research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,4-di­amino-6-oxo-3,6-di­hydro­pyrimidin-1-ium p-toluene­sulfonate

aDepartment of Chemistry, Periyar Maniammai University, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: lvsethu13@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 April 2015; accepted 4 April 2015; online 11 April 2015)

In the title salt, C4H7N4O+·C7H7O3S, the 2,6-di­amino-4-oxo-1,3-di­hydro­pyrimidin-1-ium cation inter­acts with the sulfonate group of the p-toluene­sulfonate anion via a pair of N—H⋯O hydrogen bonds, forming a hetero-synthon R22(8) that mimics the role of a carboxyl­ate. The self-assembled cations form a homo-synthon R21(6) motif which is further linked with the sulfonate anion via N—H⋯O hydrogen bonds to generate an R32(10) ring motif. The three motifs are fused together and extended as supra­molecular ribbons along the b-axis direction. Adjacent ribbons are further linked via N—H⋯O hydrogen bonds to form an annulus, with an R44(20) ring motif, resulting in a tunnel-like arrangement propagating along [010]. There are slipped parallel ππ stacking inter­actions [inter-centroid distance = 3.6539 (7) Å], between the tunnel-like polymer chains, forming slabs parallel to (100).

1. Chemical context

Di- and tri-amino­pyrimidines show various biological and pharmacological properties like tyrosine kinase (Thomas, 1995a[Thomas, A. P. (1995a). World Patent WO 9515952.],b[Thomas, A. P. (1995b). Chem Abstr. 123, 286077.]), di­hydro­folate reductase inhibitors (Ayer, 1991[Ayer, D. E. (1991). Chem Abstr. 115, 114546.]) and are used as anti­viral and anti­protozoan agents. 2,6-Di­amino-4-hy­droxy pyrimidine (DAHP), an inhibitor of guanosine triphosphate cyclo­hydro­lase I, blocks the synthesis of tetra­hydro­biopterin which is a known cofactor of inducible nitric oxide synthesis (iNOS) (Bogdan et al., 1995[Bogdan, C., Werner, E., Stenger, S., Wachter, H., Röllinghoff, M. & Werner-Felmayer, G. (1995). FEBS Lett. 363, 69-74.]). The study of hydrogen-bonding patterns involving sulfonate groups in biological systems and metal complexes are of current inter­est (Gomathi & Mu­thiah, 2011[Gomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2679-o2680.]; Wang, 2006[Wang, K.-W. (2006). Acta Cryst. E62, o5136-o5137.]). The present report deals with the supra­molecular inter­actions exhibited by the title salt.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title salt contains one 2,6-di­amino-4-oxo-1,3-di­hydro­pyrimidin-1-ium cation and one p-toluene sulfonate anion (Fig. 1[link]). The cation is protonated at the N3 position, which is reflected by the slight increase in the C2—N3—C4 bond angle to 123.2 (1)°. The dihedral angle between the cation and anion ring mean planes is 54.04 (6)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title mol­ecular salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

The three C—S—O angles, C7—S1—O3 [106.83 (7)°], C7—S1—O2 [105.89 (7)°] and C7—S1—O4 [106.91 (7)°], and the O—S—O angles, O3—S1—O2 [110.84 (7)°], O2—S1—O4 [111.93 (7)°] and O3—S1—O4 [113.91 (8)°], indicate that the geometry of the sulfonate group is slightly distorted from an ideal tetra­hedral geometry.

3. Supra­molecular features

The primary inter­action between the cation and anion takes place via a pair of N—H⋯O hydrogen bonds, forming a robust six-membered hetero-synthon, R22(8), and here the sulfonate group mimics the role of a carboxyl­ate. This motif links the protonated ring N atom, N3, and the 2-amino N atom, N2, of the cation with the sulfonate atoms O2 and O3 of the anion. Adjacent R22(8) ring motifs are connected via an N—H⋯O hydrogen bond by linking the 2-amino N atom, N2 with atom O3i [symmetry code: x, y + 1, z]. The cation undergoes self-association via a pair of bifurcated N—H⋯(O,O) hydrogen bonds, forming a homo-synthon, R21(6). This motif involves ring N1 and the 6-amino N atoms and carbonyl atom O1i of the cation (Table 1[link]). The self-assembled cations extend as a supra­molecular chain propagating along [010]. The homo- and hetero-synthons [R22(8) and R21(6)] are linked by an R32(10) ring motif. The three motifs are fused together continuously, forming supra­molecular ribbons along [010]. Two such ribbons in adjacent planes are connected via N—H⋯O hydrogen bonds by linking the 6-amino N of the cation and the sulfonate atom O4ii [symmetry code: −x + 1, −y + 1, −z + 1] of the anion, generating an annulus (Su et al., 2007[Su, X.-Y., Wang, W.-H., Lan, J.-B., Mao, Z.-H. & Xie, R.-G. (2007). Acta Cryst. E63, o4513-o4514.]) with an R44(20) graph-set motif (Fig. 2[link]). This motif extends in the direction of the supra­molecular ribbons and generates a tunnel-like architecture along the b-axis direction (Figs. 2[link] and 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.86 2.6515 (14) 152
N2—H2A⋯O3 0.86 1.95 2.7935 (17) 166
N2—H2B⋯O2i 0.86 2.01 2.8669 (16) 175
N3—H3⋯O2 0.86 1.92 2.7689 (14) 169
N6—H6A⋯O4ii 0.86 2.25 2.9498 (18) 139
N6—H6B⋯O1i 0.86 2.08 2.8201 (15) 143
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A view of the supra­molecular tunnel-like architecture built by N—H⋯O hydrogen bonds [dashed lines; see Table 1[link] for details; symmetry codes: (i) x, y + 1, z; (ii) −x + 1, −y + 1, −z + 1], in the crystal structure of the title mol­ecular salt.
[Figure 3]
Figure 3
A view along the b axis of the crystal packing of the title mol­ecular salt. Hydrogen bonds (see Table 1[link] for details) and ππ inter­actions are shown as dashed lines.

Adjacent tunnels inter­act by off-set aromatic ππ stacking inter­actions which are observed between symmetry-related pyrimidine rings of the cations with a centroid–centroid distance CgCgiii of 3.6539 (7) Å [Cg is the centroid of ring N1/C2/N3/C4–C6; the dihedral angle between the ring planes = 1.86 (6)°; perpendicular separation = 3.2501 (5) Å; symmetry code: (iii) −x + 1, y, −z + [{3\over 2}]]. These inter­actions result in the formation of slabs parallel to (100); as shown in Fig. 3[link].

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) revealed the presence of over 700 compounds involving p-toluene sulfonate but only three hits for the 2,6-di­amino-4-oxo-1,3-di­hydro­pyrimidin-1-ium cation. These include the sulfate monohydrate (ACEYUD; Mu­thiah et al., 2004[Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. E60, o2038-o2040.]), the di(methane­sulfan­yl)amide (ESAQOE; Wijaya et al., 2004[Wijaya, K., Moers, O., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. Teil B, 59, 17-26.]) and the chloride dihydrate (SUZFOJ; Suleiman Gwaram et al., 2010[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, o2294.]). In ACEYUD the cation is protonated at the N atom adjacent to the carbonyl group, as in the title compound, while in compounds ESAQOE and SUZFOJ it is the N atom para to the carbonyl group that is protonated. Otherwise, the bond distances in these three compounds are very similar and close to those observed for the title compound.

5. Synthesis and crystallization

A hot methano­lic solution (20 ml) of 2,6-di­amino-4-hy­droxy pyrimidine (31.5 mg, Aldrich) and p-toluene sulfonic acid (43 mg, Loba chemie) was warmed at 323 K for 30 min over a water bath. The mixture was cooled slowly and kept at room temperature and after three weeks light-yellow needle-shaped crystals were obtained.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model: N—H = 0.86 Å, C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C4H7N4O+·C7H7O3S
Mr 298.33
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 30.8628 (7), 6.5559 (2), 13.1565 (3)
β (°) 96.428 (1)
V3) 2645.27 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.30 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.925, 0.949
No. of measured, independent and observed [I > 2σ(I)] reflections 14972, 3580, 2986
Rint 0.022
(sin θ/λ)max−1) 0.687
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.109, 1.06
No. of reflections 3580
No. of parameters 182
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

2,4-Diamino-6-oxo-3,6-dihydropyrimidin-1-ium p-toluenesulfonate top
Crystal data top
C4H7N4O+·C7H7O3SF(000) = 1248
Mr = 298.33Dx = 1.498 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3580 reflections
a = 30.8628 (7) Åθ = 2.7–29.3°
b = 6.5559 (2) ŵ = 0.27 mm1
c = 13.1565 (3) ÅT = 296 K
β = 96.428 (1)°Prism, colourless
V = 2645.27 (12) Å30.30 × 0.20 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3580 independent reflections
Radiation source: fine-focus sealed tube2986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω and φ scanθmax = 29.2°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 4042
Tmin = 0.925, Tmax = 0.949k = 97
14972 measured reflectionsl = 1816
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0552P)2 + 1.4509P]
where P = (Fo2 + 2Fc2)/3
3580 reflections(Δ/σ)max = 0.001
182 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37258 (1)0.33503 (6)0.60709 (3)0.0395 (1)
O20.41787 (3)0.26937 (17)0.63677 (10)0.0469 (4)
O30.36871 (4)0.55423 (17)0.61453 (11)0.0559 (4)
O40.35526 (4)0.2530 (2)0.50899 (10)0.0594 (4)
C70.34167 (4)0.2292 (2)0.69886 (12)0.0379 (4)
C80.33328 (5)0.3414 (3)0.78333 (14)0.0508 (5)
C90.30882 (6)0.2558 (4)0.85489 (15)0.0631 (7)
C100.29210 (5)0.0608 (4)0.84233 (15)0.0611 (7)
C110.30171 (6)0.0499 (3)0.75883 (16)0.0595 (6)
C120.32634 (5)0.0315 (3)0.68668 (14)0.0477 (5)
C130.26346 (7)0.0295 (5)0.9167 (2)0.0946 (12)
O10.52384 (3)0.28686 (15)0.61202 (10)0.0461 (4)
N10.50945 (3)0.88937 (16)0.62432 (8)0.0306 (3)
N20.43613 (4)0.84071 (18)0.63472 (10)0.0382 (3)
N30.48173 (3)0.56345 (16)0.62787 (9)0.0314 (3)
N60.58157 (4)0.95420 (18)0.60830 (11)0.0424 (4)
C20.47500 (4)0.76549 (19)0.62867 (9)0.0289 (3)
C40.52230 (4)0.4758 (2)0.61702 (10)0.0321 (3)
C50.55713 (4)0.6088 (2)0.61103 (11)0.0343 (4)
C60.55075 (4)0.8158 (2)0.61406 (10)0.0308 (3)
H80.343900.473600.792300.0610*
H90.303600.331100.912200.0760*
H110.291400.182900.750600.0710*
H120.332500.046000.630800.0570*
H13A0.233600.005900.895900.1420*
H13B0.272100.023300.984000.1420*
H13C0.266500.175300.917400.1420*
H10.505701.019000.628100.0370*
H2A0.414300.760200.638300.0460*
H2B0.432300.970700.635100.0460*
H30.460100.483900.634300.0380*
H50.584800.557200.605000.0410*
H6A0.607800.916500.602200.0510*
H6B0.575301.081800.610700.0510*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0285 (2)0.0340 (2)0.0570 (2)0.0021 (1)0.0095 (1)0.0001 (2)
O20.0284 (5)0.0346 (5)0.0788 (8)0.0014 (4)0.0105 (5)0.0016 (5)
O30.0434 (6)0.0332 (6)0.0928 (10)0.0018 (5)0.0154 (6)0.0087 (6)
O40.0459 (6)0.0783 (9)0.0554 (7)0.0116 (6)0.0117 (5)0.0091 (6)
C70.0265 (6)0.0356 (7)0.0519 (8)0.0021 (5)0.0053 (5)0.0004 (6)
C80.0409 (8)0.0524 (10)0.0600 (10)0.0048 (7)0.0094 (7)0.0104 (8)
C90.0469 (9)0.0889 (15)0.0554 (10)0.0014 (10)0.0140 (8)0.0057 (10)
C100.0336 (7)0.0877 (15)0.0618 (11)0.0043 (8)0.0039 (7)0.0239 (10)
C110.0458 (9)0.0518 (11)0.0791 (13)0.0138 (8)0.0004 (8)0.0191 (9)
C120.0411 (7)0.0379 (8)0.0638 (10)0.0056 (6)0.0047 (7)0.0005 (7)
C130.0533 (11)0.149 (3)0.0824 (15)0.0176 (14)0.0114 (10)0.0509 (16)
O10.0415 (5)0.0209 (5)0.0767 (8)0.0010 (4)0.0104 (5)0.0001 (5)
N10.0338 (5)0.0190 (5)0.0395 (6)0.0006 (4)0.0066 (4)0.0008 (4)
N20.0333 (5)0.0271 (6)0.0552 (7)0.0018 (4)0.0092 (5)0.0027 (5)
N30.0307 (5)0.0221 (5)0.0417 (6)0.0022 (4)0.0061 (4)0.0018 (4)
N60.0353 (6)0.0269 (6)0.0665 (8)0.0041 (5)0.0126 (6)0.0005 (5)
C20.0332 (6)0.0244 (6)0.0293 (6)0.0003 (5)0.0042 (4)0.0014 (4)
C40.0346 (6)0.0230 (6)0.0388 (6)0.0009 (5)0.0040 (5)0.0010 (5)
C50.0316 (6)0.0256 (6)0.0462 (7)0.0008 (5)0.0068 (5)0.0001 (5)
C60.0328 (6)0.0261 (6)0.0338 (6)0.0020 (5)0.0055 (5)0.0008 (5)
Geometric parameters (Å, º) top
S1—O21.4728 (10)C7—C121.383 (2)
S1—O31.4462 (12)C7—C81.381 (2)
S1—O41.4444 (14)C8—C91.389 (3)
S1—C71.7628 (15)C9—C101.382 (4)
O1—C41.2416 (16)C10—C131.511 (3)
N1—C61.3835 (16)C10—C111.376 (3)
N1—C21.3442 (16)C11—C121.388 (3)
N2—C21.3077 (18)C8—H80.9300
N3—C21.3410 (16)C9—H90.9300
N3—C41.3994 (16)C11—H110.9300
N6—C61.3228 (18)C12—H120.9300
N1—H10.8600C13—H13C0.9600
N2—H2A0.8600C13—H13A0.9600
N2—H2B0.8600C13—H13B0.9600
N3—H30.8600C4—C51.3932 (18)
N6—H6B0.8600C5—C61.3725 (19)
N6—H6A0.8600C5—H50.9300
S1···H2A3.0800C5···O4ii3.4031 (18)
S1···H2Bi3.0100C6···N2v3.2886 (19)
S1···H32.8600C6···O1iv3.1973 (16)
O1···C6i3.1973 (16)C6···C2v3.5776 (18)
O1···N1i2.6515 (14)C13···O4vi3.298 (3)
O1···N6i2.8201 (15)C4···H1i3.0400
O1···C2ii3.1894 (18)C4···H6Bi3.0600
O2···N32.7689 (14)C7···H13Avii3.1000
O2···N2i2.8669 (16)C12···H13Biii3.0100
O3···N22.7935 (17)H1···H2B2.3000
O4···C5ii3.4031 (18)H1···H6B2.2200
O4···N6ii2.9498 (18)H1···C4iv3.0400
O4···C13iii3.298 (3)H1···O1iv1.8600
O1···H6Bi2.0800H2A···H32.3000
O1···H1i1.8600H2A···S13.0800
O2···H31.9200H2A···O31.9500
O2···H2Bi2.0100H2B···H12.3000
O3···H12iv2.8700H2B···S1iv3.0100
O3···H32.8400H2B···O2iv2.0100
O3···H82.6000H3···S12.8600
O3···H2A1.9500H3···H2A2.3000
O4···H5ii2.8000H3···O21.9200
O4···H13Ciii2.9100H3···O32.8400
O4···H6Aii2.2500H5···O4ii2.8000
O4···H122.6800H5···H8v2.5100
N1···O1iv2.6515 (14)H5···H6A2.4600
N1···C2v3.3319 (16)H6A···O4ii2.2500
N2···O32.7935 (17)H6A···H52.4600
N2···O2iv2.8669 (16)H6B···C4iv3.0600
N2···C6v3.2886 (19)H6B···H12.2200
N3···C5ii3.4276 (18)H6B···O1iv2.0800
N3···O22.7689 (14)H8···H5v2.5100
N3···N3v3.2844 (17)H8···O32.6000
N3···C4v3.4212 (18)H9···H13B2.4700
N3···C4ii3.2207 (18)H11···H13C2.4100
N6···O1iv2.8201 (15)H12···O42.6800
N6···O4ii2.9498 (18)H12···H13Biii2.5300
C2···N1v3.3319 (16)H12···O3i2.8700
C2···C2v3.3868 (17)H13A···C7viii3.1000
C2···C6v3.5776 (18)H13B···H92.4700
C2···O1ii3.1894 (18)H13B···C12vi3.0100
C4···N3ii3.2207 (18)H13B···H12vi2.5300
C4···C4ii3.2446 (18)H13C···H112.4100
C4···N3v3.4212 (18)H13C···O4vi2.9100
C5···N3ii3.4276 (18)
O2—S1—O3110.84 (7)C7—C12—C11119.19 (17)
O2—S1—O4111.93 (7)C9—C8—H8120.00
O2—S1—C7105.89 (7)C7—C8—H8120.00
O3—S1—O4113.91 (8)C10—C9—H9119.00
O3—S1—C7106.83 (7)C8—C9—H9119.00
O4—S1—C7106.91 (7)C10—C11—H11119.00
C2—N1—C6122.36 (11)C12—C11—H11119.00
C2—N3—C4123.20 (10)C11—C12—H12120.00
C6—N1—H1119.00C7—C12—H12120.00
C2—N1—H1119.00C10—C13—H13C109.00
C2—N2—H2B120.00H13B—C13—H13C109.00
H2A—N2—H2B120.00C10—C13—H13A109.00
C2—N2—H2A120.00C10—C13—H13B109.00
C4—N3—H3118.00H13A—C13—H13C109.00
C2—N3—H3118.00H13A—C13—H13B110.00
C6—N6—H6A120.00N1—C2—N3118.20 (11)
H6A—N6—H6B120.00N1—C2—N2120.67 (12)
C6—N6—H6B120.00N2—C2—N3121.13 (11)
S1—C7—C12119.60 (12)N3—C4—C5116.98 (11)
C8—C7—C12119.99 (15)O1—C4—C5125.95 (12)
S1—C7—C8120.41 (11)O1—C4—N3117.07 (11)
C7—C8—C9119.68 (18)C4—C5—C6120.20 (12)
C8—C9—C10121.11 (19)N1—C6—N6116.28 (12)
C11—C10—C13120.3 (2)N1—C6—C5118.97 (11)
C9—C10—C13121.5 (2)N6—C6—C5124.76 (12)
C9—C10—C11118.19 (18)C4—C5—H5120.00
C10—C11—C12121.79 (19)C6—C5—H5120.00
O2—S1—C7—C894.26 (13)S1—C7—C12—C11179.44 (13)
O2—S1—C7—C1284.77 (13)S1—C7—C8—C9179.93 (13)
O3—S1—C7—C823.93 (14)C12—C7—C8—C91.0 (2)
O3—S1—C7—C12157.04 (12)C8—C7—C12—C111.5 (2)
O4—S1—C7—C8146.24 (13)C7—C8—C9—C101.0 (3)
O4—S1—C7—C1234.72 (14)C8—C9—C10—C13176.68 (19)
C6—N1—C2—N2177.54 (12)C8—C9—C10—C112.4 (3)
C6—N1—C2—N33.24 (18)C13—C10—C11—C12177.18 (19)
C2—N1—C6—N6178.45 (12)C9—C10—C11—C122.0 (3)
C2—N1—C6—C51.84 (19)C10—C11—C12—C70.0 (3)
C2—N3—C4—O1176.29 (13)O1—C4—C5—C6177.72 (14)
C2—N3—C4—C52.62 (19)N3—C4—C5—C61.1 (2)
C4—N3—C2—N2177.12 (12)C4—C5—C6—N6179.57 (14)
C4—N3—C2—N13.67 (18)C4—C5—C6—N10.8 (2)
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1; (iii) x, y, z1/2; (iv) x, y+1, z; (v) x+1, y, z+3/2; (vi) x, y, z+1/2; (vii) x+1/2, y+1/2, z+3/2; (viii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iv0.861.862.6515 (14)152
N2—H2A···O30.861.952.7935 (17)166
N2—H2B···O2iv0.862.012.8669 (16)175
N3—H3···O20.861.922.7689 (14)169
N6—H6A···O4ii0.862.252.9498 (18)139
N6—H6B···O1iv0.862.082.8201 (15)143
Symmetry codes: (ii) x+1, y+1, z+1; (iv) x, y+1, z.
 

Acknowledgements

The authors thank Dr Babu Varghese and the Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Chennai, Tamil Nadu, India, for the data collection.

References

First citationAyer, D. E. (1991). Chem Abstr. 115, 114546.  Google Scholar
First citationBogdan, C., Werner, E., Stenger, S., Wachter, H., Röllinghoff, M. & Werner-Felmayer, G. (1995). FEBS Lett. 363, 69–74.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGomathi, S. & Muthiah, P. T. (2011). Acta Cryst. E67, o2679–o2680.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. E60, o2038–o2040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, X.-Y., Wang, W.-H., Lan, J.-B., Mao, Z.-H. & Xie, R.-G. (2007). Acta Cryst. E63, o4513–o4514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, o2294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationThomas, A. P. (1995a). World Patent WO 9515952.  Google Scholar
First citationThomas, A. P. (1995b). Chem Abstr. 123, 286077.  Google Scholar
First citationWang, K.-W. (2006). Acta Cryst. E62, o5136–o5137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWijaya, K., Moers, O., Blaschette, A. & Jones, P. G. (2004). Z. Naturforsch. Teil B, 59, 17–26.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds