research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(azido-κN)bis­[2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole-κ2N2,N3]cobalt(II)

aLaboratoire de Chimie de Coordination et d'Analytique (LCCA), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, bLaboratoire de Catalyse et de Corrosion de Matériaux (LCCM), Faculté des Sciences, Université Chouaib Doukkali, BP 20, M-24000 El Jadida, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: salaheddine_guesmi@yahoo.fr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 19 March 2015; accepted 31 March 2015; online 9 April 2015)

In the mononuclear title complex, [Co(N3)2(C12H8N4S)2], the cobalt(II) atom is located on an inversion centre and displays an axially weakly compressed octa­hedral coordination geometry. The equatorial positions are occupied by the N atoms of two 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole ligands, whereas the axial positions are occupied by N atoms of the azide anions. The thia­diazole and pyridine rings linked to the metal are almost coplanar, with a maximum deviation from the mean plane of 0.0273 (16) Å. The cohesion of the crystal is ensured by weak C—H⋯N hydrogen bonds and by ππ inter­actions between pyridine rings [inter­centroid distance = 3.6356 (11) Å], forming a layered arrangement parallel to (001). The structure of the title compound is isotypic with that of the analogous nickel(II) complex [Laachir et al. (2013[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351-m352.]). Acta Cryst. E69, m351–m352].

1. Chemical context

In recent years, the use of the ligand 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole has been studied for the synthesis of numerous complexes with transition-metal salts. An inter­esting feature of the metal–ligand chemistry of these compounds is that the resulting complexes can be mononuclear (Bentiss et al., 2011a[Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052-m1053.]; 2012[Bentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360-m361.]; Kaase et al., 2014[Kaase, D. & Klingele, J. (2014). Acta Cryst. E70, m252-m253.]) or binuclear (Bentiss et al., 2004[Bentiss, F., Lagrenée, M., Mentré, O., Conflant, P., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Inorg. Chem. 43, 1865-1873.]; Laachir et al., 2013[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351-m352.]). Another preparation method involves the use of the organic ligand and pseudohalide ions, especially the azide ion which is known to exhibit different coordination modes (Nath & Baruah, 2012[Nath, J. K. & Baruah, J. B. (2012). Polyhedron, 36, 1-5.]; Ray et al., 2011[Ray, A., Rosair, G. M., Pilet, G., Dede, B., Gómez-García, C. J., Signorella, S., Bellú, S. & Mitra, S. (2011). Inorg. Chim. Acta, 375, 20-30.]).

[Scheme 1]

2. Structural commentary

The structure of the title compound (Fig. 1[link]) is isotypic with its nickel(II) analogue (Laachir et al., 2015[Laachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, m24-m25.]) and similar to that of the homologous compound, [Co(C12H8N4S)2(H2O)2]·2BF4, in which the water mol­ecules are substituted by azide ions which at the same time neutralize the positive charge of Co2+ (Bentiss et al., 2011b[Bentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834-m835.]). The main difference between the two structures lies in the values of the dihedral angle between the two pyridine rings: this is 18.72 (6)° in the hydrated mol­ecule, whereas it is 3.03 (2)° in the title mol­ecule, (I)[link]. The dihedral angles formed by the thia­diazole ring and the pyridine rings N1/C1–C4 and N2/C8–C11 in (I)[link] are 2.87 (9) and 1.1 (2)°, respectively. The cobalt cation, which is located on an inversion centre, shows an axially weakly compressed octa­hedral coordination geometry with the equatorial plane provided by four nitro­gen atoms belonging to the pyridine and thia­diazole rings of two organic ligands [Co1—N3 = 2.1301 (14) and Co1—N4 = 2.1535 (14) Å] and the axial positions occupied by two nitro­gen atoms from azide anions [Co1—N5 = 2.1132 (17) Å].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as spheres of arbitrary radius. [Symmetry code: (i) −x, −y, −z.]

3. Supra­molecular features

In the crystal, the mol­ecules are linked by ππ inter­actions between pyridine rings [inter­centroid distance = 3.6356 (11) Å] and by weak C—H⋯N hydrogen bonds (Table 1[link]), forming a layered arrangement parallel to (001) (Fig. 2[link]). The layers are connected by further C—H⋯N hydrogen bonds into a three-dimensional network.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N6i 0.93 2.59 3.432 (3) 151
C11—H11⋯N7ii 0.93 2.60 3.528 (3) 173
C10—H10⋯N1iii 0.93 2.63 3.438 (2) 146
Symmetry codes: (i) x+1, y+1, z; (ii) x-1, y, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Partial crystal packing of the title compound, showing inter­molecular ππ inter­actions between pyridine rings (dashed green lines) and inter­molecular C—H⋯N hydrogen bonds (dashed blue lines).

4. Synthesis and crystallization

The ligand 2,5-bis­(pyridin-2-yl)-1,3,4-thia­diazole (noted L) was synthesized as described previously by Lebrini et al. (2005[Lebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991-994.]). The complex [CoL2(N3)2] was synthesized in bulk qu­antity by dropwise addition with constant stirring at room temperature of an aqueous solution of NaN3 (0.4 mmol, 26 mg) to an ethanol/water solution (1:1 v/v) of L (0.1 mmol, 24 mg) and CoCl2·6H2O (0.1 mmol, 24 mg). The red-coloured solid precipitated was filtered and washed with cold ethanol. Single crystals of the title compound suitable for X-ray data collection were obtained by slow inter­diffusion of a solution of CoCl2·6H2O and L in aceto­nitrile into NaN3 dissolved in water. Red block-shaped single crystals appeared after one month. The crystals were washed with water and dried under vacuum (yield 60%). Analysis calculated for C24H16N14CoS2: C, 46.23; H, 2.59; N, 31.45 S, 10.28. Found: C, 46.42; H, 2.63; N, 31.35; S, 10.51.

CAUTION! Azide compounds are potentially explosive. Only a small amount of material should be prepared and handled with care.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were located in a difference Fourier map and treated as riding, with C—H = 0.93 Å, and with Uiso(H) = 1.2 Ueq(C). Two outliers (002 and [\overline{2}]24) were omitted in the last cycles of refinement.

Table 2
Experimental details

Crystal data
Chemical formula [Co(N3)2(C12H8N4S)2]
Mr 623.56
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.8004 (3), 8.2439 (3), 20.3222 (8)
β (°) 92.910 (2)
V3) 1305.15 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.86
Crystal size (mm) 0.39 × 0.31 × 0.18
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.640, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 27415, 3667, 2884
Rint 0.043
(sin θ/λ)max−1) 0.694
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.03
No. of reflections 3667
No. of parameters 187
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.70, −0.26
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Bis(azido-κN)bis[2,5-bis(pyridin-2-yl)-1,3,4-thiadiazole-κ2N2,N3]cobalt(II) top
Crystal data top
[Co(N3)2(C12H8N4S)2]F(000) = 634
Mr = 623.56Dx = 1.587 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3667 reflections
a = 7.8004 (3) Åθ = 2.6–29.6°
b = 8.2439 (3) ŵ = 0.86 mm1
c = 20.3222 (8) ÅT = 296 K
β = 92.910 (2)°Block, red
V = 1305.15 (9) Å30.39 × 0.31 × 0.18 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3667 independent reflections
Radiation source: fine-focus sealed tube2884 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 29.6°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 810
Tmin = 0.640, Tmax = 0.747k = 1111
27415 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.5683P]
where P = (Fo2 + 2Fc2)/3
3667 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7907 (3)0.4986 (3)0.07266 (12)0.0486 (5)
H10.87310.50350.04120.058*
C20.8166 (3)0.5770 (3)0.13200 (13)0.0540 (6)
H20.91690.63530.14160.065*
C30.6910 (3)0.5672 (3)0.17662 (13)0.0568 (6)
H30.70970.62030.21670.068*
N10.5445 (2)0.4873 (2)0.16646 (9)0.0448 (4)
C50.5212 (2)0.4114 (2)0.10851 (9)0.0316 (4)
C60.3585 (2)0.3225 (2)0.10077 (8)0.0298 (4)
C70.0891 (2)0.1991 (2)0.11550 (8)0.0285 (3)
C80.0761 (2)0.1314 (2)0.13257 (8)0.0276 (3)
C90.1510 (2)0.1627 (2)0.19143 (8)0.0338 (4)
H90.09630.22830.22330.041*
C100.3087 (2)0.0943 (2)0.20186 (9)0.0369 (4)
H100.36230.11330.24100.044*
C110.3856 (2)0.0022 (2)0.15379 (10)0.0382 (4)
H110.49200.04930.15990.046*
C120.3022 (2)0.0285 (2)0.09601 (9)0.0348 (4)
H120.35470.09410.06370.042*
C40.6406 (2)0.4123 (2)0.06039 (10)0.0383 (4)
H40.62040.35650.02100.046*
N20.30958 (18)0.23430 (19)0.05046 (7)0.0314 (3)
N30.15296 (18)0.16405 (19)0.05884 (7)0.0307 (3)
N40.14945 (18)0.03680 (18)0.08497 (7)0.0285 (3)
N50.1294 (2)0.1959 (2)0.04761 (8)0.0425 (4)
N60.1687 (2)0.1872 (2)0.10472 (8)0.0394 (4)
N70.2046 (3)0.1805 (3)0.16093 (9)0.0650 (6)
S10.21579 (6)0.32700 (6)0.16328 (2)0.03604 (12)
Co10.00000.00000.00000.02677 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (10)0.0552 (13)0.0600 (14)0.0009 (10)0.0134 (9)0.0183 (11)
C20.0366 (11)0.0422 (12)0.0829 (17)0.0157 (10)0.0016 (11)0.0003 (12)
C30.0475 (13)0.0543 (14)0.0687 (15)0.0162 (11)0.0041 (11)0.0261 (12)
N10.0358 (9)0.0484 (10)0.0508 (10)0.0103 (8)0.0086 (8)0.0184 (8)
C50.0270 (8)0.0304 (9)0.0371 (9)0.0022 (7)0.0009 (7)0.0008 (7)
C60.0269 (8)0.0349 (9)0.0278 (8)0.0020 (7)0.0028 (7)0.0002 (7)
C70.0292 (8)0.0349 (9)0.0213 (7)0.0025 (7)0.0004 (6)0.0024 (6)
C80.0277 (8)0.0330 (9)0.0223 (7)0.0009 (7)0.0028 (6)0.0013 (6)
C90.0368 (9)0.0432 (10)0.0216 (8)0.0008 (8)0.0040 (7)0.0026 (7)
C100.0371 (9)0.0468 (11)0.0280 (9)0.0032 (9)0.0118 (7)0.0033 (8)
C110.0308 (9)0.0445 (11)0.0403 (10)0.0032 (8)0.0112 (8)0.0055 (8)
C120.0310 (9)0.0393 (10)0.0342 (9)0.0060 (8)0.0042 (7)0.0026 (7)
C40.0353 (9)0.0443 (11)0.0355 (10)0.0012 (8)0.0029 (8)0.0038 (8)
N20.0284 (7)0.0407 (8)0.0252 (7)0.0078 (6)0.0032 (6)0.0028 (6)
N30.0281 (7)0.0411 (8)0.0229 (7)0.0064 (6)0.0028 (6)0.0027 (6)
N40.0283 (7)0.0340 (7)0.0235 (7)0.0032 (6)0.0034 (6)0.0012 (6)
N50.0489 (10)0.0472 (10)0.0316 (8)0.0043 (8)0.0037 (7)0.0004 (7)
N60.0301 (8)0.0476 (10)0.0404 (9)0.0064 (7)0.0010 (7)0.0125 (7)
N70.0610 (13)0.0935 (17)0.0391 (10)0.0169 (12)0.0125 (9)0.0198 (10)
S10.0322 (2)0.0481 (3)0.0282 (2)0.0092 (2)0.00487 (17)0.01202 (19)
Co10.02599 (16)0.03633 (19)0.01818 (15)0.00561 (14)0.00290 (11)0.00329 (13)
Geometric parameters (Å, º) top
C1—C21.374 (3)C9—H90.9300
C1—C41.382 (3)C10—C111.374 (3)
C1—H10.9300C10—H100.9300
C2—C31.371 (3)C11—C121.388 (3)
C2—H20.9300C11—H110.9300
C3—N11.326 (3)C12—N41.337 (2)
C3—H30.9300C12—H120.9300
N1—C51.338 (2)C4—H40.9300
C5—C41.384 (3)N2—N31.3704 (19)
C5—C61.467 (2)N3—Co12.1301 (14)
C6—N21.297 (2)N4—Co12.1535 (14)
C6—S11.7317 (16)N5—N61.187 (2)
C7—N31.310 (2)N5—Co12.1132 (17)
C7—C81.462 (2)N6—N71.164 (2)
C7—S11.7128 (17)Co1—N5i2.1132 (17)
C8—N41.347 (2)Co1—N3i2.1301 (14)
C8—C91.382 (2)Co1—N4i2.1535 (14)
C9—C101.380 (3)
C2—C1—C4119.10 (19)N4—C12—C11122.64 (17)
C2—C1—H1120.5N4—C12—H12118.7
C4—C1—H1120.5C11—C12—H12118.7
C3—C2—C1118.31 (19)C1—C4—C5118.00 (19)
C3—C2—H2120.8C1—C4—H4121.0
C1—C2—H2120.8C5—C4—H4121.0
N1—C3—C2124.4 (2)C6—N2—N3111.59 (13)
N1—C3—H3117.8C7—N3—N2113.40 (14)
C2—C3—H3117.8C7—N3—Co1113.97 (11)
C3—N1—C5116.54 (18)N2—N3—Co1132.53 (10)
N1—C5—C4123.60 (17)C12—N4—C8117.54 (15)
N1—C5—C6113.95 (15)C12—N4—Co1126.96 (12)
C4—C5—C6122.44 (17)C8—N4—Co1115.44 (11)
N2—C6—C5125.69 (15)N6—N5—Co1119.66 (14)
N2—C6—S1114.57 (12)N7—N6—N5178.7 (2)
C5—C6—S1119.72 (13)C7—S1—C686.85 (8)
N3—C7—C8120.22 (15)N5—Co1—N5i180.0
N3—C7—S1113.57 (13)N5—Co1—N3i90.73 (6)
C8—C7—S1126.20 (12)N5i—Co1—N3i89.27 (6)
N4—C8—C9123.13 (16)N5—Co1—N389.27 (6)
N4—C8—C7113.46 (14)N5i—Co1—N390.73 (6)
C9—C8—C7123.40 (16)N3i—Co1—N3180.0
C10—C9—C8118.44 (17)N5—Co1—N490.35 (6)
C10—C9—H9120.8N5i—Co1—N489.65 (6)
C8—C9—H9120.8N3i—Co1—N4103.24 (5)
C11—C10—C9119.22 (16)N3—Co1—N476.76 (5)
C11—C10—H10120.4N5—Co1—N4i89.65 (6)
C9—C10—H10120.4N5i—Co1—N4i90.34 (6)
C10—C11—C12119.01 (17)N3i—Co1—N4i76.76 (5)
C10—C11—H11120.5N3—Co1—N4i103.24 (5)
C12—C11—H11120.5N4—Co1—N4i180.0
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N6ii0.932.593.432 (3)151
C11—H11···N7iii0.932.603.528 (3)173
C10—H10···N1iv0.932.633.438 (2)146
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y, z; (iv) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Chouaib Doukkali University, El Jadida, Morocco, for financial support.

References

First citationBentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011a). Acta Cryst. E67, m1052–m1053.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBentiss, F., Capet, F., Lagrenée, M., Saadi, M. & El Ammari, L. (2011b). Acta Cryst. E67, m834–m835.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBentiss, F., Lagrenée, M., Mentré, O., Conflant, P., Vezin, H., Wignacourt, J. P. & Holt, E. M. (2004). Inorg. Chem. 43, 1865–1873.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBentiss, F., Outirite, M., Lagrenée, M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, m360–m361.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKaase, D. & Klingele, J. (2014). Acta Cryst. E70, m252–m253.  CSD CrossRef IUCr Journals Google Scholar
First citationLaachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, m351–m352.  CSD CrossRef IUCr Journals Google Scholar
First citationLaachir, A., Bentiss, F., Guesmi, S., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, m24–m25.  CSD CrossRef IUCr Journals Google Scholar
First citationLebrini, M., Bentiss, F. & Lagrenée, M. (2005). J. Heterocycl. Chem. 42, 991–994.  CrossRef CAS Google Scholar
First citationNath, J. K. & Baruah, J. B. (2012). Polyhedron, 36, 1–5.  Web of Science CSD CrossRef CAS Google Scholar
First citationRay, A., Rosair, G. M., Pilet, G., Dede, B., Gómez-García, C. J., Signorella, S., Bellú, S. & Mitra, S. (2011). Inorg. Chim. Acta, 375, 20–30.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds