 (2) | N5—Co1 | 2.1132 (17) |
C7—C8 | 1.462 (2) | N6—N7 | 1.164 (2) |
C7—S1 | 1.7128 (17) | Co1—N5i | 2.1132 (17) |
C8—N4 | 1.347 (2) | Co1—N3i | 2.1301 (14) |
C8—C9 | 1.382 (2) | Co1—N4i | 2.1535 (14) |
C9—C10 | 1.380 (3) | ||
C2—C1—C4 | 119.10 (19) | N4—C12—C11 | 122.64 (17) |
C2—C1—H1 | 120.5 | N4—C12—H12 | 118.7 |
C4—C1—H1 | 120.5 | C11—C12—H12 | 118.7 |
C3—C2—C1 | 118.31 (19) | C1—C4—C5 | 118.00 (19) |
C3—C2—H2 | 120.8 | C1—C4—H4 | 121.0 |
C1—C2—H2 | 120.8 | C5—C4—H4 | 121.0 |
N1—C3—C2 | 124.4 (2) | C6—N2—N3 | 111.59 (13) |
N1—C3—H3 | 117.8 | C7—N3—N2 | 113.40 (14) |
C2—C3—H3 | 117.8 | C7—N3—Co1 | 113.97 (11) |
C3—N1—C5 | 116.54 (18) | N2—N3—Co1 | 132.53 (10) |
N1—C5—C4 | 123.60 (17) | C12—N4—C8 | 117.54 (15) |
N1—C5—C6 | 113.95 (15) | C12—N4—Co1 | 126.96 (12) |
C4—C5—C6 | 122.44 (17) | C8—N4—Co1 | 115.44 (11) |
N2—C6—C5 | 125.69 (15) | N6—N5—Co1 | 119.66 (14) |
N2—C6—S1 | 114.57 (12) | N7—N6—N5 | 178.7 (2) |
C5—C6—S1 | 119.72 (13) | C7—S1—C6 | 86.85 (8) |
N3—C7—C8 | 120.22 (15) | N5—Co1—N5i | 180.0 |
N3—C7—S1 | 113.57 (13) | N5—Co1—N3i | 90.73 (6) |
C8—C7—S1 | 126.20 (12) | N5i—Co1—N3i | 89.27 (6) |
N4—C8—C9 | 123.13 (16) | N5—Co1—N3 | 89.27 (6) |
N4—C8—C7 | 113.46 (14) | N5i—Co1—N3 | 90.73 (6) |
C9—C8—C7 | 123.40 (16) | N3i—Co1—N3 | 180.0 |
C10—C9—C8 | 118.44 (17) | N5—Co1—N4 | 90.35 (6) |
C10—C9—H9 | 120.8 | N5i—Co1—N4 | 89.65 (6) |
C8—C9—H9 | 120.8 | N3i—Co1—N4 | 103.24 (5) |
C11—C10—C9 | 119.22 (16) | N3—Co1—N4 | 76.76 (5) |
C11—C10—H10 | 120.4 | N5—Co1—N4i | 89.65 (6) |
C9—C10—H10 | 120.4 | N5i—Co1—N4i | 90.34 (6) |
C10—C11—C12 | 119.01 (17) | N3i—Co1—N4i | 76.76 (5) |
C10—C11—H11 | 120.5 | N3—Co1—N4i | 103.24 (5) |
C12—C11—H11 | 120.5 | N4—Co1—N4i | 180.0 |
Symmetry code: (i) −x, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···N6ii | 0.93 | 2.59 | 3.432 (3) | 151 |
C11—H11···N7iii | 0.93 | 2.60 | 3.528 (3) | 173 |
C10—H10···N1iv | 0.93 | 2.63 | 3.438 (2) | 146 |
Symmetry codes: (ii) x+1, y+1, z; (iii) x−1, y, z; (iv) −x, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Chouaib Doukkali University, El Jadida, Morocco, for financial support.
References
Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052–m1053. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834–m835. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bentiss, F., Lagrenée, M., Mentré, O., Conflant, P., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Inorg. Chem. 43, 1865–1873. Web of Science CrossRef PubMed CAS Google Scholar
Bentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360–m361. CSD CrossRef CAS IUCr Journals Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kaase, D. & Klingele, J. (2014). Acta Cryst. E70, m252–m253. CSD CrossRef IUCr Journals Google Scholar
Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351–m352. CSD CrossRef IUCr Journals Google Scholar
Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, m24–m25. CSD CrossRef IUCr Journals Google Scholar
Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994. CrossRef CAS Google Scholar
Nath, J. K. & Baruah, J. B. (2012). Polyhedron, 36, 1–5. Web of Science CSD CrossRef CAS Google Scholar
Ray, A., Rosair, G. M., Pilet, G., Dede, B., Gómez-García, C. J., Signorella, S., Bellú, S. & Mitra, S. (2011). Inorg. Chim. Acta, 375, 20–30. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.