research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [2-(tri­ethyl­ammonio)­eth­yl][(2,4,6-triiso­propyl­phen­yl)sulfon­yl]amide tetra­hydrate

aOtto-Hahn-Strasse 6, Dortmund, D-44227, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by J. Simpson, University of Otago, New Zealand (Received 26 March 2015; accepted 23 April 2015; online 30 April 2015)

The zwitterionic title compound, C23H42N2O2S·4H2O, crystallized as a tetrahydrate from a solution of N-[(2,4,6-triiso­propyl­phen­yl)sulfon­yl]aziridine in tri­ethyl­amine, diethyl ether and pentane in the presence of moist air. It is formed by a nucleophillic ring-opening that is assumed to be reversible. The mol­ecular structure shows a major disorder of the triiso­propyl­phenyl group over two equally occupied locations. An inter­esting feature is the uncommon hydrate structure, exhibiting a tape-like motif which can be classified as a transition of the one-dimensional T4(2)6(2) motif into the two-dimensional L4(6)5(7)6(8) motif.

1. Chemical context

The title compound was isolated as by-product while purifying the corresponding sulfonyl­aziridine via column chromatography using a solvent mixture containing tri­ethyl­amine. Inter­estingly, the zwitterionic title compound was formed by the nucleophilic ring-opening of the aziridine. This is so far undocumented for tertiary amines but well known for primary or secondary amines (Hu, 2003[Hu, X. E. (2003). Tetrahedron, 60, 2701-2743.]). We assume that this ring-opening reaction is reversible, since the aziridine was isolated in the absence of water. Possibly, the zwitterionic structure is stabilized by the water mol­ecules and/or by crystallization, preventing the reverse reaction. Furthermore, the four incorporated solvent water mol­ecules in the crystal structure form a tape-like hydrate structure comparable to some known hydrogen-bonding motifs (Infantes et al., 2003[Infantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480-486.]). This is discussed further in the Supra­molecular features section.

[Scheme 1]

2. Structural commentary

The asymmetric unit consists of a [2-(tri­ethyl­ammonio)­eth­yl][(2,4,6-triiso­propyl­phen­yl)sulfon­yl]amide and four water mol­ecules (Fig. 1[link]). The triiso­propyl­phenyl substituent is disordered over two slightly tilted locations with almost equal occupancies. No superlattice could be found and statistical disorder was assumed. Furthermore, the benzene ring appears to be bent towards the sulfur, which was also observed in the corresponding aziridine compound; for the structure of rac-2-phenyl-1-[(2,4,6-triiso­propyl­benzene)­sulfon­yl]aziridine, see Golz et al. (2014[Golz, C., Preut, H. & Strohmann, C. (2014). Acta Cryst. E70, o153.]) and for isopropyl 2,4,6-triiso­propyl­phenyl sulfone see Sandrock et al. (2004[Sandrock, P. B., Meyers, C. Y., Rath, N. P. & Robinson, P. D. (2004). Acta Cryst. E60, o544-o546.]). This seems to be typical of the triisoproyl­phenyl­sulfonyl group, though that will not be discussed further due to the disorder. The C2—N2 bond involving the cationic N atom is long [1.521 (2) Å], significantly exceeding the sum of the van der Waals radii (1.47 Å), while the C1—N1 bond [1.475 (2) Å], involving the anionic N atom, is close to the sum of the van der Waals radii. In contrast, the S—N1 bond [1.571 (1) Å] is shortened significantly, with the sum of the van der Waals radii being 1.73 Å. Both nitro­gen groups are in an almost perfect anti­periplanar conformation [N1—C1—C2—N2 = 179.7 (1)°].

[Figure 1]
Figure 1
The mol­ecular structure and atom numbering for the title compound with displacement ellipsoids drawn at the 30% probability level. Atoms of the minor disorder component are drawn with grey-coloured C atoms.

3. Supra­molecular features

Inter­molecular inter­actions occur mostly through hydrogen bonding of the water mol­ecules among themselves and with the zwitterionic compound (Table 1[link]). Three of the four water mol­ecules form an infinite tape of inter­connected four- and six-membered rings known as the T4(2)6(2) motif. Each ring contains a centre of symmetry and the tape expands in the [100] direction. Inter­estingly, the border of the tape is lined with the zwitterionic compound and one additional water mol­ecule, thus expanding the tape with five- and six-membered rings involving the O4–O6–O3–O5–N1 and O4–O3–O5–O2–S1–N1 atoms, respectively (Fig. 2[link] and Fig. 3[link]). The structure is comparable to the L4(6)5(7)6(8) motif, building up two-dimensional sheets, which are limited here by the zwitterionic amide. In summary, the hydrate structure discussed herein represents a transition between a one-dimensional tape and a two-dimensional sheet.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4D⋯O3 0.83 (2) 2.04 (2) 2.867 (2) 171 (2)
O3—H3C⋯O5 0.90 (2) 1.83 (2) 2.725 (2) 174 (2)
O3—H3D⋯O6i 0.85 (3) 2.08 (3) 2.912 (2) 169 (2)
O5—H5C⋯O2ii 0.83 (3) 2.09 (3) 2.901 (2) 165 (2)
O6—H6D⋯O4 0.86 (2) 1.95 (2) 2.787 (2) 167 (2)
O6—H6E⋯O3iii 0.82 (3) 2.03 (3) 2.845 (2) 170 (2)
O5—H5D⋯N1 0.84 (3) 2.05 (3) 2.881 (2) 170 (2)
O4—H4E⋯N1ii 0.92 (3) 2.06 (3) 2.959 (2) 165 (3)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) -x+3, -y+2, -z+1.
[Figure 2]
Figure 2
A view of the hydrate structure expanding along (100). H atoms not involved in hydrogen bonds and the isopropyl groups have been omitted for clarity. [Symmetry codes: (i) x − 1, y, z; (ii) x − 2, y, z; (iii) x − 1, y − 2, z − 1; (iv) x − 2, y − 2, z − 1; (v) x − 3, y − 2, z − 1.]
[Figure 3]
Figure 3
Hydrate-structure motifs already known (left and right) (Infantes et al., 2003[Infantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480-486.]) and the structure reported here (centre).

Some recent structures involving water forming the T4(2)6(2) hydrogen-bonding motif have been published (Li, Li, Su et al., 2006[Li, F., Li, T.-H., Su, W., Gao, S.-Y. & Cao, R. (2006). Eur. J. Inorg. Chem. pp. 1582-1587.]; Li, Chen et al., 2006[Li, M., Chen, S., Xiang, J., He, H., Yuan, L. & Sun, J. (2006). Cryst. Growth Des. 6, 1250-1252.]; Song et al., 2007[Song, X.-Y., Li, L.-C., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1220-1222.]; Kostakis et al., 2009[Kostakis, G. E., Abbas, G., Anson, C. E. & Powell, A. K. (2009). CrystEngComm, 11, 82-86.]). There are only a few examples of two-dimensional hydrogen-bond networks known, but among these the L4(6)5(7)6(8) motif is the most common. For recent examples, see Born et al. (1995[Born, M., Mootz, D. & Schaefgen, S. (1995). Z. Naturforsch. Teil B, 50, 101-105.]) and Gómez-Saiz et al. (2002[Gómez-Saiz, P., García-Tojal, J., Maestro, M. A., Arnaiz, F. J. & Rojo, T. (2002). Inorg. Chem. 41, 1345-1347.]).

4. Database survey

Comparable zwitterionic structures with neighbouring amide and ammonium groups are quite uncommon. Only one related structure was found in the Cambridge Structural database (Version 5.35, November 2013; Groom & Allen 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]). In the mol­ecule reported here, the N1—C1 bond length [1.475 (2) Å] involving the anionic N atom is normal [sum of van der Waals radii = 1.479 (2) Å], while the C2—N2 bond to the cationic N atom [1.521 (2) Å] is unusually long. This contrasts sharply with the structure of zwitterionic 1-amino-2-nitramino­ethane (Vasiliev et al., 2001[Vasiliev, A. D., Astachov, A. M., Kekin, Y. V., Kruglyakova, L. A. & Stepanov, R. S. (2001). Acta Cryst. C57, 1192-1193.]), where these observations are reversed, with the C—N bond to the anionic N atom reduced to 1.455 (2) Å.

5. Synthesis and crystallization

N-[(2,4,6-Triiso­propyl­phen­yl)sulfon­yl]aziridine was synthesized from ethano­lamine as described in the recent literature (Buckley et al., 2013[Buckley, B. R., Patel, A. P. & Wijayantha, K. G. U. (2013). J. Org. Chem. 78, 1289-1292.]). Crystals of the title compound were obtained after a test tube containing small amounts of the sulfonyl­aziridine dissolved in a mixture of diethyl ether, pentane and tri­ethyl­amine was left to evaporate over a period of 3 d.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms not involved in hydrogen bonds were positioned geometrically and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for terminal and 1.2Ueq(C) for non-terminal H atoms, with C—H = 0.98 Å. H atoms involved in hydrogen bonds were located in a difference Fourier synthesis map and were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C23H42N2O2S·4H2O
Mr 482.71
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 6.6797 (4), 8.7345 (5), 23.3973 (14)
α, β, γ (°) 96.579 (5), 93.734 (5), 95.570 (5)
V3) 1345.69 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.34 × 0.25 × 0.08
 
Data collection
Diffractometer Agilent Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2013[Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.981, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 34730, 5881, 4239
Rint 0.075
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.102, 1.01
No. of reflections 5881
No. of parameters 472
No. of restraints 36
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.33
Computer programs: CrysAlis PRO (Oxford Diffraction, 2013[Oxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The disorder of the triiso­propyl­phenyl group was refined by a free variable to an occupancy ratio of 0.502 (2):0.498 (2). To ensure the stability of the phenyl ring in the refinement, the standard FLAT restraint was applied to atoms C11–C19 and a DELU restraint to atoms C11, C12 and C16, in both of the disorder domains. In addition, atoms C11, C11′ and C16′ required an additional ISOR restraint with a reduced deviation (s = 0.001 and st = 0.002).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2013); cell refinement: CrysAlis PRO (Oxford Diffraction, 2013); data reduction: CrysAlis PRO (Oxford Diffraction, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

[2-(Triethylazaniumyl)ethyl][(2,4,6-triisopropylphenyl)sulfonyl]azanide tetrahydrate top
Crystal data top
C23H42N2O2S·4H2OZ = 2
Mr = 482.71F(000) = 532
Triclinic, P1Dx = 1.191 Mg m3
a = 6.6797 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7345 (5) ÅCell parameters from 5123 reflections
c = 23.3973 (14) Åθ = 2.6–28.2°
α = 96.579 (5)°µ = 0.16 mm1
β = 93.734 (5)°T = 173 K
γ = 95.570 (5)°Plate, clear colourless
V = 1345.69 (14) Å30.34 × 0.25 × 0.08 mm
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
5881 independent reflections
Radiation source: Enhance (Mo) X-ray Source4239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 16.0560 pixels mm-1θmax = 27.0°, θmin = 2.4°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2013)
k = 1111
Tmin = 0.981, Tmax = 1.000l = 2929
34730 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0428P)2 + 0.1372P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
5881 reflectionsΔρmax = 0.24 e Å3
472 parametersΔρmin = 0.33 e Å3
36 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.46930 (6)0.84811 (5)0.73798 (2)0.01893 (12)
O10.32141 (17)0.72141 (14)0.71224 (5)0.0225 (3)
O20.39889 (18)1.00090 (14)0.73798 (6)0.0295 (3)
O31.1266 (2)1.00237 (18)0.57740 (7)0.0300 (3)
O41.5372 (2)0.93656 (17)0.59417 (7)0.0322 (4)
O51.0118 (2)1.06162 (16)0.68669 (6)0.0262 (3)
O61.7836 (2)0.81480 (17)0.51262 (7)0.0312 (4)
N10.6732 (2)0.85102 (16)0.70803 (6)0.0186 (3)
C10.7592 (3)0.70129 (19)0.70154 (7)0.0186 (4)
H1A0.71220.63730.73130.022*
H1B0.90830.71860.70620.022*
N20.7612 (2)0.46079 (15)0.62443 (6)0.0155 (3)
C20.6901 (2)0.61873 (18)0.64150 (7)0.0164 (4)
H2A0.54080.60630.63790.020*
H2B0.73470.68770.61300.020*
C30.6882 (3)0.3436 (2)0.66417 (8)0.0216 (4)
H3A0.74160.24400.65220.026*
H3B0.74620.38070.70390.026*
C40.4624 (3)0.3141 (2)0.66513 (9)0.0320 (5)
H4A0.40730.41160.67740.048*
H4B0.42980.23950.69220.048*
H4C0.40320.27220.62640.048*
C50.9904 (2)0.4708 (2)0.62907 (8)0.0213 (4)
H5A1.04040.50920.66940.026*
H5B1.03110.36520.62030.026*
C61.0912 (3)0.5746 (2)0.58966 (8)0.0291 (5)
H6A1.04890.53450.54940.044*
H6B1.23800.57700.59600.044*
H6C1.05220.67980.59800.044*
C70.6761 (3)0.4100 (2)0.56254 (7)0.0198 (4)
H7A0.52700.40160.56150.024*
H7B0.71940.49180.53860.024*
C80.7380 (3)0.2575 (2)0.53547 (8)0.0281 (5)
H8A0.88500.26560.53440.042*
H8B0.67450.23330.49610.042*
H8C0.69460.17500.55840.042*
C110.5230 (8)0.8325 (6)0.8086 (2)0.0128 (14)0.5020 (15)
C120.6299 (5)0.9594 (4)0.84523 (15)0.0160 (7)0.5020 (15)
C130.6466 (5)0.9557 (4)0.90455 (14)0.0179 (8)0.5020 (15)
H130.71791.04160.92850.021*0.5020 (15)
C140.5630 (5)0.8313 (4)0.93024 (14)0.0171 (8)0.5020 (15)
C150.4656 (9)0.7066 (5)0.8933 (3)0.0181 (11)0.5020 (15)
H150.40750.62030.91000.022*0.5020 (15)
C160.4474 (9)0.6995 (8)0.8334 (3)0.0168 (12)0.5020 (15)
C170.7393 (5)1.1005 (4)0.82250 (15)0.0172 (8)0.5020 (15)
H170.71861.08520.77940.021*0.5020 (15)
C180.3527 (5)0.5456 (4)0.80066 (16)0.0203 (8)0.5020 (15)
H180.37770.54850.75910.024*0.5020 (15)
C190.5849 (5)0.8221 (4)0.99530 (15)0.0218 (8)0.5020 (15)
H190.44850.78791.00740.026*0.5020 (15)
C200.9656 (5)1.1076 (5)0.83905 (17)0.0293 (10)0.5020 (15)
H20A0.99051.12840.88110.044*0.5020 (15)
H20B1.03751.19060.82110.044*0.5020 (15)
H20C1.01391.00830.82550.044*0.5020 (15)
C210.6519 (6)1.2506 (4)0.84431 (19)0.0331 (10)0.5020 (15)
H21A0.50711.24080.83280.050*0.5020 (15)
H21B0.71971.33750.82760.050*0.5020 (15)
H21C0.67311.26930.88650.050*0.5020 (15)
C220.1266 (10)0.5259 (6)0.8042 (3)0.0256 (14)0.5020 (15)
H22A0.09620.51640.84410.038*0.5020 (15)
H22B0.06840.43220.77920.038*0.5020 (15)
H22C0.06860.61630.79140.038*0.5020 (15)
C230.4510 (6)0.4075 (4)0.82033 (17)0.0281 (9)0.5020 (15)
H23A0.59700.42340.81720.042*0.5020 (15)
H23B0.39470.31250.79580.042*0.5020 (15)
H23C0.42430.39800.86050.042*0.5020 (15)
C240.6614 (6)0.9742 (4)1.03185 (16)0.0297 (9)0.5020 (15)
H24A0.65460.96161.07280.045*0.5020 (15)
H24B0.57751.05491.02210.045*0.5020 (15)
H24C0.80151.00421.02430.045*0.5020 (15)
C250.7232 (11)0.6981 (7)1.0074 (3)0.0307 (14)0.5020 (15)
H25A0.85940.72990.99690.046*0.5020 (15)
H25B0.67110.59960.98450.046*0.5020 (15)
H25C0.72780.68541.04850.046*0.5020 (15)
C11'0.5178 (9)0.8031 (6)0.8164 (2)0.0110 (13)0.4980 (15)
C16'0.3975 (9)0.6931 (8)0.8416 (3)0.0122 (15)0.4980 (15)
C12'0.7007 (5)0.8740 (4)0.84657 (14)0.0149 (7)0.4980 (15)
C13'0.7689 (5)0.8181 (4)0.89710 (15)0.0175 (8)0.4980 (15)
H13'0.89190.86500.91710.021*0.4980 (15)
C14'0.6617 (5)0.6952 (4)0.91930 (14)0.0165 (8)0.4980 (15)
C15'0.4741 (8)0.6404 (5)0.8922 (2)0.0129 (10)0.4980 (15)
H15'0.39360.56360.90860.015*0.4980 (15)
C17'0.8201 (5)1.0221 (4)0.83205 (14)0.0149 (7)0.4980 (15)
H17'0.76181.04670.79410.018*0.4980 (15)
C18'0.1755 (5)0.6347 (5)0.82125 (16)0.0201 (8)0.4980 (15)
H18'0.13350.69250.78870.024*0.4980 (15)
C19'0.7393 (6)0.6336 (5)0.97372 (18)0.0202 (8)0.4980 (15)
H19'0.65720.53300.97640.024*0.4980 (15)
C20'1.0444 (5)1.0021 (4)0.82672 (18)0.0213 (8)0.4980 (15)
H20D1.11341.09700.81550.032*0.4980 (15)
H20E1.05710.91480.79740.032*0.4980 (15)
H20F1.10560.98170.86390.032*0.4980 (15)
C21'0.7914 (6)1.1560 (4)0.87833 (16)0.0231 (8)0.4980 (15)
H21D0.84261.13220.91620.035*0.4980 (15)
H21E0.64761.16960.87900.035*0.4980 (15)
H21F0.86571.25160.86940.035*0.4980 (15)
C22'0.0387 (5)0.6696 (5)0.87050 (16)0.0266 (9)0.4980 (15)
H22D0.10290.65200.85520.040*0.4980 (15)
H22E0.07010.77780.88750.040*0.4980 (15)
H22F0.06180.60110.90010.040*0.4980 (15)
C23'0.1484 (11)0.4617 (6)0.7993 (3)0.0250 (13)0.4980 (15)
H23D0.18940.40260.83050.037*0.4980 (15)
H23E0.23210.44170.76690.037*0.4980 (15)
H23F0.00640.42980.78640.037*0.4980 (15)
C24'0.7064 (13)0.7460 (9)1.0273 (3)0.0349 (15)0.4980 (15)
H24D0.75160.70311.06220.052*0.4980 (15)
H24E0.56270.75991.02800.052*0.4980 (15)
H24F0.78400.84631.02570.052*0.4980 (15)
C25'0.9588 (6)0.6021 (5)0.97315 (18)0.0364 (11)0.4980 (15)
H25D0.97430.52440.94050.055*0.4980 (15)
H25E1.00090.56331.00920.055*0.4980 (15)
H25F1.04280.69820.96940.055*0.4980 (15)
H4D1.414 (3)0.946 (2)0.5910 (9)0.036 (7)*
H3C1.081 (3)1.025 (3)0.6124 (11)0.048 (7)*
H3D1.036 (4)0.937 (3)0.5591 (12)0.065 (9)*
H5C1.110 (4)1.033 (3)0.7046 (10)0.049 (8)*
H6D1.695 (4)0.853 (3)0.5332 (10)0.048 (7)*
H6E1.794 (4)0.866 (3)0.4853 (11)0.056 (9)*
H5D0.909 (4)1.010 (3)0.6956 (11)0.065 (9)*
H4E1.565 (4)0.923 (3)0.6322 (14)0.094 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0136 (2)0.0180 (2)0.0234 (2)0.00158 (17)0.00203 (18)0.00337 (18)
O10.0173 (6)0.0259 (7)0.0210 (7)0.0049 (5)0.0018 (5)0.0027 (5)
O20.0202 (7)0.0226 (7)0.0441 (9)0.0081 (6)0.0053 (6)0.0041 (6)
O30.0257 (8)0.0411 (9)0.0229 (8)0.0026 (7)0.0028 (7)0.0030 (7)
O40.0290 (9)0.0445 (9)0.0259 (8)0.0138 (7)0.0042 (7)0.0067 (7)
O50.0211 (7)0.0311 (8)0.0278 (8)0.0013 (6)0.0031 (6)0.0106 (6)
O60.0274 (8)0.0390 (9)0.0310 (9)0.0115 (7)0.0086 (7)0.0103 (7)
N10.0162 (7)0.0162 (7)0.0225 (8)0.0018 (6)0.0007 (6)0.0012 (6)
C10.0165 (9)0.0195 (9)0.0196 (9)0.0031 (7)0.0001 (7)0.0010 (7)
N20.0138 (7)0.0157 (7)0.0168 (8)0.0030 (6)0.0000 (6)0.0008 (6)
C20.0167 (9)0.0151 (9)0.0180 (9)0.0040 (7)0.0014 (7)0.0024 (7)
C30.0273 (10)0.0165 (9)0.0223 (10)0.0042 (8)0.0034 (8)0.0050 (7)
C40.0281 (11)0.0324 (11)0.0382 (12)0.0005 (9)0.0113 (9)0.0125 (9)
C50.0133 (9)0.0240 (10)0.0257 (10)0.0055 (7)0.0027 (8)0.0011 (8)
C60.0157 (9)0.0426 (12)0.0270 (11)0.0029 (9)0.0011 (8)0.0025 (9)
C70.0153 (9)0.0247 (10)0.0173 (9)0.0005 (7)0.0009 (7)0.0028 (7)
C80.0256 (10)0.0279 (10)0.0281 (11)0.0022 (8)0.0035 (9)0.0080 (9)
C110.0123 (16)0.0136 (16)0.0127 (16)0.0009 (9)0.0033 (9)0.0017 (9)
C120.0134 (17)0.0168 (19)0.0178 (19)0.0013 (15)0.0003 (14)0.0027 (15)
C130.0161 (17)0.0200 (18)0.0156 (18)0.0007 (14)0.0019 (14)0.0033 (14)
C140.0153 (17)0.0248 (19)0.0129 (17)0.0077 (14)0.0028 (14)0.0037 (15)
C150.020 (2)0.011 (2)0.025 (2)0.000 (2)0.0075 (17)0.008 (3)
C160.013 (3)0.020 (3)0.018 (3)0.003 (2)0.002 (2)0.0006 (19)
C170.0174 (19)0.0157 (19)0.0170 (19)0.0038 (15)0.0005 (15)0.0003 (15)
C180.0231 (19)0.0165 (18)0.0203 (19)0.0058 (15)0.0003 (15)0.0057 (15)
C190.0206 (19)0.030 (2)0.0155 (18)0.0016 (16)0.0041 (15)0.0043 (16)
C200.019 (2)0.038 (2)0.031 (2)0.0049 (19)0.0003 (17)0.0127 (19)
C210.036 (2)0.019 (2)0.046 (3)0.0010 (17)0.013 (2)0.0055 (18)
C220.023 (3)0.018 (4)0.035 (3)0.003 (3)0.009 (2)0.009 (3)
C230.038 (2)0.0172 (19)0.028 (2)0.0010 (17)0.0011 (18)0.0013 (16)
C240.039 (2)0.035 (2)0.0153 (19)0.0106 (19)0.0028 (17)0.0014 (17)
C250.045 (3)0.026 (4)0.022 (4)0.008 (3)0.006 (3)0.008 (3)
C11'0.0113 (15)0.0120 (16)0.0097 (15)0.0002 (9)0.0018 (9)0.0016 (9)
C16'0.0128 (18)0.0110 (16)0.0132 (17)0.0016 (10)0.0013 (10)0.0022 (9)
C12'0.0190 (18)0.0113 (18)0.0152 (18)0.0029 (15)0.0066 (14)0.0008 (14)
C13'0.0144 (17)0.0195 (18)0.0176 (18)0.0010 (14)0.0005 (14)0.0013 (14)
C14'0.0174 (18)0.0186 (18)0.0136 (17)0.0035 (14)0.0013 (14)0.0007 (14)
C15'0.013 (2)0.011 (2)0.014 (2)0.003 (2)0.0009 (15)0.005 (2)
C17'0.0159 (18)0.0177 (19)0.0104 (17)0.0023 (16)0.0014 (14)0.0040 (15)
C18'0.0189 (19)0.023 (2)0.0183 (19)0.0041 (16)0.0020 (15)0.0064 (17)
C19'0.023 (2)0.021 (2)0.017 (2)0.0015 (16)0.0015 (17)0.0060 (17)
C20'0.0162 (18)0.023 (2)0.024 (2)0.0024 (16)0.0063 (16)0.0035 (16)
C21'0.026 (2)0.0180 (18)0.025 (2)0.0012 (15)0.0074 (16)0.0033 (16)
C22'0.0156 (18)0.037 (2)0.028 (2)0.0002 (16)0.0021 (16)0.0072 (18)
C23'0.026 (3)0.022 (3)0.026 (3)0.004 (3)0.0007 (19)0.002 (3)
C24'0.045 (3)0.049 (5)0.014 (3)0.016 (3)0.006 (3)0.005 (3)
C25'0.034 (2)0.054 (3)0.027 (2)0.022 (2)0.0028 (19)0.018 (2)
Geometric parameters (Å, º) top
S1—O11.4563 (12)C19—C241.520 (5)
S1—O21.4574 (13)C19—C251.529 (7)
S1—N11.5708 (14)C20—H20A0.9800
S1—C111.692 (6)C20—H20B0.9800
S1—C11'1.934 (6)C20—H20C0.9800
O3—H3C0.90 (2)C21—H21A0.9800
O3—H3D0.85 (3)C21—H21B0.9800
O4—H4D0.83 (2)C21—H21C0.9800
O4—H4E0.92 (3)C22—H22A0.9800
O5—H5C0.83 (3)C22—H22B0.9800
O5—H5D0.84 (3)C22—H22C0.9800
O6—H6D0.86 (2)C23—H23A0.9800
O6—H6E0.82 (3)C23—H23B0.9800
N1—C11.475 (2)C23—H23C0.9800
C1—H1A0.9900C24—H24A0.9800
C1—H1B0.9900C24—H24B0.9800
C1—C21.525 (2)C24—H24C0.9800
N2—C21.521 (2)C25—H25A0.9800
N2—C31.527 (2)C25—H25B0.9800
N2—C51.521 (2)C25—H25C0.9800
N2—C71.521 (2)C11'—C16'1.399 (8)
C2—H2A0.9900C11'—C12'1.419 (7)
C2—H2B0.9900C16'—C15'1.403 (9)
C3—H3A0.9900C16'—C18'1.546 (7)
C3—H3B0.9900C12'—C13'1.396 (5)
C3—C41.508 (2)C12'—C17'1.536 (5)
C4—H4A0.9800C13'—H13'0.9500
C4—H4B0.9800C13'—C14'1.401 (5)
C4—H4C0.9800C14'—C15'1.383 (7)
C5—H5A0.9900C14'—C19'1.518 (5)
C5—H5B0.9900C15'—H15'0.9500
C5—C61.510 (3)C17'—H17'1.0000
C6—H6A0.9800C17'—C20'1.536 (5)
C6—H6B0.9800C17'—C21'1.535 (5)
C6—H6C0.9800C18'—H18'1.0000
C7—H7A0.9900C18'—C22'1.538 (5)
C7—H7B0.9900C18'—C23'1.529 (5)
C7—C81.514 (2)C19'—H19'1.0000
C8—H8A0.9800C19'—C24'1.542 (6)
C8—H8B0.9800C19'—C25'1.518 (5)
C8—H8C0.9800C20'—H20D0.9800
C11—C121.422 (6)C20'—H20E0.9800
C11—C161.420 (8)C20'—H20F0.9800
C12—C131.390 (5)C21'—H21D0.9800
C12—C171.537 (5)C21'—H21E0.9800
C13—H130.9500C21'—H21F0.9800
C13—C141.389 (5)C22'—H22D0.9800
C14—C151.390 (6)C22'—H22E0.9800
C14—C191.532 (5)C22'—H22F0.9800
C15—H150.9500C23'—H23D0.9800
C15—C161.392 (9)C23'—H23E0.9800
C16—C181.526 (7)C23'—H23F0.9800
C17—H171.0000C24'—H24D0.9800
C17—C201.529 (5)C24'—H24E0.9800
C17—C211.534 (5)C24'—H24F0.9800
C18—H181.0000C25'—H25D0.9800
C18—C221.512 (7)C25'—H25E0.9800
C18—C231.530 (5)C25'—H25F0.9800
C19—H191.0000
O1—S1—O2113.94 (7)C17—C20—H20C109.5
O1—S1—N1112.66 (7)H20A—C20—H20B109.5
O1—S1—C11110.2 (2)H20A—C20—H20C109.5
O1—S1—C11'103.48 (18)H20B—C20—H20C109.5
O2—S1—N1107.70 (8)C17—C21—H21A109.5
O2—S1—C11104.22 (18)C17—C21—H21B109.5
O2—S1—C11'109.94 (16)C17—C21—H21C109.5
N1—S1—C11107.6 (2)H21A—C21—H21B109.5
N1—S1—C11'108.99 (18)H21A—C21—H21C109.5
H3C—O3—H3D105 (2)H21B—C21—H21C109.5
H4D—O4—H4E105 (2)C18—C22—H22A109.5
H5C—O5—H5D107 (2)C18—C22—H22B109.5
H6D—O6—H6E107 (2)C18—C22—H22C109.5
C1—N1—S1114.54 (11)H22A—C22—H22B109.5
N1—C1—H1A110.1H22A—C22—H22C109.5
N1—C1—H1B110.1H22B—C22—H22C109.5
N1—C1—C2108.09 (14)C18—C23—H23A109.5
H1A—C1—H1B108.4C18—C23—H23B109.5
C2—C1—H1A110.1C18—C23—H23C109.5
C2—C1—H1B110.1H23A—C23—H23B109.5
C2—N2—C3111.46 (12)H23A—C23—H23C109.5
C2—N2—C7106.21 (12)H23B—C23—H23C109.5
C5—N2—C2110.78 (13)C19—C24—H24A109.5
C5—N2—C3106.66 (13)C19—C24—H24B109.5
C5—N2—C7110.95 (12)C19—C24—H24C109.5
C7—N2—C3110.85 (13)H24A—C24—H24B109.5
C1—C2—H2A107.8H24A—C24—H24C109.5
C1—C2—H2B107.8H24B—C24—H24C109.5
N2—C2—C1117.89 (14)C19—C25—H25A109.5
N2—C2—H2A107.8C19—C25—H25B109.5
N2—C2—H2B107.8C19—C25—H25C109.5
H2A—C2—H2B107.2H25A—C25—H25B109.5
N2—C3—H3A108.5H25A—C25—H25C109.5
N2—C3—H3B108.5H25B—C25—H25C109.5
H3A—C3—H3B107.5C16'—C11'—S1123.9 (5)
C4—C3—N2115.21 (15)C16'—C11'—C12'119.4 (5)
C4—C3—H3A108.5C12'—C11'—S1116.3 (4)
C4—C3—H3B108.5C11'—C16'—C15'118.7 (6)
C3—C4—H4A109.5C11'—C16'—C18'124.9 (6)
C3—C4—H4B109.5C15'—C16'—C18'116.1 (5)
C3—C4—H4C109.5C11'—C12'—C17'124.8 (4)
H4A—C4—H4B109.5C13'—C12'—C11'118.9 (4)
H4A—C4—H4C109.5C13'—C12'—C17'115.8 (3)
H4B—C4—H4C109.5C12'—C13'—H13'118.9
N2—C5—H5A108.6C12'—C13'—C14'122.1 (3)
N2—C5—H5B108.6C14'—C13'—H13'118.9
H5A—C5—H5B107.6C13'—C14'—C19'121.6 (3)
C6—C5—N2114.60 (14)C15'—C14'—C13'117.1 (3)
C6—C5—H5A108.6C15'—C14'—C19'121.1 (3)
C6—C5—H5B108.6C16'—C15'—H15'118.5
C5—C6—H6A109.5C14'—C15'—C16'122.9 (5)
C5—C6—H6B109.5C14'—C15'—H15'118.5
C5—C6—H6C109.5C12'—C17'—H17'108.2
H6A—C6—H6B109.5C12'—C17'—C20'112.1 (3)
H6A—C6—H6C109.5C20'—C17'—H17'108.2
H6B—C6—H6C109.5C21'—C17'—C12'108.5 (3)
N2—C7—H7A108.5C21'—C17'—H17'108.2
N2—C7—H7B108.5C21'—C17'—C20'111.6 (3)
H7A—C7—H7B107.5C16'—C18'—H18'108.1
C8—C7—N2115.17 (15)C22'—C18'—C16'110.1 (4)
C8—C7—H7A108.5C22'—C18'—H18'108.1
C8—C7—H7B108.5C23'—C18'—C16'112.1 (5)
C7—C8—H8A109.5C23'—C18'—H18'108.1
C7—C8—H8B109.5C23'—C18'—C22'110.3 (4)
C7—C8—H8C109.5C14'—C19'—H19'107.6
H8A—C8—H8B109.5C14'—C19'—C24'110.1 (4)
H8A—C8—H8C109.5C14'—C19'—C25'113.0 (3)
H8B—C8—H8C109.5C24'—C19'—H19'107.6
C12—C11—S1119.8 (4)C25'—C19'—H19'107.6
C16—C11—S1121.0 (4)C25'—C19'—C24'110.8 (5)
C16—C11—C12118.9 (5)C17'—C20'—H20D109.5
C11—C12—C17123.3 (4)C17'—C20'—H20E109.5
C13—C12—C11119.7 (4)C17'—C20'—H20F109.5
C13—C12—C17116.9 (3)H20D—C20'—H20E109.5
C12—C13—H13118.7H20D—C20'—H20F109.5
C14—C13—C12122.5 (3)H20E—C20'—H20F109.5
C14—C13—H13118.7C17'—C21'—H21D109.5
C13—C14—C15116.5 (4)C17'—C21'—H21E109.5
C13—C14—C19123.6 (3)C17'—C21'—H21F109.5
C15—C14—C19119.8 (4)H21D—C21'—H21E109.5
C14—C15—H15117.8H21D—C21'—H21F109.5
C14—C15—C16124.5 (5)H21E—C21'—H21F109.5
C16—C15—H15117.8C18'—C22'—H22D109.5
C11—C16—C18126.4 (5)C18'—C22'—H22E109.5
C15—C16—C11117.6 (5)C18'—C22'—H22F109.5
C15—C16—C18115.9 (5)H22D—C22'—H22E109.5
C12—C17—H17108.0H22D—C22'—H22F109.5
C20—C17—C12109.2 (3)H22E—C22'—H22F109.5
C20—C17—H17108.0C18'—C23'—H23D109.5
C20—C17—C21112.3 (3)C18'—C23'—H23E109.5
C21—C17—C12111.3 (3)C18'—C23'—H23F109.5
C21—C17—H17108.0H23D—C23'—H23E109.5
C16—C18—H18107.1H23D—C23'—H23F109.5
C16—C18—C23112.2 (4)H23E—C23'—H23F109.5
C22—C18—C16111.4 (4)C19'—C24'—H24D109.5
C22—C18—H18107.1C19'—C24'—H24E109.5
C22—C18—C23111.6 (3)C19'—C24'—H24F109.5
C23—C18—H18107.1H24D—C24'—H24E109.5
C14—C19—H19107.6H24D—C24'—H24F109.5
C24—C19—C14114.7 (3)H24E—C24'—H24F109.5
C24—C19—H19107.6C19'—C25'—H25D109.5
C24—C19—C25109.8 (4)C19'—C25'—H25E109.5
C25—C19—C14109.3 (3)C19'—C25'—H25F109.5
C25—C19—H19107.6H25D—C25'—H25E109.5
C17—C20—H20A109.5H25D—C25'—H25F109.5
C17—C20—H20B109.5H25E—C25'—H25F109.5
S1—N1—C1—C294.86 (14)C13—C12—C17—C2060.6 (4)
S1—C11—C12—C13170.0 (3)C13—C12—C17—C2163.9 (4)
S1—C11—C12—C1713.0 (6)C13—C14—C15—C160.0 (7)
S1—C11—C16—C15168.3 (4)C13—C14—C19—C2414.0 (5)
S1—C11—C16—C1813.7 (8)C13—C14—C19—C25109.8 (4)
S1—C11'—C16'—C15'163.2 (4)C14—C15—C16—C113.9 (9)
S1—C11'—C16'—C18'22.9 (8)C14—C15—C16—C18174.2 (4)
S1—C11'—C12'—C13'164.4 (3)C15—C14—C19—C24170.1 (4)
S1—C11'—C12'—C17'23.3 (5)C15—C14—C19—C2566.1 (5)
O1—S1—N1—C150.19 (14)C15—C16—C18—C2275.9 (6)
O1—S1—C11—C12166.8 (3)C15—C16—C18—C2350.0 (6)
O1—S1—C11—C167.5 (5)C16—C11—C12—C134.3 (6)
O2—S1—N1—C1176.69 (12)C16—C11—C12—C17172.6 (4)
O2—S1—C11—C1244.1 (4)C17—C12—C13—C14176.8 (3)
O2—S1—C11—C16130.1 (4)C19—C14—C15—C16176.3 (5)
N1—S1—C11—C1270.0 (4)C11'—S1—N1—C164.1 (2)
N1—S1—C11—C16115.7 (5)C11'—C16'—C15'—C14'1.7 (8)
N1—C1—C2—N2179.67 (13)C11'—C16'—C18'—C22'120.3 (6)
C2—N2—C3—C460.00 (19)C11'—C16'—C18'—C23'116.5 (6)
C2—N2—C5—C662.17 (18)C11'—C12'—C13'—C14'0.6 (5)
C2—N2—C7—C8176.93 (14)C11'—C12'—C17'—C20'129.7 (4)
C3—N2—C2—C161.08 (19)C11'—C12'—C17'—C21'106.5 (4)
C3—N2—C5—C6176.37 (15)C16'—C11'—C12'—C13'8.1 (6)
C3—N2—C7—C861.84 (18)C16'—C11'—C12'—C17'164.2 (4)
C5—N2—C2—C157.52 (18)C12'—C11'—C16'—C15'8.7 (8)
C5—N2—C3—C4178.96 (15)C12'—C11'—C16'—C18'165.2 (5)
C5—N2—C7—C856.47 (19)C12'—C13'—C14'—C15'6.2 (5)
C7—N2—C2—C1178.09 (14)C12'—C13'—C14'—C19'178.9 (3)
C7—N2—C3—C458.08 (19)C13'—C12'—C17'—C20'57.7 (4)
C7—N2—C5—C655.54 (19)C13'—C12'—C17'—C21'66.0 (4)
C11—S1—N1—C171.5 (2)C13'—C14'—C15'—C16'5.6 (7)
C11—C12—C13—C140.3 (5)C13'—C14'—C19'—C24'75.7 (5)
C11—C12—C17—C20116.4 (4)C13'—C14'—C19'—C25'48.8 (5)
C11—C12—C17—C21119.1 (4)C15'—C16'—C18'—C22'53.7 (6)
C11—C16—C18—C22106.2 (6)C15'—C16'—C18'—C23'69.5 (6)
C11—C16—C18—C23127.9 (6)C15'—C14'—C19'—C24'99.0 (5)
C12—C11—C16—C156.0 (8)C15'—C14'—C19'—C25'136.5 (4)
C12—C11—C16—C18172.0 (4)C17'—C12'—C13'—C14'172.4 (3)
C12—C13—C14—C151.9 (5)C18'—C16'—C15'—C14'172.7 (4)
C12—C13—C14—C19178.0 (3)C19'—C14'—C15'—C16'179.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4D···O30.83 (2)2.04 (2)2.867 (2)171 (2)
O3—H3C···O50.90 (2)1.83 (2)2.725 (2)174 (2)
O3—H3D···O6i0.85 (3)2.08 (3)2.912 (2)169 (2)
O5—H5C···O2ii0.83 (3)2.09 (3)2.901 (2)165 (2)
O6—H6D···O40.86 (2)1.95 (2)2.787 (2)167 (2)
O6—H6E···O3iii0.82 (3)2.03 (3)2.845 (2)170 (2)
O5—H5D···N10.84 (3)2.05 (3)2.881 (2)170 (2)
O4—H4E···N1ii0.92 (3)2.06 (3)2.959 (2)165 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+3, y+2, z+1.
 

Acknowledgements

We are grateful to the Forschungsgemeinschaft (DFG) and the Fonds der Chemischen Industrie (VCI) for financial support.

References

First citationBorn, M., Mootz, D. & Schaefgen, S. (1995). Z. Naturforsch. Teil B, 50, 101–105.  CAS Google Scholar
First citationBuckley, B. R., Patel, A. P. & Wijayantha, K. G. U. (2013). J. Org. Chem. 78, 1289–1292.  CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGolz, C., Preut, H. & Strohmann, C. (2014). Acta Cryst. E70, o153.  CSD CrossRef IUCr Journals Google Scholar
First citationGómez-Saiz, P., García-Tojal, J., Maestro, M. A., Arnaiz, F. J. & Rojo, T. (2002). Inorg. Chem. 41, 1345–1347.  Web of Science CSD CrossRef PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, X. E. (2003). Tetrahedron, 60, 2701–2743.  CrossRef Google Scholar
First citationInfantes, L., Chisholm, J. & Motherwell, S. (2003). CrystEngComm, 5, 480–486.  Web of Science CSD CrossRef CAS Google Scholar
First citationKostakis, G. E., Abbas, G., Anson, C. E. & Powell, A. K. (2009). CrystEngComm, 11, 82–86.  CSD CrossRef CAS Google Scholar
First citationLi, M., Chen, S., Xiang, J., He, H., Yuan, L. & Sun, J. (2006). Cryst. Growth Des. 6, 1250–1252.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, F., Li, T.-H., Su, W., Gao, S.-Y. & Cao, R. (2006). Eur. J. Inorg. Chem. pp. 1582–1587.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2013). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSandrock, P. B., Meyers, C. Y., Rath, N. P. & Robinson, P. D. (2004). Acta Cryst. E60, o544–o546.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-Y., Li, L.-C., Liao, D.-Z., Jiang, Z.-H. & Yan, S.-P. (2007). Cryst. Growth Des. 7, 1220–1222.  CSD CrossRef CAS Google Scholar
First citationVasiliev, A. D., Astachov, A. M., Kekin, Y. V., Kruglyakova, L. A. & Stepanov, R. S. (2001). Acta Cryst. C57, 1192–1193.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds