metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (4-fluoro­phenyl-κC1)iodido­(N,N,N′,N′-tetra­methyl­ethylenedi­amine-κ2N,N′)palladium(II)

aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: cgzheng@jiangnan.edu.cn

Edited by J. Simpson, University of Otago, New Zealand (Received 4 April 2015; accepted 22 April 2015; online 30 April 2015)

In the title compound, [Pd(C6H4F)I(C6H16N2)], the PdII atom is coordinated by two N atoms from the N,N,N′,N′-tetra­methyl­ethylenedi­amine ligand, a C atom of the 4-fluoro­phenyl group and an iodide ligand in a distorted square-planar geometry, with an average deviation from the least-squares plane through the ligand donor atoms of 0.0159 (2) Å. The angles about the PdII atom range from 83.35 (16) to 178.59 (11)°. In the crystal, weak C—H⋯F and C—H⋯I hydrogen bonds link the mol­ecules into sheets in the bc plane.

1. Related literature

For related palladium complexes with PdII—I bonds, see: Racowski et al. (2011[Racowski, J. M., Ball, N. D. & Sanford, M. S. (2011). J. Am. Chem. Soc. 133, 18022-18025.]); Grushin & Marshall (2006[Grushin, V. V. & Marshall, W. J. (2006). J. Am. Chem. Soc. 128, 12644-12645.]); Ball et al. (2010[Ball, N. D., Kampf, J. W. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 2878-2879.]). For the role of iodido palladium aryl complexes in coupling reactions, see: Hartwig (2008[Hartwig, J. F. (2008). Nature, 455, 314-322.]); Wu et al. (2010[Wu, X. F., Anbarasan, P., Neumann, H. & Beller, M. (2010). Angew. Chem. Int. Ed. 49, 9047-9050.]); and as precursors to tri­fluoro­methyl palladium aryl complexes, see: Maleckis & Sanford (2011[Maleckis, A. & Sanford, M. S. (2011). Organometallics, 30, 6617-6627.]); Ball et al. (2010[Ball, N. D., Kampf, J. W. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 2878-2879.]); Ye et al. (2010[Ye, Y. D., Ball, N. D., Kampf, J. W. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 14682-14687.]); Racowski et al. (2011[Racowski, J. M., Ball, N. D. & Sanford, M. S. (2011). J. Am. Chem. Soc. 133, 18022-18025.]); Ball et al. (2011[Ball, N. D., Gary, J. B., Ye, Y. D. & Sanford, M. S. (2011). J. Am. Chem. Soc. 133, 7577-7584.]); Grushin & Marshall (2006[Grushin, V. V. & Marshall, W. J. (2006). J. Am. Chem. Soc. 128, 12644-12645.]); Du & Zheng (2014[Du, Y. Z. & Zheng, C. G. (2014). Acta Cryst. E70, m179.]). For a related palladium complex with a PdII—C bond, see: Du & Zheng (2014[Du, Y. Z. & Zheng, C. G. (2014). Acta Cryst. E70, m179.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Pd(C6H4F)I(C6H16N2)]

  • Mr = 444.60

  • Monoclinic, C 2/c

  • a = 9.456 (2) Å

  • b = 12.802 (3) Å

  • c = 24.953 (5) Å

  • β = 93.152 (2)°

  • V = 3015.9 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.27 mm−1

  • T = 296 K

  • 0.26 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.483, Tmax = 0.561

  • 10757 measured reflections

  • 2827 independent reflections

  • 2736 reflections with I > 2σ(I)

  • Rint = 0.058

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.120

  • S = 1.00

  • 2827 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 1.15 e Å−3

  • Δρmin = −1.76 e Å−3

Table 1
Selected bond lengths (Å)

Pd1—C7 1.990 (5)
Pd1—N1 2.138 (4)
Pd1—N2 2.198 (4)
Pd1—I1 2.5823 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯F1i 0.96 2.57 3.445 (6) 151
C5—H5C⋯F1i 0.96 2.59 3.412 (5) 144
C1—H1C⋯I1ii 0.96 3.19 4.050 (5) 150
C4—H4B⋯I1iii 0.97 3.24 4.017 (5) 138
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Halogen metal complexes, especially iodido palladium aryl complexes, have attracted much attention because of their important roles in coupling reactions (Hartwig, 2008; Wu et al.,2010). They are also significant precursors of tri­fluoro­methyl palladium aryl complexes, which are used in C—H tri­fluoro­methyl­ation reactions (Maleckis & Sanford,2011; Ball et al.,2010; Ye et al.,2010; Racowski et al.,2011; Ball et al.,2011;Grushin & Marshall, 2006;Du & Zheng, 2014).

Single-crystal X-ray diffraction of the title compound reveals that the PdII centre in [(tmeda)Pd(p-FPh)I] is four-coordinate. As shown in Fig. 1, the asymmetric unit comprises a PdII cation, a tmeda ligand binding through N1 and N2, a p-FC6H4 group binding through C12 and the iodide anion, I1. For selected bond lengths, see Table 2. The Pd–I1 bond length is 2.5823 (7) Å, which is shorter than that for the complex [(dppe)Pd(CF3)I] (dppe = 1,2-bis­(di­phenyl­phosphino)ethane) ( Grushin & Marshall, 2006). The Pd–C bond length (1.990 (5) Å) is compares well to that in the related complex [[(tmeda)Pd(p-FPh)(CF3)] (2.004 (3) Å) (Du & Zheng, 2014). Fig. 2 shows the molecular packing of the title compound, viewed along the a axis. In the crystal, weak C—H···F and C—H···I hydrogen bonds link the molecules into sheets in the bc plane (Table 1).

Synthesis and crystallization top

Under nitro­gen, Pd(dba)2 (915.72 mg, 1 mmol, 1 equiv) was placed into a 250 mL round bottom flask and dissolved in THF (30 mL). TMEDA (631.35 mg, 5.2 mmol, 5.2 equiv) was added, and the resulting mixture was stirred at 25 °C for 15 min. 4-Fluoro­iodo­benzene (950 mg, 4 mmol, 4 equiv) was added, and the reaction was heated at 60 °C for 30 min. The reaction mixture was filtered in air through a plug of Celite, and the solvent was removed under reduced pressure. The resulting solid was washed with hexane (3 × 30 mL) and di­ethyl ether (3 × 50 mL) to remove all residual di­benzyl­idene acetone (dba). The product was then dried in vacuo. Yield: 560 mg (65%) of an orange solid. 40 mg of [(tmeda)Pd(p-FPh)(I)] were put into a 10 ml transparent bottle and dissolved in CH2Cl2 (2 mL). The neck of the bottle was sealed with plastic wrap, and the bottle was put inside a wide mouth transparent bottle containing 15 mL di­ethyl ether. Orange acicular single crystals of [(tmeda)Pd(p-FPh)(I)] were obtained after 3 days.

Refinement top

The H atoms bound to C were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq–1.5Ueq(C) with C–H distances of 0.93–0.97 Å.

Related literature top

For related palladium complexes with PdII—I bonds, see: Racowski et al. (2011); Grushin & Marshall (2006); Ball et al. (2010). For the role of iodido palladium aryl complexes in coupling reactions, see: Hartwig (2008); Wu et al. (2010); and as precursors to trifluoromethyl palladium aryl complexes, see: Maleckis & Sanford (2011); Ball et al. (2010); Ye et al. (2010); Racowski et al. (2011); Ball et al. (2011); Grushin & Marshall (2006); Du & Zheng (2014). For a related palladium complex with a PdII—C bond, see: Du & Zheng (2014).

Structure description top

Halogen metal complexes, especially iodido palladium aryl complexes, have attracted much attention because of their important roles in coupling reactions (Hartwig, 2008; Wu et al.,2010). They are also significant precursors of tri­fluoro­methyl palladium aryl complexes, which are used in C—H tri­fluoro­methyl­ation reactions (Maleckis & Sanford,2011; Ball et al.,2010; Ye et al.,2010; Racowski et al.,2011; Ball et al.,2011;Grushin & Marshall, 2006;Du & Zheng, 2014).

Single-crystal X-ray diffraction of the title compound reveals that the PdII centre in [(tmeda)Pd(p-FPh)I] is four-coordinate. As shown in Fig. 1, the asymmetric unit comprises a PdII cation, a tmeda ligand binding through N1 and N2, a p-FC6H4 group binding through C12 and the iodide anion, I1. For selected bond lengths, see Table 2. The Pd–I1 bond length is 2.5823 (7) Å, which is shorter than that for the complex [(dppe)Pd(CF3)I] (dppe = 1,2-bis­(di­phenyl­phosphino)ethane) ( Grushin & Marshall, 2006). The Pd–C bond length (1.990 (5) Å) is compares well to that in the related complex [[(tmeda)Pd(p-FPh)(CF3)] (2.004 (3) Å) (Du & Zheng, 2014). Fig. 2 shows the molecular packing of the title compound, viewed along the a axis. In the crystal, weak C—H···F and C—H···I hydrogen bonds link the molecules into sheets in the bc plane (Table 1).

For related palladium complexes with PdII—I bonds, see: Racowski et al. (2011); Grushin & Marshall (2006); Ball et al. (2010). For the role of iodido palladium aryl complexes in coupling reactions, see: Hartwig (2008); Wu et al. (2010); and as precursors to trifluoromethyl palladium aryl complexes, see: Maleckis & Sanford (2011); Ball et al. (2010); Ye et al. (2010); Racowski et al. (2011); Ball et al. (2011); Grushin & Marshall (2006); Du & Zheng (2014). For a related palladium complex with a PdII—C bond, see: Du & Zheng (2014).

Synthesis and crystallization top

Under nitro­gen, Pd(dba)2 (915.72 mg, 1 mmol, 1 equiv) was placed into a 250 mL round bottom flask and dissolved in THF (30 mL). TMEDA (631.35 mg, 5.2 mmol, 5.2 equiv) was added, and the resulting mixture was stirred at 25 °C for 15 min. 4-Fluoro­iodo­benzene (950 mg, 4 mmol, 4 equiv) was added, and the reaction was heated at 60 °C for 30 min. The reaction mixture was filtered in air through a plug of Celite, and the solvent was removed under reduced pressure. The resulting solid was washed with hexane (3 × 30 mL) and di­ethyl ether (3 × 50 mL) to remove all residual di­benzyl­idene acetone (dba). The product was then dried in vacuo. Yield: 560 mg (65%) of an orange solid. 40 mg of [(tmeda)Pd(p-FPh)(I)] were put into a 10 ml transparent bottle and dissolved in CH2Cl2 (2 mL). The neck of the bottle was sealed with plastic wrap, and the bottle was put inside a wide mouth transparent bottle containing 15 mL di­ethyl ether. Orange acicular single crystals of [(tmeda)Pd(p-FPh)(I)] were obtained after 3 days.

Refinement details top

The H atoms bound to C were introduced at calculated positions and refined using a riding model, with Uiso(H) = 1.2Ueq–1.5Ueq(C) with C–H distances of 0.93–0.97 Å.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of [(tmeda)Pd(p-FPh)(I)], with the atom-numbering scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The molecular packing of [(tmeda)Pd(p-FPh)(I)] viewed along the a axis showing C—H···F and C—H···I interactions as dashed lines.
(4-Fluorophenyl-κC1)iodido(N,N,N',N'-tetramethylethylenediamine-κ2N,N')palladium(II) top
Crystal data top
[Pd(C6H4F)I(C6H16N2)]F(000) = 1712
Mr = 444.60Dx = 1.958 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8524 reflections
a = 9.456 (2) Åθ = 2.7–28.3°
b = 12.802 (3) ŵ = 3.27 mm1
c = 24.953 (5) ÅT = 296 K
β = 93.152 (2)°Block, colorless
V = 3015.9 (11) Å30.26 × 0.24 × 0.20 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
2827 independent reflections
Radiation source: fine-focus sealed tube2736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 25.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1111
Tmin = 0.483, Tmax = 0.561k = 1511
10757 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0848P)2 + 14.1377P]
where P = (Fo2 + 2Fc2)/3
2827 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 1.76 e Å3
Crystal data top
[Pd(C6H4F)I(C6H16N2)]V = 3015.9 (11) Å3
Mr = 444.60Z = 8
Monoclinic, C2/cMo Kα radiation
a = 9.456 (2) ŵ = 3.27 mm1
b = 12.802 (3) ÅT = 296 K
c = 24.953 (5) Å0.26 × 0.24 × 0.20 mm
β = 93.152 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2827 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2736 reflections with I > 2σ(I)
Tmin = 0.483, Tmax = 0.561Rint = 0.058
10757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0848P)2 + 14.1377P]
where P = (Fo2 + 2Fc2)/3
2827 reflectionsΔρmax = 1.15 e Å3
158 parametersΔρmin = 1.76 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.26525 (4)0.69994 (3)0.390741 (13)0.01328 (16)
I10.52911 (4)0.74248 (3)0.412548 (15)0.02671 (17)
N20.2556 (4)0.5701 (3)0.44807 (16)0.0182 (8)
N10.0479 (4)0.6607 (3)0.37289 (17)0.0182 (9)
C40.1050 (6)0.5433 (4)0.4489 (2)0.0273 (12)
H4A0.05970.58930.47370.033*
H4B0.09560.47220.46170.033*
C70.2585 (5)0.8106 (4)0.3346 (2)0.0188 (10)
C90.2906 (6)0.8594 (5)0.2421 (2)0.0304 (12)
H90.32540.84530.20870.036*
C50.3356 (6)0.4817 (4)0.4266 (2)0.0243 (11)
H5A0.32590.42160.44910.036*
H5B0.43390.50020.42580.036*
H5C0.29900.46590.39080.036*
C120.1910 (5)0.9053 (4)0.3415 (2)0.0206 (10)
H120.16000.92210.37510.025*
C110.1680 (6)0.9762 (4)0.2996 (2)0.0245 (11)
H110.12021.03860.30470.029*
C80.3101 (6)0.7898 (4)0.2838 (2)0.0260 (12)
H80.35840.72770.27830.031*
C10.0461 (6)0.7340 (5)0.3997 (3)0.0280 (12)
H1A0.04550.80040.38190.042*
H1B0.01300.74250.43650.042*
H1C0.14070.70660.39820.042*
C20.0035 (6)0.6583 (5)0.3150 (2)0.0296 (12)
H2A0.06780.61530.29630.044*
H2B0.00450.72800.30080.044*
H2C0.09050.63010.31050.044*
C100.2174 (6)0.9516 (4)0.2509 (2)0.0256 (11)
C60.3130 (7)0.5902 (5)0.5036 (2)0.0298 (12)
H6A0.26080.64590.51900.045*
H6B0.41100.60940.50300.045*
H6C0.30430.52810.52480.045*
C30.0317 (6)0.5531 (4)0.3942 (2)0.0258 (11)
H3A0.07190.50330.37000.031*
H3B0.06810.53710.39640.031*
F10.1947 (4)1.0191 (3)0.20905 (13)0.0387 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0155 (2)0.0132 (2)0.0113 (2)0.00004 (12)0.00249 (15)0.00002 (12)
I10.0180 (2)0.0254 (2)0.0364 (3)0.00383 (12)0.00055 (17)0.00083 (14)
N20.024 (2)0.017 (2)0.014 (2)0.0018 (17)0.0023 (16)0.0014 (16)
N10.017 (2)0.015 (2)0.022 (2)0.0013 (16)0.0000 (16)0.0027 (17)
C40.036 (3)0.024 (3)0.024 (3)0.002 (2)0.016 (2)0.004 (2)
C70.021 (2)0.022 (2)0.014 (2)0.002 (2)0.0019 (19)0.0040 (19)
C90.038 (3)0.034 (3)0.020 (3)0.004 (3)0.007 (2)0.003 (2)
C50.035 (3)0.018 (2)0.020 (3)0.001 (2)0.000 (2)0.001 (2)
C120.024 (2)0.021 (3)0.017 (2)0.006 (2)0.0037 (19)0.002 (2)
C110.027 (3)0.023 (3)0.024 (3)0.001 (2)0.000 (2)0.006 (2)
C80.035 (3)0.025 (3)0.019 (3)0.003 (2)0.010 (2)0.001 (2)
C10.021 (3)0.026 (3)0.038 (3)0.004 (2)0.011 (2)0.003 (2)
C20.034 (3)0.037 (3)0.018 (3)0.003 (3)0.005 (2)0.000 (2)
C100.037 (3)0.025 (3)0.015 (2)0.009 (2)0.001 (2)0.009 (2)
C60.047 (3)0.028 (3)0.014 (3)0.004 (3)0.001 (2)0.000 (2)
C30.024 (3)0.021 (3)0.032 (3)0.004 (2)0.003 (2)0.000 (2)
F10.053 (2)0.039 (2)0.0244 (18)0.0003 (17)0.0019 (15)0.0191 (15)
Geometric parameters (Å, º) top
Pd1—C71.990 (5)C5—H5B0.9600
Pd1—N12.138 (4)C5—H5C0.9600
Pd1—N22.198 (4)C12—C111.393 (7)
Pd1—I12.5823 (7)C12—H120.9300
N2—C41.466 (7)C11—C101.361 (8)
N2—C51.479 (6)C11—H110.9300
N2—C61.482 (7)C8—H80.9300
N1—C11.477 (7)C1—H1A0.9600
N1—C21.482 (7)C1—H1B0.9600
N1—C31.488 (7)C1—H1C0.9600
C4—C31.501 (8)C2—H2A0.9600
C4—H4A0.9700C2—H2B0.9600
C4—H4B0.9700C2—H2C0.9600
C7—C121.385 (8)C10—F11.364 (6)
C7—C81.410 (7)C6—H6A0.9600
C9—C81.376 (8)C6—H6B0.9600
C9—C101.392 (9)C6—H6C0.9600
C9—H90.9300C3—H3A0.9700
C5—H5A0.9600C3—H3B0.9700
C7—Pd1—N191.56 (19)C7—C12—C11122.2 (5)
C7—Pd1—N2174.34 (18)C7—C12—H12118.9
N1—Pd1—N283.35 (16)C11—C12—H12118.9
C7—Pd1—I189.51 (15)C10—C11—C12118.1 (5)
N1—Pd1—I1178.59 (11)C10—C11—H11120.9
N2—Pd1—I195.55 (11)C12—C11—H11120.9
C4—N2—C5110.1 (4)C9—C8—C7121.4 (5)
C4—N2—C6109.4 (4)C9—C8—H8119.3
C5—N2—C6107.6 (4)C7—C8—H8119.3
C4—N2—Pd1105.2 (3)N1—C1—H1A109.5
C5—N2—Pd1107.6 (3)N1—C1—H1B109.5
C6—N2—Pd1116.8 (3)H1A—C1—H1B109.5
C1—N1—C2108.0 (4)N1—C1—H1C109.5
C1—N1—C3110.4 (4)H1A—C1—H1C109.5
C2—N1—C3107.5 (4)H1B—C1—H1C109.5
C1—N1—Pd1110.6 (3)N1—C2—H2A109.5
C2—N1—Pd1115.2 (3)N1—C2—H2B109.5
C3—N1—Pd1105.0 (3)H2A—C2—H2B109.5
N2—C4—C3111.5 (4)N1—C2—H2C109.5
N2—C4—H4A109.3H2A—C2—H2C109.5
C3—C4—H4A109.3H2B—C2—H2C109.5
N2—C4—H4B109.3C11—C10—F1119.3 (5)
C3—C4—H4B109.3C11—C10—C9122.4 (5)
H4A—C4—H4B108.0F1—C10—C9118.3 (5)
C12—C7—C8117.4 (5)N2—C6—H6A109.5
C12—C7—Pd1122.3 (4)N2—C6—H6B109.5
C8—C7—Pd1120.0 (4)H6A—C6—H6B109.5
C8—C9—C10118.4 (5)N2—C6—H6C109.5
C8—C9—H9120.8H6A—C6—H6C109.5
C10—C9—H9120.8H6B—C6—H6C109.5
N2—C5—H5A109.5N1—C3—C4110.6 (5)
N2—C5—H5B109.5N1—C3—H3A109.5
H5A—C5—H5B109.5C4—C3—H3A109.5
N2—C5—H5C109.5N1—C3—H3B109.5
H5A—C5—H5C109.5C4—C3—H3B109.5
H5B—C5—H5C109.5H3A—C3—H3B108.1
C7—Pd1—N2—C435.7 (19)N1—Pd1—C7—C1274.4 (4)
N1—Pd1—N2—C49.8 (3)N2—Pd1—C7—C12100.1 (18)
I1—Pd1—N2—C4171.0 (3)I1—Pd1—C7—C12106.5 (4)
C7—Pd1—N2—C581.7 (18)N1—Pd1—C7—C898.7 (4)
N1—Pd1—N2—C5107.5 (3)N2—Pd1—C7—C873.0 (19)
I1—Pd1—N2—C571.6 (3)I1—Pd1—C7—C880.4 (4)
C7—Pd1—N2—C6157.2 (17)C8—C7—C12—C113.0 (8)
N1—Pd1—N2—C6131.4 (4)Pd1—C7—C12—C11170.3 (4)
I1—Pd1—N2—C649.5 (4)C7—C12—C11—C101.7 (8)
C7—Pd1—N1—C181.4 (4)C10—C9—C8—C70.3 (9)
N2—Pd1—N1—C1101.0 (4)C12—C7—C8—C91.9 (8)
I1—Pd1—N1—C1139 (4)Pd1—C7—C8—C9171.5 (5)
C7—Pd1—N1—C241.4 (4)C12—C11—C10—F1179.1 (5)
N2—Pd1—N1—C2136.1 (4)C12—C11—C10—C90.7 (8)
I1—Pd1—N1—C298 (5)C8—C9—C10—C111.7 (9)
C7—Pd1—N1—C3159.5 (3)C8—C9—C10—F1178.1 (5)
N2—Pd1—N1—C318.1 (3)C1—N1—C3—C475.3 (6)
I1—Pd1—N1—C320 (5)C2—N1—C3—C4167.1 (4)
C5—N2—C4—C378.6 (5)Pd1—N1—C3—C443.9 (5)
C6—N2—C4—C3163.2 (5)N2—C4—C3—N157.3 (6)
Pd1—N2—C4—C337.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F1i0.962.573.445 (6)151
C5—H5C···F1i0.962.593.412 (5)144
C1—H1C···I1ii0.963.194.050 (5)150
C4—H4B···I1iii0.973.244.017 (5)138
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1, y, z; (iii) x1/2, y1/2, z.
Selected bond lengths (Å) top
Pd1—C71.990 (5)Pd1—N22.198 (4)
Pd1—N12.138 (4)Pd1—I12.5823 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···F1i0.962.573.445 (6)151.0
C5—H5C···F1i0.962.593.412 (5)144.3
C1—H1C···I1ii0.963.194.050 (5)149.8
C4—H4B···I1iii0.973.244.017 (5)138.1
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x1, y, z; (iii) x1/2, y1/2, z.
 

Acknowledgements

The authors thank JingnangUniversity for the single-crystal X-ray diffraction determination.

References

First citationBall, N. D., Gary, J. B., Ye, Y. D. & Sanford, M. S. (2011). J. Am. Chem. Soc. 133, 7577–7584.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBall, N. D., Kampf, J. W. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 2878–2879.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, Y. Z. & Zheng, C. G. (2014). Acta Cryst. E70, m179.  CSD CrossRef IUCr Journals Google Scholar
First citationGrushin, V. V. & Marshall, W. J. (2006). J. Am. Chem. Soc. 128, 12644–12645.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHartwig, J. F. (2008). Nature, 455, 314–322.  CrossRef PubMed CAS Google Scholar
First citationMaleckis, A. & Sanford, M. S. (2011). Organometallics, 30, 6617–6627.  Web of Science CSD CrossRef CAS Google Scholar
First citationRacowski, J. M., Ball, N. D. & Sanford, M. S. (2011). J. Am. Chem. Soc. 133, 18022–18025.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, X. F., Anbarasan, P., Neumann, H. & Beller, M. (2010). Angew. Chem. Int. Ed. 49, 9047–9050.  CrossRef CAS Google Scholar
First citationYe, Y. D., Ball, N. D., Kampf, J. W. & Sanford, M. S. (2010). J. Am. Chem. Soc. 132, 14682–14687.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds