metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[4-(di­methyl­amino)­pyridine-κN1]bis­­(methanol-κO)bis­­(thio­cyanato-κN)manganese(II)

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
*Correspondence e-mail: ssuckert@ac.uni-kiel.de

Edited by J. Simpson, University of Otago, New Zealand (Received 11 March 2015; accepted 13 April 2015; online 30 April 2015)

The whole mol­ecule of the title compound, [Mn(NCS)2(CH3OH)2(C5H6N2)2], is generated by inversion symmetry. The MnII ion, which is located on an inversion center, is coordinated by two 4-(di­methyl­amino)­pyridine ligands, two methanol ligands and two terminally N-bonded thio­cyanate anions, forming a slightly distorted octa­hedron. In the crystal, mol­ecules are linked by O—H⋯S hydrogen bonds, forming chains extending along the a-axis direction.

1. Related literature

For the structure of another discrete complex with 4-(di­methyl­amino)­pyridine and thio­cyanate ligands, see: Chen et al. (2007[Chen, F.-J., Liu, G.-Q. & Zeng, Z.-Z. (2007). Anal. Sci. X, 23, x253-x254.]). For general background to this work, see: Näther et al. (2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Mn(NCS)2(CH4O)2(C5H6N2)2]

  • Mr = 479.52

  • Triclinic, [P \overline 1]

  • a = 7.0771 (7) Å

  • b = 8.1586 (8) Å

  • c = 10.6491 (10) Å

  • α = 76.381 (11)°

  • β = 81.672 (11)°

  • γ = 79.809 (11)°

  • V = 584.72 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 180 K

  • 0.16 × 0.10 × 0.04 mm

2.2. Data collection

  • Stoe IPDS-1 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.903, Tmax = 0.959

  • 4585 measured reflections

  • 2459 independent reflections

  • 1885 reflections with I > 2σ(I)

  • Rint = 0.039

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.100

  • S = 1.04

  • 2459 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O31—H1O⋯S1i 0.85 2.42 3.2409 (18) 161
Symmetry code: (i) x-1, y, z.

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

MnSO4.H2O was purchased from Merck and 4-(di­methyl­amino)­pyridine and Ba(NCS)2.3 H2O were purchased from Alfa Aesar. Mn(NCS)2 was synthesized by stirring 17.97 g (58.44 mmol) Ba(NCS)2.3 H2O and 9.88 g (58.44 mmol) MnSO4.H2O in 300 mL H2O at room temperature for three hours. The white precipitate of BaSO4 was filtered of and the solvent removed with a rotary evaporator. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of (0.18 mmol) 30.8 mg Mn(NCS)2 and (0.3 mmol) 36.7 mg 4-(di­methyl­amino)­pyridine in 1.0 mL methanol at room temperature. After a few days colorless plate shaped crystals of the title compound were obtained.

Refinement top

The C—H H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic and and C—H = 0.98 Å for methyl H atoms. The O—H H atom was located in a difference map, its bond length set to ideal values of 0.85 Å and refined with Uiso(H) = 1.5 Ueq(O)using a riding model.

Related literature top

For the structure of another discrete complex with 4-(dimethylamino)pyridine and thiocyanate ligands, see: Chen et al. (2007). For general background to this work, see: Näther et al. (2013).

Structure description top

For the structure of another discrete complex with 4-(dimethylamino)pyridine and thiocyanate ligands, see: Chen et al. (2007). For general background to this work, see: Näther et al. (2013).

Synthesis and crystallization top

MnSO4.H2O was purchased from Merck and 4-(di­methyl­amino)­pyridine and Ba(NCS)2.3 H2O were purchased from Alfa Aesar. Mn(NCS)2 was synthesized by stirring 17.97 g (58.44 mmol) Ba(NCS)2.3 H2O and 9.88 g (58.44 mmol) MnSO4.H2O in 300 mL H2O at room temperature for three hours. The white precipitate of BaSO4 was filtered of and the solvent removed with a rotary evaporator. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of (0.18 mmol) 30.8 mg Mn(NCS)2 and (0.3 mmol) 36.7 mg 4-(di­methyl­amino)­pyridine in 1.0 mL methanol at room temperature. After a few days colorless plate shaped crystals of the title compound were obtained.

Refinement details top

The C—H H atoms were positioned with idealized geometry and were refined isotropically with Uiso(H) = 1.2 Ueq(C) (1.5 for methyl H atoms) using a riding model with C—H = 0.95 Å for aromatic and and C—H = 0.98 Å for methyl H atoms. The O—H H atom was located in a difference map, its bond length set to ideal values of 0.85 Å and refined with Uiso(H) = 1.5 Ueq(O)using a riding model.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Structure of the title complex with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: i = -x+1,-y,-z+1.
[Figure 2] Fig. 2. Crystal structure of the title compound viewed perpendicular to the crystallographic a,c plane.
Bis[4-(dimethylamino)pyridine-κN1]bis(methanol-κO)bis(thiocyanato-κN)manganese(II) top
Crystal data top
[Mn(NCS)2(CH4O)2(C5H6N2)2]Z = 1
Mr = 479.52F(000) = 251
Triclinic, P1Dx = 1.362 Mg m3
a = 7.0771 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1586 (8) ÅCell parameters from 4585 reflections
c = 10.6491 (10) Åθ = 2.6–27.0°
α = 76.381 (11)°µ = 0.77 mm1
β = 81.672 (11)°T = 180 K
γ = 79.809 (11)°Plate, colorless
V = 584.72 (10) Å30.16 × 0.10 × 0.04 mm
Data collection top
Stoe IPDS-1
diffractometer
1885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
phi scansθmax = 27.0°, θmin = 2.6°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 99
Tmin = 0.903, Tmax = 0.959k = 1010
4585 measured reflectionsl = 1313
2459 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0598P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2459 reflectionsΔρmax = 0.30 e Å3
133 parametersΔρmin = 0.59 e Å3
Crystal data top
[Mn(NCS)2(CH4O)2(C5H6N2)2]γ = 79.809 (11)°
Mr = 479.52V = 584.72 (10) Å3
Triclinic, P1Z = 1
a = 7.0771 (7) ÅMo Kα radiation
b = 8.1586 (8) ŵ = 0.77 mm1
c = 10.6491 (10) ÅT = 180 K
α = 76.381 (11)°0.16 × 0.10 × 0.04 mm
β = 81.672 (11)°
Data collection top
Stoe IPDS-1
diffractometer
2459 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
1885 reflections with I > 2σ(I)
Tmin = 0.903, Tmax = 0.959Rint = 0.039
4585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.04Δρmax = 0.30 e Å3
2459 reflectionsΔρmin = 0.59 e Å3
133 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.00000.50000.02111 (15)
N10.6294 (3)0.0926 (3)0.63997 (19)0.0312 (5)
C10.7395 (3)0.1199 (3)0.7004 (2)0.0236 (5)
S10.89299 (9)0.15954 (10)0.78630 (6)0.0394 (2)
O310.2205 (2)0.1737 (2)0.53900 (16)0.0339 (4)
H1O0.14620.14440.60790.051*
C310.0945 (4)0.2643 (4)0.4439 (3)0.0486 (7)
H31A0.01360.33370.48470.073*
H31B0.04480.18280.40740.073*
H31C0.16590.33860.37430.073*
N110.5945 (3)0.2090 (2)0.33954 (17)0.0222 (4)
N120.7263 (3)0.6192 (2)0.03652 (18)0.0274 (4)
C110.5795 (3)0.3682 (3)0.3576 (2)0.0264 (5)
H110.53690.38660.44270.032*
C120.6210 (3)0.5063 (3)0.2624 (2)0.0252 (5)
H120.60570.61570.28250.030*
C130.6867 (3)0.4861 (3)0.1345 (2)0.0210 (4)
C140.7077 (3)0.3182 (3)0.1162 (2)0.0230 (4)
H140.75540.29420.03340.028*
C150.6594 (3)0.1895 (3)0.2177 (2)0.0235 (5)
H150.67270.07830.20110.028*
C160.6858 (4)0.7919 (3)0.0569 (3)0.0353 (6)
H16A0.72100.87130.02430.053*
H16B0.76120.80150.12440.053*
H16C0.54790.81960.08440.053*
C170.7938 (3)0.5957 (3)0.0944 (2)0.0309 (5)
H17A0.81400.70590.15140.046*
H17B0.69720.54820.12670.046*
H17C0.91580.51710.09340.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0216 (2)0.0237 (3)0.0185 (2)0.00575 (18)0.00127 (17)0.00564 (18)
N10.0330 (10)0.0364 (12)0.0282 (10)0.0112 (9)0.0016 (8)0.0117 (9)
C10.0254 (11)0.0242 (11)0.0201 (10)0.0035 (8)0.0040 (8)0.0067 (9)
S10.0261 (3)0.0703 (5)0.0288 (3)0.0110 (3)0.0005 (2)0.0240 (3)
O310.0250 (8)0.0444 (11)0.0258 (8)0.0030 (7)0.0033 (6)0.0046 (8)
C310.0373 (15)0.062 (2)0.0343 (14)0.0113 (13)0.0022 (11)0.0017 (13)
N110.0272 (9)0.0210 (9)0.0188 (9)0.0037 (7)0.0014 (7)0.0070 (7)
N120.0300 (10)0.0241 (10)0.0248 (10)0.0039 (8)0.0015 (8)0.0017 (8)
C110.0325 (12)0.0263 (12)0.0210 (11)0.0043 (9)0.0028 (8)0.0100 (9)
C120.0306 (11)0.0201 (11)0.0267 (11)0.0032 (9)0.0011 (9)0.0100 (9)
C130.0143 (9)0.0245 (11)0.0238 (10)0.0031 (8)0.0019 (7)0.0040 (9)
C140.0205 (10)0.0270 (11)0.0210 (10)0.0009 (8)0.0022 (8)0.0090 (9)
C150.0222 (10)0.0242 (11)0.0258 (11)0.0021 (8)0.0013 (8)0.0119 (9)
C160.0405 (14)0.0234 (12)0.0399 (14)0.0064 (10)0.0011 (11)0.0034 (11)
C170.0274 (11)0.0402 (14)0.0217 (11)0.0070 (10)0.0001 (9)0.0001 (10)
Geometric parameters (Å, º) top
Mn1—N1i2.192 (2)N12—C161.448 (3)
Mn1—N12.192 (2)N12—C171.452 (3)
Mn1—N112.2302 (17)C11—C121.370 (3)
Mn1—N11i2.2302 (17)C11—H110.9500
Mn1—O312.2676 (17)C12—C131.412 (3)
Mn1—O31i2.2676 (17)C12—H120.9500
N1—C11.160 (3)C13—C141.408 (3)
C1—S11.634 (2)C14—C151.368 (3)
O31—C311.429 (3)C14—H140.9500
O31—H1O0.8500C15—H150.9500
C31—H31A0.9800C16—H16A0.9800
C31—H31B0.9800C16—H16B0.9800
C31—H31C0.9800C16—H16C0.9800
N11—C111.341 (3)C17—H17A0.9800
N11—C151.349 (3)C17—H17B0.9800
N12—C131.355 (3)C17—H17C0.9800
N1i—Mn1—N1180.0C13—N12—C17121.3 (2)
N1i—Mn1—N1189.19 (7)C16—N12—C17117.81 (19)
N1—Mn1—N1190.81 (7)N11—C11—C12124.8 (2)
N1i—Mn1—N11i90.81 (7)N11—C11—H11117.6
N1—Mn1—N11i89.19 (7)C12—C11—H11117.6
N11—Mn1—N11i180.0C11—C12—C13120.0 (2)
N1i—Mn1—O3190.50 (7)C11—C12—H12120.0
N1—Mn1—O3189.50 (7)C13—C12—H12120.0
N11—Mn1—O3189.07 (6)N12—C13—C14122.6 (2)
N11i—Mn1—O3190.93 (6)N12—C13—C12122.2 (2)
N1i—Mn1—O31i89.50 (7)C14—C13—C12115.22 (19)
N1—Mn1—O31i90.50 (7)C15—C14—C13120.1 (2)
N11—Mn1—O31i90.93 (6)C15—C14—H14120.0
N11i—Mn1—O31i89.07 (6)C13—C14—H14120.0
O31—Mn1—O31i180.0N11—C15—C14124.7 (2)
C1—N1—Mn1162.79 (19)N11—C15—H15117.6
N1—C1—S1179.4 (2)C14—C15—H15117.6
C31—O31—Mn1125.44 (16)N12—C16—H16A109.5
C31—O31—H1O105.1N12—C16—H16B109.5
Mn1—O31—H1O119.1H16A—C16—H16B109.5
O31—C31—H31A109.5N12—C16—H16C109.5
O31—C31—H31B109.5H16A—C16—H16C109.5
H31A—C31—H31B109.5H16B—C16—H16C109.5
O31—C31—H31C109.5N12—C17—H17A109.5
H31A—C31—H31C109.5N12—C17—H17B109.5
H31B—C31—H31C109.5H17A—C17—H17B109.5
C11—N11—C15115.11 (18)N12—C17—H17C109.5
C11—N11—Mn1120.90 (14)H17A—C17—H17C109.5
C15—N11—Mn1123.89 (15)H17B—C17—H17C109.5
C13—N12—C16120.6 (2)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H1O···S1ii0.852.423.2409 (18)161
Symmetry code: (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O31—H1O···S1i0.852.423.2409 (18)161.1
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project number NA 720/5-1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, F.-J., Liu, G.-Q. & Zeng, Z.-Z. (2007). Anal. Sci. X, 23, x253–x254.  CSD CrossRef CAS Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds