organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1-(4-tert-butyl­phen­yl)-2-(4-iodo­phen­yl)ethene

aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China, and bResearch School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
*Correspondence e-mail: Graeme.Moxey@anu.edu.au

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 April 2015; accepted 10 April 2015; online 15 April 2015)

The title compound, C18H19I, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. Both mol­ecules have an E conformation about the bridging C=C bond. They differ in the orientation of the two benzene rings; the dihedral angle being 12.3 (5)° in mol­ecule A, but only 1.0 (6)° in mol­ecule B. In the crystal, the individual mol­ecules are linked by C—I⋯π inter­actions forming zigzag A and zigzag B chains propagating along [001]. The structure was refined as an inversion twin [Flack parameter = 0.48 (2)].

1. Related literature

For the syntheses of aryl­alkynes by Sonogashira cross-coupling of iodo­arenes, see: Takahashi et al. (1980[Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, 627-630.]). For desilylation of the resultant tri­alkyl­silylethynylarenes and the use of ethynylarenes in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a[McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. & White, A. H. (1996a). J. Organomet. Chem., 523, 33-40.],b[McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Skelton, B. W. & White, A. H. (1996b). J. Organomet. Chem., 519, 229-235.], 2003[McDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402-1413.]); Garcia et al. (2002[Garcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107-2118.]). For related structures, see: Marras et al. (2006[Marras, G., Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Vij, A. (2006). New J. Chem. 30, 1397-1402.]); Mariaca et al. (2009[Mariaca, R., Labat, G., Behrnd, N.-R., Bonin, M., Helbling, F., Eggli, P., Couderc, G., Neels, A., Stoeckli-Evans, H. & Hulliger, J. (2009). J. Fluor. Chem. 130, 175-196.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H19I

  • Mr = 362.23

  • Orthorhombic, P c a 21

  • a = 32.5385 (9) Å

  • b = 6.10513 (15) Å

  • c = 15.8615 (3) Å

  • V = 3150.91 (14) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 15.83 mm−1

  • T = 150 K

  • 0.16 × 0.05 × 0.02 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.854, Tmax = 0.966

  • 10293 measured reflections

  • 3770 independent reflections

  • 3559 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.133

  • S = 1.04

  • 3770 reflections

  • 350 parameters

  • 67 restraints

  • H-atom parameters constrained

  • Δρmax = 2.09 e Å−3

  • Δρmin = −1.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 570 Friedel pairs

  • Absolute structure parameter: 0.48 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg4 are the centroids of the C9–C14 and C27–C32 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—I1⋯Cg2i 2.09 (1) 3.63 (1) 5.676 (10) 166 (1)
C19—I2⋯Cg4ii 2.10 (1) 3.57 (1) 5.526 (11) 154 (1)
Symmetry codes: (i) [-x+1, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-1, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

(E)-1-(4-tert-butyl­phenyl)-2-(4-bromo­phenyl)­ethene (1.00 g, 3.17 mmol) was dissolved in distilled THF (40 mL) and cooled to 195 K (liquid nitro­gen bath) under N2 for 30 min. BuLi (2.97 mL, 1.6 M, 4.76 mmol) was added and the mixture was stirred for 2 h. A solution of I2 (1.20 g, 4.76 mmol) in THF (20 mL) was then added and the reaction was allowed to warm to room temperature. A saturated solution of sodium thio­sulfate (10 mL) and water (20 mL) were then added and the mixture stirred until clear. The mixture was then extracted with CH2Cl2, stirred over anhydrous MgSO4, filtered and taken to dryness to yield the title compound as a yellow solid. The solid was extracted with a small amount of CH2Cl2 and the extract was passed through a pad of silica with petrol as eluent. The eluate was reduced in volume, affording the title compound as a white solid (yield: 1.0 g, 87%). The numbering scheme of the title compound for the NMR assignments is given in Fig. 3. 1H-NMR (400 MHz, CDCl3): δ 7.66 (d, JHH = 8 Hz, 2H, H7), 7.44 (d, JHH = 8 Hz, 2H, H3), 7.38 (d, JHH = 8 Hz, 2H, H2), 7.23 (d, JHH = 8 Hz, 2H, H6), 7.09 (d, JHH = 16 Hz, 1H, H4), 6.97 (d, JHH = 16 Hz, 1H, H5), 1.33 (s, 9H, H1). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in hexane.

Refinement top

Crystal data, data collection and structure refinement details are summarized below. The H atoms were included in calculated positions and treated as riding: C—H = 0.93 - 0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The structure was refined as an inversion twin: Flack parameter = 0.48 (2). Rigid bond restraints (RIGU) were applied to atoms C15, C16, C17, C18, C22, C25, C26, C27, C28, C32, C33, C34, C35, C36.

Related literature top

For the syntheses of arylalkynes by Sonogashira cross-coupling of iodoarenes, see: Takahashi et al. (1980). For desilylation of the resultant trialkylsilylethynylarenes and the use of ethynylarenes in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a,b, 2003); Garcia et al. (2002). For related structures, see: Marras et al. (2006); Mariaca et al. (2009).

Structure description top

For the syntheses of arylalkynes by Sonogashira cross-coupling of iodoarenes, see: Takahashi et al. (1980). For desilylation of the resultant trialkylsilylethynylarenes and the use of ethynylarenes in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a,b, 2003); Garcia et al. (2002). For related structures, see: Marras et al. (2006); Mariaca et al. (2009).

Synthesis and crystallization top

(E)-1-(4-tert-butyl­phenyl)-2-(4-bromo­phenyl)­ethene (1.00 g, 3.17 mmol) was dissolved in distilled THF (40 mL) and cooled to 195 K (liquid nitro­gen bath) under N2 for 30 min. BuLi (2.97 mL, 1.6 M, 4.76 mmol) was added and the mixture was stirred for 2 h. A solution of I2 (1.20 g, 4.76 mmol) in THF (20 mL) was then added and the reaction was allowed to warm to room temperature. A saturated solution of sodium thio­sulfate (10 mL) and water (20 mL) were then added and the mixture stirred until clear. The mixture was then extracted with CH2Cl2, stirred over anhydrous MgSO4, filtered and taken to dryness to yield the title compound as a yellow solid. The solid was extracted with a small amount of CH2Cl2 and the extract was passed through a pad of silica with petrol as eluent. The eluate was reduced in volume, affording the title compound as a white solid (yield: 1.0 g, 87%). The numbering scheme of the title compound for the NMR assignments is given in Fig. 3. 1H-NMR (400 MHz, CDCl3): δ 7.66 (d, JHH = 8 Hz, 2H, H7), 7.44 (d, JHH = 8 Hz, 2H, H3), 7.38 (d, JHH = 8 Hz, 2H, H2), 7.23 (d, JHH = 8 Hz, 2H, H6), 7.09 (d, JHH = 16 Hz, 1H, H4), 6.97 (d, JHH = 16 Hz, 1H, H5), 1.33 (s, 9H, H1). Crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a solution in hexane.

Refinement details top

Crystal data, data collection and structure refinement details are summarized below. The H atoms were included in calculated positions and treated as riding: C—H = 0.93 - 0.96 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The structure was refined as an inversion twin: Flack parameter = 0.48 (2). Rigid bond restraints (RIGU) were applied to atoms C15, C16, C17, C18, C22, C25, C26, C27, C28, C32, C33, C34, C35, C36.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the two independent molecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The C—I···π interactions are represented as dashed lines (see Table 1 for details; molecule A blue, molecule B red).
[Figure 3] Fig. 3. Atom numbering scheme of the title compound for 1H NMR assignments.
(E)-1-(4-tert-Butylphenyl)-2-(4-iodophenyl)ethene top
Crystal data top
C18H19IDx = 1.527 Mg m3
Mr = 362.23Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pca21Cell parameters from 4062 reflections
a = 32.5385 (9) Åθ = 2.7–71.7°
b = 6.10513 (15) ŵ = 15.83 mm1
c = 15.8615 (3) ÅT = 150 K
V = 3150.91 (14) Å3Needle, colourless
Z = 80.16 × 0.05 × 0.02 mm
F(000) = 1440
Data collection top
Agilent SuperNova (Dual, Cu at zero, EosS2)
diffractometer
3770 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source3559 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 8.1297 pixels mm-1θmax = 72.3°, θmin = 3.9°
ω scansh = 3640
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)
k = 77
Tmin = 0.854, Tmax = 0.966l = 719
10293 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0776P)2 + 7.7934P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3770 reflectionsΔρmax = 2.09 e Å3
350 parametersΔρmin = 1.31 e Å3
67 restraintsAbsolute structure: Flack (1983), 570 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.48 (2)
Crystal data top
C18H19IV = 3150.91 (14) Å3
Mr = 362.23Z = 8
Orthorhombic, Pca21Cu Kα radiation
a = 32.5385 (9) ŵ = 15.83 mm1
b = 6.10513 (15) ÅT = 150 K
c = 15.8615 (3) Å0.16 × 0.05 × 0.02 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, EosS2)
diffractometer
3770 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)
3559 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.966Rint = 0.033
10293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.133Δρmax = 2.09 e Å3
S = 1.04Δρmin = 1.31 e Å3
3770 reflectionsAbsolute structure: Flack (1983), 570 Friedel pairs
350 parametersAbsolute structure parameter: 0.48 (2)
67 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.54022 (2)0.31330 (10)0.04996 (5)0.04638 (19)
C10.4990 (3)0.1418 (15)0.1266 (6)0.0337 (19)
C20.5086 (3)0.0691 (15)0.1547 (7)0.0366 (19)
H20.53270.13830.13750.044*
C30.4807 (4)0.1750 (14)0.2101 (7)0.041 (2)
H30.48700.31460.22970.049*
C40.4457 (3)0.0801 (18)0.2351 (6)0.038 (2)
C50.4356 (3)0.1290 (17)0.2036 (6)0.0361 (19)
H50.41100.19530.21950.043*
C60.4621 (3)0.2362 (16)0.1489 (7)0.036 (2)
H60.45490.37230.12720.043*
C70.4158 (3)0.1806 (16)0.2943 (7)0.036 (2)
H70.39320.09720.31020.043*
C80.4191 (3)0.3824 (17)0.3267 (6)0.038 (2)
H80.44020.46950.30600.046*
C90.3926 (3)0.4803 (15)0.3914 (5)0.0314 (18)
C100.4042 (3)0.6749 (16)0.4264 (7)0.040 (2)
H100.42680.74890.40450.048*
C110.3829 (3)0.7647 (17)0.4941 (8)0.043 (2)
H110.39180.89700.51680.051*
C120.3485 (3)0.6614 (15)0.5290 (6)0.035 (2)
C130.3352 (3)0.4714 (16)0.4881 (7)0.040 (2)
H130.31140.40250.50670.048*
C140.3563 (3)0.3835 (15)0.4213 (6)0.037 (2)
H140.34640.25750.39530.044*
C150.3286 (5)0.743 (2)0.6106 (8)0.056 (3)
C160.3539 (6)0.657 (3)0.6841 (10)0.077 (3)
H16A0.35190.50010.68620.116*
H16B0.34370.71780.73590.116*
H16C0.38210.69850.67680.116*
C170.3247 (6)0.985 (3)0.6122 (10)0.077 (4)
H17A0.31481.03510.55860.115*
H17B0.35101.04880.62360.115*
H17C0.30561.02660.65560.115*
C180.2857 (5)0.652 (3)0.6225 (10)0.071 (3)
H18A0.28730.50820.64690.107*
H18B0.27210.64350.56890.107*
H18C0.27040.74630.65940.107*
I20.78793 (2)0.28068 (15)0.94298 (6)0.0660 (3)
C190.7487 (3)0.1295 (17)0.8555 (7)0.037 (2)
C200.7411 (3)0.230 (2)0.7792 (8)0.046 (3)
H200.75180.36800.76770.055*
C210.7175 (4)0.124 (3)0.7204 (8)0.064 (4)
H210.71350.19040.66840.077*
C220.6996 (4)0.073 (3)0.7341 (10)0.063 (4)
C230.7063 (4)0.169 (2)0.8102 (12)0.066 (4)
H230.69390.30270.82170.079*
C240.7315 (4)0.072 (2)0.8725 (8)0.053 (3)
H240.73630.14250.92360.063*
C250.6767 (4)0.164 (3)0.6608 (12)0.072 (3)
H250.67240.06610.61690.086*
C260.6631 (4)0.339 (3)0.6495 (11)0.067 (3)
H260.66810.43870.69270.080*
C270.6392 (3)0.429 (2)0.5768 (8)0.056 (2)
C280.6210 (3)0.629 (2)0.5896 (7)0.049 (2)
H280.62570.70070.64040.059*
C290.5963 (3)0.7274 (18)0.5311 (7)0.043 (2)
H290.58400.86090.54370.051*
C300.5893 (3)0.6305 (15)0.4530 (7)0.0351 (18)
C310.6083 (3)0.4297 (16)0.4386 (8)0.048 (2)
H310.60450.35880.38730.057*
C320.6327 (4)0.334 (2)0.5003 (10)0.057 (3)
H320.64520.20040.48880.069*
C330.5640 (3)0.7429 (16)0.3844 (7)0.0379 (18)
C340.5377 (4)0.578 (2)0.3364 (8)0.055 (3)
H34A0.51980.50360.37520.082*
H34B0.55510.47290.30910.082*
H34C0.52150.65320.29490.082*
C350.5934 (4)0.8569 (19)0.3232 (8)0.047 (2)
H35A0.61220.75140.30030.070*
H35B0.60850.96830.35260.070*
H35C0.57800.92260.27830.070*
C360.5344 (4)0.911 (2)0.4202 (9)0.055 (3)
H36A0.51710.84290.46160.083*
H36B0.51770.96930.37560.083*
H36C0.54971.02780.44600.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0447 (3)0.0457 (3)0.0487 (3)0.0059 (2)0.0084 (3)0.0103 (3)
C10.037 (5)0.033 (4)0.032 (4)0.003 (4)0.000 (4)0.005 (4)
C20.038 (4)0.032 (4)0.040 (5)0.000 (4)0.002 (4)0.002 (4)
C30.058 (6)0.019 (4)0.045 (6)0.001 (4)0.020 (5)0.007 (4)
C40.035 (5)0.058 (6)0.021 (4)0.014 (4)0.003 (4)0.001 (4)
C50.029 (4)0.042 (5)0.037 (5)0.003 (4)0.003 (4)0.004 (4)
C60.038 (5)0.033 (4)0.036 (5)0.001 (4)0.003 (4)0.000 (4)
C70.036 (5)0.043 (5)0.030 (5)0.007 (4)0.004 (4)0.002 (4)
C80.039 (5)0.043 (5)0.032 (4)0.003 (4)0.003 (4)0.010 (4)
C90.029 (4)0.044 (5)0.020 (4)0.007 (4)0.001 (3)0.005 (3)
C100.032 (4)0.048 (5)0.039 (5)0.000 (4)0.005 (4)0.010 (4)
C110.045 (5)0.036 (4)0.048 (6)0.007 (4)0.004 (5)0.007 (4)
C120.042 (5)0.038 (4)0.026 (5)0.008 (4)0.004 (4)0.005 (4)
C130.037 (4)0.037 (4)0.044 (5)0.002 (4)0.011 (4)0.005 (4)
C140.041 (5)0.032 (4)0.038 (5)0.005 (4)0.001 (4)0.006 (4)
C150.072 (6)0.056 (5)0.040 (5)0.019 (4)0.023 (4)0.003 (4)
C160.096 (7)0.086 (8)0.049 (5)0.027 (6)0.016 (5)0.004 (5)
C170.097 (8)0.065 (5)0.069 (8)0.019 (5)0.034 (7)0.003 (4)
C180.080 (6)0.082 (7)0.052 (7)0.014 (5)0.027 (5)0.001 (6)
I20.0478 (4)0.0800 (5)0.0701 (6)0.0002 (4)0.0213 (4)0.0277 (5)
C190.029 (4)0.041 (5)0.040 (5)0.001 (4)0.001 (4)0.007 (4)
C200.040 (6)0.052 (6)0.046 (6)0.000 (5)0.002 (5)0.002 (5)
C210.067 (8)0.089 (10)0.036 (6)0.029 (8)0.001 (5)0.006 (7)
C220.037 (5)0.082 (8)0.069 (7)0.017 (5)0.003 (5)0.039 (6)
C230.057 (7)0.040 (6)0.101 (13)0.023 (5)0.018 (8)0.025 (7)
C240.063 (7)0.049 (6)0.047 (6)0.006 (5)0.005 (6)0.011 (5)
C250.051 (6)0.086 (6)0.079 (7)0.014 (4)0.011 (5)0.037 (5)
C260.047 (5)0.082 (5)0.072 (6)0.016 (4)0.013 (5)0.034 (4)
C270.034 (4)0.076 (5)0.058 (4)0.014 (4)0.003 (3)0.026 (4)
C280.035 (4)0.076 (5)0.036 (4)0.012 (4)0.003 (4)0.024 (4)
C290.039 (5)0.051 (5)0.039 (6)0.008 (4)0.008 (4)0.002 (4)
C300.034 (4)0.037 (4)0.034 (5)0.006 (4)0.007 (4)0.004 (4)
C310.051 (5)0.036 (4)0.056 (6)0.000 (4)0.013 (5)0.002 (5)
C320.041 (5)0.065 (6)0.066 (5)0.005 (4)0.008 (4)0.023 (4)
C330.040 (4)0.036 (3)0.037 (4)0.006 (3)0.016 (3)0.003 (3)
C340.059 (5)0.057 (5)0.048 (5)0.007 (4)0.015 (4)0.002 (4)
C350.051 (4)0.042 (4)0.046 (5)0.004 (4)0.009 (4)0.003 (4)
C360.053 (5)0.054 (5)0.059 (6)0.014 (4)0.008 (4)0.003 (4)
Geometric parameters (Å, º) top
I1—C12.091 (10)I2—C192.099 (10)
C1—C21.398 (13)C19—C201.379 (17)
C1—C61.379 (14)C19—C241.379 (15)
C2—H20.9300C20—H200.9300
C2—C31.420 (16)C20—C211.372 (19)
C3—H30.9300C21—H210.9300
C3—C41.339 (16)C21—C221.35 (2)
C4—C51.410 (15)C22—C231.36 (2)
C4—C71.485 (14)C22—C251.490 (19)
C5—H50.9300C23—H230.9300
C5—C61.386 (15)C23—C241.41 (2)
C6—H60.9300C24—H240.9300
C7—H70.9300C25—H250.9300
C7—C81.339 (15)C25—C261.17 (2)
C8—H80.9300C26—H260.9300
C8—C91.467 (13)C26—C271.494 (18)
C9—C101.364 (14)C27—C281.37 (2)
C9—C141.402 (13)C27—C321.36 (2)
C10—H100.9300C28—H280.9300
C10—C111.391 (15)C28—C291.367 (16)
C11—H110.9300C29—H290.9300
C11—C121.399 (15)C29—C301.391 (15)
C12—C131.397 (14)C30—C311.391 (14)
C12—C151.532 (14)C30—C331.527 (13)
C13—H130.9300C31—H310.9300
C13—C141.372 (15)C31—C321.390 (17)
C14—H140.9300C32—H320.9300
C15—C161.52 (2)C33—C341.526 (15)
C15—C171.48 (2)C33—C351.530 (16)
C15—C181.51 (2)C33—C361.518 (16)
C16—H16A0.9600C34—H34A0.9600
C16—H16B0.9600C34—H34B0.9600
C16—H16C0.9600C34—H34C0.9600
C17—H17A0.9600C35—H35A0.9600
C17—H17B0.9600C35—H35B0.9600
C17—H17C0.9600C35—H35C0.9600
C18—H18A0.9600C36—H36A0.9600
C18—H18B0.9600C36—H36B0.9600
C18—H18C0.9600C36—H36C0.9600
C2—C1—I1120.2 (7)C20—C19—I2119.6 (8)
C6—C1—I1119.9 (7)C20—C19—C24119.7 (10)
C6—C1—C2119.9 (9)C24—C19—I2120.7 (9)
C1—C2—H2120.9C19—C20—H20120.4
C1—C2—C3118.2 (9)C21—C20—C19119.1 (12)
C3—C2—H2120.9C21—C20—H20120.4
C2—C3—H3119.0C20—C21—H21118.2
C4—C3—C2122.0 (9)C22—C21—C20123.6 (14)
C4—C3—H3119.0C22—C21—H21118.2
C3—C4—C5119.1 (9)C21—C22—C23117.1 (12)
C3—C4—C7124.4 (10)C21—C22—C25115.0 (16)
C5—C4—C7116.5 (9)C23—C22—C25127.8 (15)
C4—C5—H5119.9C22—C23—H23118.9
C6—C5—C4120.2 (9)C22—C23—C24122.3 (12)
C6—C5—H5119.9C24—C23—H23118.9
C1—C6—C5120.3 (9)C19—C24—C23118.2 (12)
C1—C6—H6119.8C19—C24—H24120.9
C5—C6—H6119.8C23—C24—H24120.9
C4—C7—H7117.6C22—C25—H25114.7
C8—C7—C4124.9 (10)C26—C25—C22131 (2)
C8—C7—H7117.6C26—C25—H25114.7
C7—C8—H8116.7C25—C26—H26114.8
C7—C8—C9126.6 (10)C25—C26—C27130.5 (18)
C9—C8—H8116.7C27—C26—H26114.8
C10—C9—C8118.4 (9)C28—C27—C26115.9 (14)
C10—C9—C14117.6 (9)C32—C27—C26127.8 (14)
C14—C9—C8124.0 (9)C32—C27—C28116.3 (11)
C9—C10—H10119.4C27—C28—H28118.5
C9—C10—C11121.2 (9)C29—C28—C27123.0 (12)
C11—C10—H10119.4C29—C28—H28118.5
C10—C11—H11119.1C28—C29—H29119.6
C10—C11—C12121.8 (9)C28—C29—C30120.9 (11)
C12—C11—H11119.1C30—C29—H29119.6
C11—C12—C15121.8 (10)C29—C30—C33122.1 (9)
C13—C12—C11116.0 (9)C31—C30—C29116.6 (10)
C13—C12—C15122.1 (10)C31—C30—C33121.2 (10)
C12—C13—H13119.0C30—C31—H31119.7
C14—C13—C12121.9 (9)C32—C31—C30120.5 (12)
C14—C13—H13119.0C32—C31—H31119.7
C9—C14—H14119.4C27—C32—C31122.6 (13)
C13—C14—C9121.1 (9)C27—C32—H32118.7
C13—C14—H14119.4C31—C32—H32118.7
C16—C15—C12107.8 (10)C30—C33—C35108.6 (8)
C17—C15—C12112.0 (11)C34—C33—C30111.2 (9)
C17—C15—C16112.2 (15)C34—C33—C35109.6 (10)
C17—C15—C18106.5 (13)C36—C33—C30112.3 (9)
C18—C15—C12112.1 (12)C36—C33—C34106.1 (10)
C18—C15—C16106.1 (13)C36—C33—C35109.0 (9)
C15—C16—H16A109.5C33—C34—H34A109.5
C15—C16—H16B109.5C33—C34—H34B109.5
C15—C16—H16C109.5C33—C34—H34C109.5
H16A—C16—H16B109.5H34A—C34—H34B109.5
H16A—C16—H16C109.5H34A—C34—H34C109.5
H16B—C16—H16C109.5H34B—C34—H34C109.5
C15—C17—H17A109.5C33—C35—H35A109.5
C15—C17—H17B109.5C33—C35—H35B109.5
C15—C17—H17C109.5C33—C35—H35C109.5
H17A—C17—H17B109.5H35A—C35—H35B109.5
H17A—C17—H17C109.5H35A—C35—H35C109.5
H17B—C17—H17C109.5H35B—C35—H35C109.5
C15—C18—H18A109.5C33—C36—H36A109.5
C15—C18—H18B109.5C33—C36—H36B109.5
C15—C18—H18C109.5C33—C36—H36C109.5
H18A—C18—H18B109.5H36A—C36—H36B109.5
H18A—C18—H18C109.5H36A—C36—H36C109.5
H18B—C18—H18C109.5H36B—C36—H36C109.5
I1—C1—C2—C3176.8 (7)I2—C19—C20—C21176.0 (9)
I1—C1—C6—C5176.3 (7)I2—C19—C24—C23178.2 (9)
C1—C2—C3—C40.8 (15)C19—C20—C21—C223 (2)
C2—C1—C6—C54.3 (15)C20—C19—C24—C230.1 (18)
C2—C3—C4—C51.8 (15)C20—C21—C22—C231 (2)
C2—C3—C4—C7178.6 (10)C20—C21—C22—C25177.6 (11)
C3—C4—C5—C61.4 (15)C21—C22—C23—C241 (2)
C3—C4—C7—C83.7 (16)C21—C22—C25—C26168.3 (16)
C4—C5—C6—C11.7 (15)C22—C23—C24—C192 (2)
C4—C7—C8—C9173.6 (9)C22—C25—C26—C27178.2 (12)
C5—C4—C7—C8175.9 (9)C23—C22—C25—C268 (3)
C6—C1—C2—C33.9 (14)C24—C19—C20—C212.1 (17)
C7—C4—C5—C6179.0 (9)C25—C22—C23—C24174.7 (12)
C7—C8—C9—C10169.9 (10)C25—C26—C27—C28168.0 (16)
C7—C8—C9—C148.6 (15)C25—C26—C27—C3211 (2)
C8—C9—C10—C11173.1 (10)C26—C27—C28—C29176.4 (10)
C8—C9—C14—C13173.0 (9)C26—C27—C32—C31177.1 (12)
C9—C10—C11—C120.6 (17)C27—C28—C29—C302.1 (16)
C10—C9—C14—C135.5 (14)C28—C27—C32—C311.8 (17)
C10—C11—C12—C134.3 (16)C28—C29—C30—C310.7 (14)
C10—C11—C12—C15171.5 (11)C28—C29—C30—C33176.3 (9)
C11—C12—C13—C144.2 (15)C29—C30—C31—C320.0 (15)
C11—C12—C15—C1680.3 (15)C29—C30—C33—C34142.2 (10)
C11—C12—C15—C1743.5 (18)C29—C30—C33—C3597.2 (11)
C11—C12—C15—C18163.3 (11)C29—C30—C33—C3623.5 (14)
C12—C13—C14—C90.6 (15)C30—C31—C32—C270.5 (18)
C13—C12—C15—C1695.2 (15)C31—C30—C33—C3441.0 (14)
C13—C12—C15—C17140.9 (13)C31—C30—C33—C3579.7 (12)
C13—C12—C15—C1821.2 (16)C31—C30—C33—C36159.7 (10)
C14—C9—C10—C115.5 (14)C32—C27—C28—C292.6 (16)
C15—C12—C13—C14171.6 (10)C33—C30—C31—C32177.0 (10)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C9–C14 and C27–C32 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—I1···Cg2i2.09 (1)3.63 (1)5.676 (10)166 (1)
C19—I2···Cg4ii2.10 (1)3.57 (1)5.526 (11)154 (1)
Symmetry codes: (i) x+1, y, z1/2; (ii) x+3/2, y1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg4 are the centroids of the C9–C14 and C27–C32 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—I1···Cg2i2.091 (10)3.628 (4)5.676 (10)165.5 (3)
C19—I2···Cg4ii2.099 (10)3.567 (4)5.526 (11)153.6 (3)
Symmetry codes: (i) x+1, y, z1/2; (ii) x+3/2, y1, z+1/2.
 

Acknowledgements

We gratefully acknowledge support from the Australian Research Council (LE130100057) to purchase the Agilent Technologies SuperNova and XCalibur diffractometers. We thank Professors C. Zhang (Jiangnan University), M. P. Cifuentes (Australian National University) and M. G. Humphrey (Australian National University) for assistance.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107–2118.  Web of Science CSD CrossRef CAS Google Scholar
First citationMariaca, R., Labat, G., Behrnd, N.-R., Bonin, M., Helbling, F., Eggli, P., Couderc, G., Neels, A., Stoeckli-Evans, H. & Hulliger, J. (2009). J. Fluor. Chem. 130, 175–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarras, G., Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Vij, A. (2006). New J. Chem. 30, 1397–1402.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402–1413.  Web of Science CrossRef CAS Google Scholar
First citationMcDonagh, A. M., Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. & White, A. H. (1996a). J. Organomet. Chem., 523, 33–40.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcDonagh, A. M., Whittall, I. R., Humphrey, M. G., Skelton, B. W. & White, A. H. (1996b). J. Organomet. Chem., 519, 229–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, 627–630.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds