metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tricarbon­yltris(pyri­dine-κN)rhenium(I) tetra­fluorido­borate

aDepartment of Chemistry and Industrial Chemistry, Bowen University, Iwo, Osun State, Nigeria, bDepartment of Chemistry, Cardiff University, Wales, cDepartment of Chemistry, Lancaster University, Bailrigg, England, dDepartment of Biological Sciences, Bowen University, Iwo, Osun State, Nigeria, eDepartment of Chemistry, Texas A & M University, Texas, USA, and fDepartment of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
*Correspondence e-mail: gegharev@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 March 2015; accepted 26 March 2015; online 11 April 2015)

In the title compound, [Re(C6H5N)3(CO)3]BF4, the ReI ion is six-coordinated by three pyridine N atoms and three carbonyl C atoms. In each case, the carbonyl C atom lies trans to a pyridine N atom. In the crystal, the ions are linked via C—H⋯F hydrogen bonds and C—H⋯π inter­actions, forming a three-dimensional framework. The F atoms of the BF4 anion are disordered over two positions and gave a final refined occupancy ratio of 0.705 (11):0.295 (11).

1. Related literature

For background to rhenium tricarbonyl complexes, see: Amoroso et al. (2008[Amoroso, A. J., Arthur, R. J., Coogan, M. P., Court, J. B., Fernández-Moreira, V., Hayes, A. J., Lloyd, D., Millet, C. & Pope, S. J. A. (2008). New J. Chem. 32, 1097-1102.]); Coogan et al. (2009[Coogan, M. P., Fernández-Moreira, V., Kariuki, B. M., Pope, S. J. A. & Thorp-Greenwood, F. L. (2009). Angew. Chem. Int. Ed. Engl. 48, 4965-4968.]). For the structure of tricarbonyl tris-pyridyl rhenium(I) hexa­fluoro­phosphate, see: Franklin et al. (2008[Franklin, B. R., Herrick, R. S., Ziegler, C. J., Cetin, A., Barone, N. & Condon, L. R. (2008). Inorg. Chem. 47, 5902-5909.]). For the preparation of [Re(C14H10N2O)(CO)3Br] used in the synthesis, see: Al Subari et al. (2010[Al Subari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o453.]); Coogan et al. (2009[Coogan, M. P., Fernández-Moreira, V., Kariuki, B. M., Pope, S. J. A. & Thorp-Greenwood, F. L. (2009). Angew. Chem. Int. Ed. Engl. 48, 4965-4968.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Re(C6H5N)3(CO)3]BF4

  • Mr = 594.34

  • Monoclinic, P 21 /c

  • a = 8.1272 (12) Å

  • b = 18.718 (3) Å

  • c = 13.046 (2) Å

  • β = 97.317 (9)°

  • V = 1968.5 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 12.66 mm−1

  • T = 110 K

  • 0.08 × 0.06 × 0.02 mm

2.2. Data collection

  • Bruker GADDS D8 Discover diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2006[Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.]) Tmin = 0.431, Tmax = 0.786

  • 39315 measured reflections

  • 2891 independent reflections

  • 2589 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 60.0°

  • Standard reflections: 0

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.048

  • S = 1.11

  • 2891 reflections

  • 308 parameters

  • 172 restraints

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Selected bond lengths (Å)

Re1—C3 1.916 (5)
Re1—C1 1.924 (5)
Re1—C2 1.926 (5)
Re1—N1 2.215 (3)
Re1—N2 2.229 (4)
Re1—N3 2.240 (4)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C4–C8 pyrdine ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯F3i 0.95 2.31 3.240 (7) 165
C13—H13A⋯F4ii 0.95 2.31 3.219 (12) 160
C17—H17A⋯F3iii 0.95 2.32 3.123 (7) 142
C10—H10ACg1iv 0.95 2.61 3.302 (5) 130
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 and FRAMBO (Bruker, 2004[Bruker (2004). APEX2, FRAMBO and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, FRAMBO and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Amoroso and coworkers (Amoroso et al., 2008) prepared a novel 3-chloromethylpyridyl bipyridine tricarbonyl rhenium complex and demonstrated the suitability of this complex in Mitochondria. That report represents the first application of a luminescent agent for specific targeting of a biological entity in imaging. Recently, Coogan and co-workers (Coogan et al., 2009) have also directed their research focus towards such complexes, thus preparing more novel rhenium tricarbonyl compounds to prove that heavy metals are not only erroneously termed as poisons, but can also be useful towards preparing drugs of great biological significance to man. Thus the design, syntheses and characterization of rhenium(I) tricarbonyl complexes has being of great interest due to their biological significance. The first report of the tricarbonyl tris-pyridyl rhenium(I) cation was published by Franklin et al. (2008), viz. tricarbonyl tris-pyridyl rhenium(I) hexafluorophosphate, which is quite similar to the title compound with some slight differences.

The molecular structure of the title complex is illustrated in Fig. 1. The ReI ion is six-coordinated by three pyridine N atoms and three carbonyl C atoms.

In the crystal, the ions are linked via C-H···F hydrogen bonds and C-H···π interactions forming a three-dimensional framework (Table 1).

Related literature top

For background to rhenium tricarbonyl complexes, see: Amoroso et al. (2008); Coogan et al. (2009). For the structure of tricarbonyl tris-pyridyl rhenium(I) hexafluorophosphate, see: Franklin et al. (2008). For the preparation of [Re(C14H10N2O)(CO)3Br] used in the synthesis, see: Al Subari et al. (2010); Coogan et al. (2009).

Experimental top

The preparation of the title compound is illustrated in Fig. 2. [Re(C14H10N2O)(CO)3Br] (0.16 g, 0.28 mmol), prepared according to literature procedures (Al Subari et al., 2010; Coogan et al., 2009), was reacted with AgBF4 (0.05 g, 0.28 mmol) in 11 ml diethyl ether under nitrogen with refluxing for 35 min. The solution was then filtered through celite and to the clear filtrate pyridine (0.023 ml, 0.28 mmol) was added. The mixture was stirred for ca. 24 h. After it was poured into a vial and petroleum ether was added drop wise in excess to precipitate out the complex. This was covered with perforated foil and left overnight in the hood. Colourless block-like crystals grew on the sides of the vial.

Refinement top

C-bound H atoms were placed in idealized positions and refined using a riding model: C-H = 0.95 Å with Uiso(H) = 1.2Ueq(C). The F atoms of the BF4 showed significant elongation in the thermal ellipsoids suggesting disorder over two positions; final refined occupancy ratio = 0.705 (11):0.295 (11).

Structure description top

Amoroso and coworkers (Amoroso et al., 2008) prepared a novel 3-chloromethylpyridyl bipyridine tricarbonyl rhenium complex and demonstrated the suitability of this complex in Mitochondria. That report represents the first application of a luminescent agent for specific targeting of a biological entity in imaging. Recently, Coogan and co-workers (Coogan et al., 2009) have also directed their research focus towards such complexes, thus preparing more novel rhenium tricarbonyl compounds to prove that heavy metals are not only erroneously termed as poisons, but can also be useful towards preparing drugs of great biological significance to man. Thus the design, syntheses and characterization of rhenium(I) tricarbonyl complexes has being of great interest due to their biological significance. The first report of the tricarbonyl tris-pyridyl rhenium(I) cation was published by Franklin et al. (2008), viz. tricarbonyl tris-pyridyl rhenium(I) hexafluorophosphate, which is quite similar to the title compound with some slight differences.

The molecular structure of the title complex is illustrated in Fig. 1. The ReI ion is six-coordinated by three pyridine N atoms and three carbonyl C atoms.

In the crystal, the ions are linked via C-H···F hydrogen bonds and C-H···π interactions forming a three-dimensional framework (Table 1).

For background to rhenium tricarbonyl complexes, see: Amoroso et al. (2008); Coogan et al. (2009). For the structure of tricarbonyl tris-pyridyl rhenium(I) hexafluorophosphate, see: Franklin et al. (2008). For the preparation of [Re(C14H10N2O)(CO)3Br] used in the synthesis, see: Al Subari et al. (2010); Coogan et al. (2009).

Computing details top

Data collection: APEX2 and FRAMBO (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Preparation of the title compound.
Tricarbonyltris(pyridine-κN)rhenium(I) tetrafluoridoborate top
Crystal data top
[Re(C6H5N)3(CO)3]BF4F(000) = 1136
Mr = 594.34Dx = 2.005 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybcCell parameters from 2921 reflections
a = 8.1272 (12) Åθ = 4.2–62.4°
b = 18.718 (3) ŵ = 12.66 mm1
c = 13.046 (2) ÅT = 110 K
β = 97.317 (9)°Block, colourless
V = 1968.5 (5) Å30.08 × 0.06 × 0.02 mm
Z = 4
Data collection top
Bruker GADDS D8 Discover
diffractometer
2891 independent reflections
Radiation source: fine-focus sealed tube2589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
phi and ω scansθmax = 60.0°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
h = 99
Tmin = 0.431, Tmax = 0.786k = 2121
39315 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0131P)2 + 6.6179P]
where P = (Fo2 + 2Fc2)/3
2891 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.98 e Å3
172 restraintsΔρmin = 0.98 e Å3
Crystal data top
[Re(C6H5N)3(CO)3]BF4V = 1968.5 (5) Å3
Mr = 594.34Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.1272 (12) ŵ = 12.66 mm1
b = 18.718 (3) ÅT = 110 K
c = 13.046 (2) Å0.08 × 0.06 × 0.02 mm
β = 97.317 (9)°
Data collection top
Bruker GADDS D8 Discover
diffractometer
2891 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
2589 reflections with I > 2σ(I)
Tmin = 0.431, Tmax = 0.786Rint = 0.052
39315 measured reflectionsθmax = 60.0°
Refinement top
R[F2 > 2σ(F2)] = 0.023172 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 1.11Δρmax = 0.98 e Å3
2891 reflectionsΔρmin = 0.98 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.90696 (2)0.817237 (10)0.800171 (15)0.01465 (7)
C11.1344 (6)0.8090 (2)0.8614 (3)0.0212 (10)
C20.9740 (5)0.9040 (2)0.7377 (3)0.0188 (10)
C30.9626 (5)0.7679 (2)0.6806 (4)0.0187 (10)
C40.5751 (6)0.8920 (2)0.7123 (3)0.0209 (10)
H4A0.63640.93270.73870.025*
C50.4181 (6)0.9021 (3)0.6613 (4)0.0235 (10)
H5A0.37140.94860.65340.028*
C60.3314 (6)0.8441 (3)0.6224 (4)0.0253 (10)
H6A0.22370.85000.58570.030*
C70.3993 (6)0.7762 (3)0.6360 (4)0.0255 (11)
H7A0.33880.73520.61000.031*
C80.5569 (5)0.7699 (2)0.6884 (3)0.0190 (10)
H8A0.60450.72360.69780.023*
C90.7018 (6)0.7040 (2)0.9139 (3)0.0223 (11)
H9A0.61990.74050.90730.027*
C100.6690 (6)0.6415 (2)0.9644 (3)0.0226 (11)
H10A0.56630.63550.99100.027*
C110.7859 (6)0.5882 (2)0.9758 (4)0.0255 (11)
H11A0.76740.54521.01120.031*
C120.9321 (6)0.5994 (2)0.9336 (4)0.0246 (11)
H12A1.01540.56350.93920.030*
C130.9560 (6)0.6625 (2)0.8837 (4)0.0221 (11)
H13A1.05650.66910.85480.027*
C140.6690 (6)0.8790 (2)0.9558 (4)0.0233 (11)
H14A0.58470.85860.90740.028*
C150.6234 (6)0.9127 (3)1.0420 (4)0.0289 (12)
H15A0.51000.91501.05260.035*
C160.7436 (6)0.9430 (3)1.1123 (4)0.0295 (12)
H16A0.71510.96661.17200.035*
C170.9070 (6)0.9383 (2)1.0939 (4)0.0264 (11)
H17A0.99300.95861.14120.032*
C180.9439 (6)0.9040 (2)1.0070 (4)0.0217 (10)
H18A1.05670.90140.99520.026*
N10.6466 (4)0.82675 (18)0.7269 (3)0.0160 (8)
N20.8427 (4)0.71536 (18)0.8741 (3)0.0173 (8)
N30.8279 (4)0.87363 (19)0.9373 (3)0.0179 (8)
O11.2715 (4)0.80628 (18)0.8956 (3)0.0309 (8)
O21.0248 (4)0.95285 (17)0.6991 (2)0.0273 (8)
O30.9949 (4)0.74082 (17)0.6064 (2)0.0255 (7)
B10.3395 (7)0.5865 (3)0.7653 (5)0.0338 (14)0.705 (11)
F10.5081 (9)0.5915 (5)0.7637 (9)0.056 (3)0.705 (11)
F20.3088 (9)0.5538 (3)0.8585 (5)0.0468 (17)0.705 (11)
F30.2785 (6)0.5397 (3)0.6835 (4)0.0522 (18)0.705 (11)
F40.2648 (13)0.6503 (3)0.7527 (8)0.082 (3)0.705 (11)
B1A0.3395 (7)0.5865 (3)0.7653 (5)0.0338 (14)0.295 (11)
F1A0.5017 (19)0.5630 (8)0.776 (2)0.026 (4)0.295 (11)
F2A0.236 (2)0.5462 (8)0.8115 (18)0.061 (5)0.295 (11)
F3A0.2854 (15)0.5990 (11)0.6583 (9)0.069 (6)0.295 (11)
F4A0.3349 (16)0.6580 (6)0.8070 (12)0.035 (3)0.295 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01373 (11)0.01449 (11)0.01556 (11)0.00004 (9)0.00123 (7)0.00028 (9)
C10.029 (3)0.022 (2)0.014 (2)0.001 (2)0.004 (2)0.000 (2)
C20.014 (2)0.022 (2)0.019 (2)0.003 (2)0.003 (2)0.007 (2)
C30.012 (2)0.017 (2)0.026 (3)0.0014 (18)0.001 (2)0.008 (2)
C40.024 (3)0.018 (2)0.021 (3)0.000 (2)0.004 (2)0.000 (2)
C50.020 (2)0.028 (2)0.024 (2)0.0068 (19)0.007 (2)0.005 (2)
C60.015 (2)0.032 (2)0.027 (2)0.0113 (18)0.0049 (19)0.005 (2)
C70.025 (3)0.029 (2)0.022 (2)0.010 (2)0.001 (2)0.003 (2)
C80.022 (3)0.017 (2)0.017 (2)0.0016 (19)0.001 (2)0.000 (2)
C90.022 (3)0.023 (2)0.021 (3)0.001 (2)0.001 (2)0.002 (2)
C100.026 (3)0.023 (3)0.020 (3)0.005 (2)0.006 (2)0.006 (2)
C110.037 (3)0.019 (2)0.021 (3)0.005 (2)0.002 (2)0.000 (2)
C120.029 (3)0.016 (2)0.027 (3)0.004 (2)0.001 (2)0.002 (2)
C130.017 (2)0.025 (3)0.024 (3)0.003 (2)0.003 (2)0.004 (2)
C140.023 (3)0.027 (3)0.020 (3)0.005 (2)0.002 (2)0.000 (2)
C150.030 (3)0.030 (3)0.031 (3)0.001 (2)0.015 (2)0.004 (2)
C160.036 (3)0.027 (3)0.028 (3)0.003 (2)0.013 (2)0.012 (2)
C170.031 (3)0.023 (3)0.025 (3)0.008 (2)0.000 (2)0.008 (2)
C180.021 (3)0.018 (2)0.025 (3)0.001 (2)0.001 (2)0.003 (2)
N10.0159 (19)0.0144 (19)0.0174 (19)0.0027 (15)0.0015 (15)0.0026 (16)
N20.020 (2)0.0159 (18)0.0159 (19)0.0004 (16)0.0010 (16)0.0024 (16)
N30.021 (2)0.0170 (19)0.015 (2)0.0008 (16)0.0030 (17)0.0034 (16)
O10.0159 (19)0.042 (2)0.033 (2)0.0020 (15)0.0057 (16)0.0022 (17)
O20.0305 (19)0.0204 (17)0.0315 (19)0.0066 (15)0.0058 (16)0.0017 (16)
O30.0288 (19)0.0264 (18)0.0222 (18)0.0004 (15)0.0060 (15)0.0044 (16)
B10.025 (3)0.031 (3)0.048 (4)0.004 (3)0.013 (3)0.005 (3)
F10.034 (3)0.092 (8)0.045 (5)0.021 (4)0.014 (3)0.029 (6)
F20.045 (4)0.035 (3)0.063 (4)0.007 (3)0.016 (3)0.006 (3)
F30.044 (3)0.043 (4)0.062 (3)0.008 (2)0.019 (2)0.001 (3)
F40.121 (7)0.036 (3)0.106 (7)0.031 (4)0.075 (6)0.029 (4)
B1A0.025 (3)0.031 (3)0.048 (4)0.004 (3)0.013 (3)0.005 (3)
F1A0.017 (5)0.023 (8)0.043 (8)0.003 (5)0.017 (5)0.001 (7)
F2A0.031 (8)0.032 (6)0.130 (15)0.009 (6)0.044 (9)0.002 (9)
F3A0.038 (7)0.111 (16)0.054 (6)0.018 (7)0.010 (5)0.010 (7)
F4A0.028 (7)0.017 (5)0.059 (9)0.009 (4)0.001 (6)0.009 (5)
Geometric parameters (Å, º) top
Re1—C31.916 (5)C10—C111.372 (7)
Re1—C11.924 (5)C10—H10A0.9500
Re1—C21.926 (5)C11—C121.387 (7)
Re1—N12.215 (3)C11—H11A0.9500
Re1—N22.229 (4)C12—C131.376 (6)
Re1—N32.240 (4)C12—H12A0.9500
C1—O11.148 (5)C13—N21.346 (6)
C2—O21.146 (5)C13—H13A0.9500
C3—O31.152 (5)C14—N31.348 (6)
C4—N11.355 (6)C14—C151.381 (7)
C4—C51.375 (6)C14—H14A0.9500
C4—H4A0.9500C15—C161.375 (7)
C5—C61.356 (7)C15—H15A0.9500
C5—H5A0.9500C16—C171.382 (7)
C6—C71.389 (7)C16—H16A0.9500
C6—H6A0.9500C17—C181.369 (7)
C7—C81.378 (6)C17—H17A0.9500
C7—H7A0.9500C18—N31.349 (6)
C8—N11.350 (5)C18—H18A0.9500
C8—H8A0.9500B1—F41.340 (8)
C9—N21.334 (6)B1—F11.376 (9)
C9—C101.385 (6)B1—F21.412 (8)
C9—H9A0.9500B1—F31.420 (7)
C3—Re1—C189.17 (18)C10—C11—C12117.7 (4)
C3—Re1—C287.34 (18)C10—C11—H11A121.2
C1—Re1—C286.22 (18)C12—C11—H11A121.2
C3—Re1—N189.95 (16)C13—C12—C11119.8 (4)
C1—Re1—N1178.97 (16)C13—C12—H12A120.1
C2—Re1—N193.21 (15)C11—C12—H12A120.1
C3—Re1—N291.85 (15)N2—C13—C12122.6 (4)
C1—Re1—N291.02 (16)N2—C13—H13A118.7
C2—Re1—N2177.13 (16)C12—C13—H13A118.7
N1—Re1—N289.54 (13)N3—C14—C15122.9 (4)
C3—Re1—N3176.99 (16)N3—C14—H14A118.6
C1—Re1—N393.69 (16)C15—C14—H14A118.6
C2—Re1—N393.77 (16)C16—C15—C14119.3 (5)
N1—Re1—N387.20 (13)C16—C15—H15A120.3
N2—Re1—N387.18 (12)C14—C15—H15A120.3
O1—C1—Re1177.4 (4)C15—C16—C17118.4 (4)
O2—C2—Re1174.7 (4)C15—C16—H16A120.8
O3—C3—Re1177.1 (4)C17—C16—H16A120.8
N1—C4—C5123.2 (4)C18—C17—C16119.3 (4)
N1—C4—H4A118.4C18—C17—H17A120.3
C5—C4—H4A118.4C16—C17—H17A120.3
C6—C5—C4118.4 (4)N3—C18—C17123.3 (4)
C6—C5—H5A120.8N3—C18—H18A118.4
C4—C5—H5A120.8C17—C18—H18A118.4
C5—C6—C7120.4 (4)C8—N1—C4117.1 (4)
C5—C6—H6A119.8C8—N1—Re1122.6 (3)
C7—C6—H6A119.8C4—N1—Re1120.1 (3)
C8—C7—C6118.1 (4)C9—N2—C13117.2 (4)
C8—C7—H7A121.0C9—N2—Re1124.4 (3)
C6—C7—H7A121.0C13—N2—Re1118.3 (3)
N1—C8—C7122.8 (4)C14—N3—C18116.8 (4)
N1—C8—H8A118.6C14—N3—Re1123.9 (3)
C7—C8—H8A118.6C18—N3—Re1119.4 (3)
N2—C9—C10123.2 (4)F4—B1—F1112.0 (6)
N2—C9—H9A118.4F4—B1—F2111.4 (6)
C10—C9—H9A118.4F1—B1—F2109.1 (7)
C11—C10—C9119.5 (4)F4—B1—F3110.4 (7)
C11—C10—H10A120.3F1—B1—F3106.5 (6)
C9—C10—H10A120.3F2—B1—F3107.2 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C4–C8 pyrdine ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···F3i0.952.313.240 (7)165
C13—H13A···F4ii0.952.313.219 (12)160
C17—H17A···F3iii0.952.323.123 (7)142
C10—H10A···Cg1iv0.952.613.302 (5)130
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+1, y+3/2, z+1/2; (iv) x, y+3/2, z+1/2.
Selected bond lengths (Å) top
Re1—C31.916 (5)Re1—N12.215 (3)
Re1—C11.924 (5)Re1—N22.229 (4)
Re1—C21.926 (5)Re1—N32.240 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1/C4–C8 pyrdine ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···F3i0.952.313.240 (7)165
C13—H13A···F4ii0.952.313.219 (12)160
C17—H17A···F3iii0.952.323.123 (7)142
C10—H10A···Cg1iv0.952.613.302 (5)130
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+1, y+3/2, z+1/2; (iv) x, y+3/2, z+1/2.
 

Acknowledgements

We thank Professor John A. Gladysz for providing facilities for a portion of these studies, and helpful discussions. The US National Science Foundation (NSF, CHE1153085) is thanked for the portion of the research carried out at Texas A & M University.

References

First citationAl Subari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o453.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmoroso, A. J., Arthur, R. J., Coogan, M. P., Court, J. B., Fernández-Moreira, V., Hayes, A. J., Lloyd, D., Millet, C. & Pope, S. J. A. (2008). New J. Chem. 32, 1097–1102.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, FRAMBO and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoogan, M. P., Fernández-Moreira, V., Kariuki, B. M., Pope, S. J. A. & Thorp-Greenwood, F. L. (2009). Angew. Chem. Int. Ed. Engl. 48, 4965–4968.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFranklin, B. R., Herrick, R. S., Ziegler, C. J., Cetin, A., Barone, N. & Condon, L. R. (2008). Inorg. Chem. 47, 5902–5909.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds