organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-3-(3,4-di­meth­­oxy­phen­yl)-1-(1-hy­dr­oxy­naphthalen-2-yl)prop-2-en-1-one

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bPG and Research Department of Chemistry, Presidency College, Chennai-5, Tamil Nadu, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 April 2015; accepted 23 April 2015; online 30 April 2015)

The mol­ecular structure of the title compound, C21H18O4, consists of a 3,4-di­meth­oxy­phenyl ring and a naphthalene ring system linked via a prop-2-en-1-one spacer. The mol­ecule is almost planar, with a dihedral angle between the benzene ring and the naphthalene ring system of 2.68 (12)°. There is an intra­molecular O—H⋯O hydrogen bond involving the adjacent hy­droxy and carbonyl groups. The mol­ecule has an E conformation about the C=C bond and the carbonyl group is syn with respect to the C=C bond. In the crystal, mol­ecules are linked by bifurcated C—H⋯(O,O) hydrogen bonds, enclosing an R21(6) ring motif, and by a further C—H⋯O hydrogen bond, forming undulating sheets extending in b- and c-axis directions. There are ππ inter­actions between the sheets, involving inversion-related naphthalene and benzene rings [inter­centroid distance = 3.7452 (17) Å], forming a three-dimensional structure.

1. Related literature

For the biological activity of chalcone derivatives, see: Sashidhara et al. (2011[Sashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480-4484.]); Go et al. (2005[Go, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483-499.]); Mukherjee et al. (2001[Mukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Bracke, M. E., Olsen, C. E., Jain, S. C. & Parmar, V. S. (2001). Bioorg. Med. Chem. 9, 337-345.]); Liu et al. (2003[Liu, M., Wilairat, P., Croft, S. L., Tan, A.-L. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729-2738.]); Sivakumar et al. (2007[Sivakumar, P. M., Geetha Babu, S. K. & Mukesh, D. (2007). Chem. Pharm. Bull. 55, 44-49.]); Viana et al. (2003[Viana, G. S., Bandeira, M. A. & Matos, F. A. (2003). Phytomedicine, 10, 189-195.]); Ducki et al. (1998[Ducki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T. & Rennison, D. (1998). Bioorg. Med. Chem. Lett. 8, 1051-1056.]); Rahman et al. (2007[Rahman, A., Qureshi, R., Kiran, M. & Ansari, F. L. (2007). Turk. J. Chem. 31, 25-34.]). For a related structure, see: Ahn et al. (2013[Ahn, S., Lee, H.-J., Lim, Y. & Koh, D. (2013). Acta Cryst. E69, o666.]). For the synthesis, see: Ezhilarasi et al. (2014[Ezhilarasi, K. S., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2014). Acta Cryst. E70, o608-o609.]); Sathya et al. (2014[Sathya, S., Reuben Jonathan, D., Prathebha, K., Jovita, J. & Usha, G. (2014). Acta Cryst. E70, o1007.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H18O4

  • Mr = 334.35

  • Monoclinic, P 21 /n

  • a = 9.8784 (10) Å

  • b = 15.4108 (15) Å

  • c = 11.2288 (11) Å

  • β = 92.674 (2)°

  • V = 1707.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.973, Tmax = 0.982

  • 34671 measured reflections

  • 3568 independent reflections

  • 1992 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.247

  • S = 1.08

  • 3568 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.75 2.482 (3) 148
C7—H7⋯O3i 0.93 2.57 3.368 (4) 144
C7—H7⋯O4i 0.93 2.59 3.445 (4) 152
C18—H18⋯O2ii 0.93 2.43 3.333 (4) 165
Symmetry codes: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2014 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Synthesis and crystallization top

The title compound was synthesized following the reported procedures (Ezhilarasi et al., 2014; Sathya et al., 2014).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93–0.96 Å, O—H = 0.82 Å with Uiso(H)= 1.5Ueq(C) for methyl H atoms and 1.2Ueq(O,C) for other H atoms.

Comment top

Chalcones are 1,3-di­phenyl-2-propene-1-ones, in which two aromatic rings are linked by a three carbon α,β-unsaturated carbonyl system.These are abundant in edible plants and are considered to be precursors of flavonoids and isoflavonoids (Rahman et al., 2007). The presence of the enone functionality in the chalcone moiety confers biological activity upon it, such as anti­inflammatory (Sashidhara et al., 2011), anti­fungal (Go et al., 2005) anti­oxidant (Mukherjee et al., 2001), anti­malarial(Liu et al., 2003) anti­tuberculosis (Sivakumar et al., 2007), analgesic (Viana et al., 2003], and anti­tumor (Ducki et al., 1998) activities. As part of our attempts to investigate the substituent effects of chalcones on molecular structures and hence activities, the title compound was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are similar to those reported for a similar structure (Ahn et al., 2013). The molecule is almost planar with a dihedral angle between the benzene and naphthalene rings of 2.65 (1)°. The torsion angles of C20—O3—C16—C17 = 171.3 (3)° and C21—O4—C17—C16 = -174.0 (3)°, indicates the trans orientation of the two meth­oxy groups.

In the crystal, molecules are linked by bifurcated C—H···(O,O) hydrogen bonds, enclosing an R21(6) ring motif, and a further C—H···O hydrogen bond forming undulating sheets extending in the b and c directions. (Fig. 2 and Table 1). There are ππ inter­actions between the sheets, involving inversion related naphthalene and benzene rings, resulting in a three-dimensional structure [Cg2···Cg3i = 3.7452 (17) Å; Cg2 and Cg3 are the centroids or rings and C14—C19; symmetry code: (i) -x, -y+1, -z+1].

Related literature top

For the biological activity of chalcone derivatives, see: Sashidhara et al. (2011); Go et al. (2005); Mukherjee et al. (2001); Liu et al. (2003); Sivakumar et al. (2007); Viana et al. (2003); Ducki et al. (1998); Rahman et al. (2007). For a related structure, see: Ahn et al. (2013). For the synthesis, see: Ezhilarasi et al. (2014); Sathya et al. (2014).

Structure description top

Chalcones are 1,3-di­phenyl-2-propene-1-ones, in which two aromatic rings are linked by a three carbon α,β-unsaturated carbonyl system.These are abundant in edible plants and are considered to be precursors of flavonoids and isoflavonoids (Rahman et al., 2007). The presence of the enone functionality in the chalcone moiety confers biological activity upon it, such as anti­inflammatory (Sashidhara et al., 2011), anti­fungal (Go et al., 2005) anti­oxidant (Mukherjee et al., 2001), anti­malarial(Liu et al., 2003) anti­tuberculosis (Sivakumar et al., 2007), analgesic (Viana et al., 2003], and anti­tumor (Ducki et al., 1998) activities. As part of our attempts to investigate the substituent effects of chalcones on molecular structures and hence activities, the title compound was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The bond distances and angles are similar to those reported for a similar structure (Ahn et al., 2013). The molecule is almost planar with a dihedral angle between the benzene and naphthalene rings of 2.65 (1)°. The torsion angles of C20—O3—C16—C17 = 171.3 (3)° and C21—O4—C17—C16 = -174.0 (3)°, indicates the trans orientation of the two meth­oxy groups.

In the crystal, molecules are linked by bifurcated C—H···(O,O) hydrogen bonds, enclosing an R21(6) ring motif, and a further C—H···O hydrogen bond forming undulating sheets extending in the b and c directions. (Fig. 2 and Table 1). There are ππ inter­actions between the sheets, involving inversion related naphthalene and benzene rings, resulting in a three-dimensional structure [Cg2···Cg3i = 3.7452 (17) Å; Cg2 and Cg3 are the centroids or rings and C14—C19; symmetry code: (i) -x, -y+1, -z+1].

For the biological activity of chalcone derivatives, see: Sashidhara et al. (2011); Go et al. (2005); Mukherjee et al. (2001); Liu et al. (2003); Sivakumar et al. (2007); Viana et al. (2003); Ducki et al. (1998); Rahman et al. (2007). For a related structure, see: Ahn et al. (2013). For the synthesis, see: Ezhilarasi et al. (2014); Sathya et al. (2014).

Synthesis and crystallization top

The title compound was synthesized following the reported procedures (Ezhilarasi et al., 2014; Sathya et al., 2014).

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically and treated as riding atoms: C—H = 0.93–0.96 Å, O—H = 0.82 Å with Uiso(H)= 1.5Ueq(C) for methyl H atoms and 1.2Ueq(O,C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
(E)-3-(3,4-Dimethoxyphenyl)-1-(1-hydroxynaphthalen-2-yl)prop-2-en-1-one top
Crystal data top
C21H18O4F(000) = 704
Mr = 334.35Dx = 1.301 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8784 (10) ÅCell parameters from 3582 reflections
b = 15.4108 (15) Åθ = 2.3–26.6°
c = 11.2288 (11) ŵ = 0.09 mm1
β = 92.674 (2)°T = 293 K
V = 1707.5 (3) Å3Block, redish
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3568 independent reflections
Radiation source: fine-focus sealed tube1992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and φ scanθmax = 26.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.973, Tmax = 0.982k = 1919
34671 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.247 w = 1/[σ2(Fo2) + (0.125P)2 + 0.6413P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3568 reflectionsΔρmax = 0.29 e Å3
230 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.212 (16)
Crystal data top
C21H18O4V = 1707.5 (3) Å3
Mr = 334.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8784 (10) ŵ = 0.09 mm1
b = 15.4108 (15) ÅT = 293 K
c = 11.2288 (11) Å0.30 × 0.25 × 0.20 mm
β = 92.674 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3568 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1992 reflections with I > 2σ(I)
Tmin = 0.973, Tmax = 0.982Rint = 0.051
34671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.247H-atom parameters constrained
S = 1.08Δρmax = 0.29 e Å3
3568 reflectionsΔρmin = 0.29 e Å3
230 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0402 (2)0.54423 (14)0.26187 (18)0.0626 (6)
O20.1324 (2)0.65677 (13)0.22420 (16)0.0568 (6)
H2A0.08520.61360.21190.085*
O30.5102 (2)0.41489 (16)0.74635 (18)0.0691 (7)
O40.6337 (2)0.28908 (15)0.63862 (19)0.0664 (7)
C10.1882 (3)0.76195 (17)0.3705 (2)0.0468 (7)
C20.2833 (3)0.8011 (2)0.2974 (3)0.0589 (8)
H20.29720.77840.22220.071*
C30.3548 (3)0.8720 (2)0.3366 (3)0.0702 (10)
H30.41570.89830.28720.084*
C40.3372 (4)0.9050 (2)0.4501 (4)0.0757 (10)
H40.38720.95300.47620.091*
C50.2474 (3)0.8680 (2)0.5235 (3)0.0667 (9)
H50.23720.89070.59930.080*
C60.1701 (3)0.79568 (19)0.4855 (3)0.0533 (8)
C70.0772 (3)0.7555 (2)0.5598 (3)0.0599 (8)
H70.06580.77700.63610.072*
C80.0047 (3)0.68597 (19)0.5208 (3)0.0552 (8)
H80.05570.66060.57150.066*
C90.0170 (3)0.65037 (17)0.4059 (2)0.0439 (7)
C100.1113 (3)0.68788 (17)0.3329 (2)0.0445 (7)
C110.0608 (3)0.57509 (17)0.3629 (2)0.0479 (7)
C120.1620 (3)0.53573 (18)0.4362 (3)0.0505 (7)
H120.17480.55820.51180.061*
C130.2369 (3)0.46840 (19)0.3981 (3)0.0514 (7)
H130.22110.44830.32190.062*
C140.3399 (3)0.42287 (18)0.4610 (2)0.0484 (7)
C150.3725 (3)0.44398 (18)0.5770 (2)0.0482 (7)
H150.32680.48910.61650.058*
C160.4709 (3)0.39945 (19)0.6339 (2)0.0494 (7)
C170.5390 (3)0.33076 (19)0.5753 (3)0.0502 (7)
C180.5085 (3)0.30938 (19)0.4609 (3)0.0549 (8)
H180.55430.26440.42130.066*
C190.4089 (3)0.35528 (19)0.4049 (3)0.0565 (8)
H190.38810.34020.32770.068*
C200.4327 (4)0.4750 (3)0.8165 (3)0.0800 (11)
H20A0.46460.47580.89600.120*
H20B0.44180.53180.78200.120*
H20C0.33910.45800.81910.120*
C210.6958 (4)0.2140 (2)0.5876 (3)0.0770 (10)
H21A0.75620.18920.64290.116*
H21B0.62730.17230.57000.116*
H21C0.74590.22950.51550.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0739 (15)0.0598 (13)0.0553 (13)0.0084 (11)0.0161 (10)0.0062 (10)
O20.0683 (14)0.0591 (13)0.0440 (11)0.0023 (10)0.0119 (10)0.0030 (9)
O30.0801 (15)0.0796 (16)0.0486 (13)0.0189 (12)0.0110 (11)0.0048 (10)
O40.0678 (14)0.0696 (15)0.0620 (13)0.0185 (11)0.0060 (11)0.0058 (11)
C10.0443 (15)0.0449 (15)0.0511 (16)0.0067 (12)0.0003 (12)0.0070 (12)
C20.0584 (19)0.0583 (18)0.0597 (18)0.0032 (15)0.0013 (15)0.0102 (14)
C30.064 (2)0.065 (2)0.081 (2)0.0109 (17)0.0006 (18)0.0163 (18)
C40.067 (2)0.058 (2)0.101 (3)0.0055 (17)0.016 (2)0.0005 (19)
C50.065 (2)0.058 (2)0.076 (2)0.0049 (16)0.0085 (17)0.0108 (16)
C60.0528 (17)0.0486 (16)0.0580 (17)0.0084 (13)0.0023 (14)0.0008 (13)
C70.0643 (19)0.065 (2)0.0507 (17)0.0067 (16)0.0061 (14)0.0116 (15)
C80.0566 (18)0.0566 (18)0.0536 (17)0.0026 (14)0.0134 (14)0.0002 (14)
C90.0465 (15)0.0433 (15)0.0424 (14)0.0090 (11)0.0068 (12)0.0019 (11)
C100.0476 (16)0.0442 (15)0.0417 (15)0.0094 (12)0.0031 (12)0.0041 (11)
C110.0500 (16)0.0440 (15)0.0499 (16)0.0081 (12)0.0056 (12)0.0051 (12)
C120.0536 (17)0.0500 (16)0.0485 (16)0.0039 (13)0.0094 (13)0.0060 (12)
C130.0510 (17)0.0515 (17)0.0519 (16)0.0057 (13)0.0053 (13)0.0049 (13)
C140.0455 (15)0.0469 (16)0.0529 (17)0.0042 (12)0.0027 (12)0.0064 (12)
C150.0475 (16)0.0463 (15)0.0506 (16)0.0017 (12)0.0001 (12)0.0034 (12)
C160.0506 (16)0.0539 (17)0.0435 (15)0.0011 (13)0.0004 (12)0.0036 (12)
C170.0481 (16)0.0517 (16)0.0507 (17)0.0012 (13)0.0007 (13)0.0094 (13)
C180.0562 (18)0.0526 (17)0.0554 (18)0.0042 (14)0.0023 (14)0.0007 (13)
C190.0605 (18)0.0581 (18)0.0512 (17)0.0002 (14)0.0064 (14)0.0053 (14)
C200.093 (3)0.092 (3)0.056 (2)0.018 (2)0.0084 (18)0.0162 (18)
C210.069 (2)0.073 (2)0.089 (3)0.0219 (18)0.0025 (19)0.0060 (19)
Geometric parameters (Å, º) top
O1—C111.255 (3)C9—C101.395 (4)
O2—C101.336 (3)C9—C111.462 (4)
O2—H2A0.8200C11—C121.457 (4)
O3—C161.359 (3)C12—C131.333 (4)
O3—C201.417 (4)C12—H120.9300
O4—C171.361 (3)C13—C141.446 (4)
O4—C211.418 (4)C13—H130.9300
C1—C61.411 (4)C14—C191.381 (4)
C1—C21.411 (4)C14—C151.395 (4)
C1—C101.425 (4)C15—C161.372 (4)
C2—C31.363 (5)C15—H150.9300
C2—H20.9300C16—C171.402 (4)
C3—C41.391 (5)C17—C181.374 (4)
C3—H30.9300C18—C191.385 (4)
C4—C51.365 (5)C18—H180.9300
C4—H40.9300C19—H190.9300
C5—C61.406 (4)C20—H20A0.9600
C5—H50.9300C20—H20B0.9600
C6—C71.412 (4)C20—H20C0.9600
C7—C81.350 (4)C21—H21A0.9600
C7—H70.9300C21—H21B0.9600
C8—C91.412 (4)C21—H21C0.9600
C8—H80.9300
C10—O2—H2A109.5C13—C12—C11121.8 (3)
C16—O3—C20117.4 (2)C13—C12—H12119.1
C17—O4—C21118.0 (2)C11—C12—H12119.1
C6—C1—C2119.4 (3)C12—C13—C14127.8 (3)
C6—C1—C10118.6 (2)C12—C13—H13116.1
C2—C1—C10122.0 (3)C14—C13—H13116.1
C3—C2—C1120.2 (3)C19—C14—C15118.1 (3)
C3—C2—H2119.9C19—C14—C13119.2 (3)
C1—C2—H2119.9C15—C14—C13122.8 (3)
C2—C3—C4120.3 (3)C16—C15—C14121.2 (3)
C2—C3—H3119.9C16—C15—H15119.4
C4—C3—H3119.9C14—C15—H15119.4
C5—C4—C3120.9 (3)O3—C16—C15125.8 (3)
C5—C4—H4119.6O3—C16—C17114.6 (2)
C3—C4—H4119.6C15—C16—C17119.6 (3)
C4—C5—C6120.5 (3)O4—C17—C18124.1 (3)
C4—C5—H5119.8O4—C17—C16116.0 (3)
C6—C5—H5119.8C18—C17—C16119.9 (3)
C5—C6—C1118.7 (3)C17—C18—C19119.6 (3)
C5—C6—C7121.8 (3)C17—C18—H18120.2
C1—C6—C7119.5 (3)C19—C18—H18120.2
C8—C7—C6120.4 (3)C14—C19—C18121.6 (3)
C8—C7—H7119.8C14—C19—H19119.2
C6—C7—H7119.8C18—C19—H19119.2
C7—C8—C9122.5 (3)O3—C20—H20A109.5
C7—C8—H8118.7O3—C20—H20B109.5
C9—C8—H8118.7H20A—C20—H20B109.5
C10—C9—C8117.7 (3)O3—C20—H20C109.5
C10—C9—C11119.3 (2)H20A—C20—H20C109.5
C8—C9—C11122.9 (2)H20B—C20—H20C109.5
O2—C10—C9121.7 (2)O4—C21—H21A109.5
O2—C10—C1117.0 (2)O4—C21—H21B109.5
C9—C10—C1121.3 (2)H21A—C21—H21B109.5
O1—C11—C12119.8 (3)O4—C21—H21C109.5
O1—C11—C9119.6 (2)H21A—C21—H21C109.5
C12—C11—C9120.5 (2)H21B—C21—H21C109.5
C6—C1—C2—C31.4 (4)C8—C9—C11—O1176.6 (3)
C10—C1—C2—C3179.9 (3)C10—C9—C11—C12178.7 (2)
C1—C2—C3—C41.6 (5)C8—C9—C11—C123.4 (4)
C2—C3—C4—C50.7 (5)O1—C11—C12—C131.7 (4)
C3—C4—C5—C60.4 (5)C9—C11—C12—C13178.3 (2)
C4—C5—C6—C10.5 (4)C11—C12—C13—C14179.7 (3)
C4—C5—C6—C7179.5 (3)C12—C13—C14—C19178.6 (3)
C2—C1—C6—C50.4 (4)C12—C13—C14—C151.7 (5)
C10—C1—C6—C5179.1 (3)C19—C14—C15—C160.4 (4)
C2—C1—C6—C7178.6 (3)C13—C14—C15—C16179.9 (2)
C10—C1—C6—C70.1 (4)C20—O3—C16—C158.0 (4)
C5—C6—C7—C8179.8 (3)C20—O3—C16—C17171.3 (3)
C1—C6—C7—C80.9 (5)C14—C15—C16—O3180.0 (3)
C6—C7—C8—C90.2 (5)C14—C15—C16—C170.8 (4)
C7—C8—C9—C102.0 (4)C21—O4—C17—C186.1 (4)
C7—C8—C9—C11179.9 (3)C21—O4—C17—C16174.0 (3)
C8—C9—C10—O2178.1 (2)O3—C16—C17—O40.3 (4)
C11—C9—C10—O20.0 (4)C15—C16—C17—O4179.0 (2)
C8—C9—C10—C12.7 (4)O3—C16—C17—C18179.6 (3)
C11—C9—C10—C1179.2 (2)C15—C16—C17—C181.0 (4)
C6—C1—C10—O2179.0 (2)O4—C17—C18—C19179.1 (3)
C2—C1—C10—O20.3 (4)C16—C17—C18—C190.9 (4)
C6—C1—C10—C91.8 (4)C15—C14—C19—C180.3 (4)
C2—C1—C10—C9179.6 (2)C13—C14—C19—C18180.0 (3)
C10—C9—C11—O11.3 (4)C17—C18—C19—C140.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.752.482 (3)148
C7—H7···O3i0.932.573.368 (4)144
C7—H7···O4i0.932.593.445 (4)152
C18—H18···O2ii0.932.433.333 (4)165
Symmetry codes: (i) x1/2, y+1/2, z+3/2; (ii) x1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.752.482 (3)148
C7—H7···O3i0.932.573.368 (4)144
C7—H7···O4i0.932.593.445 (4)152
C18—H18···O2ii0.932.433.333 (4)165
Symmetry codes: (i) x1/2, y+1/2, z+3/2; (ii) x1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the SAIF, IIT-Madras, for providing the data-collection facility.

References

First citationAhn, S., Lee, H.-J., Lim, Y. & Koh, D. (2013). Acta Cryst. E69, o666.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDucki, S., Forrest, R., Hadfield, J. A., Kendall, A., Lawrence, N. J., McGown, A. T. & Rennison, D. (1998). Bioorg. Med. Chem. Lett. 8, 1051–1056.  CrossRef CAS PubMed Google Scholar
First citationEzhilarasi, K. S., Reuben Jonathan, D., Sathya, S., Prathebha, K. & Usha, G. (2014). Acta Cryst. E70, o608–o609.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGo, M.-L., Wu, X. & Liu, X.-L. (2005). Curr. Med. Chem. 12, 483–499.  CrossRef CAS Google Scholar
First citationLiu, M., Wilairat, P., Croft, S. L., Tan, A.-L. & Go, M.-L. (2003). Bioorg. Med. Chem. 11, 2729–2738.  CrossRef PubMed CAS Google Scholar
First citationMukherjee, S., Kumar, V., Prasad, A. K., Raj, H. G., Bracke, M. E., Olsen, C. E., Jain, S. C. & Parmar, V. S. (2001). Bioorg. Med. Chem. 9, 337–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRahman, A., Qureshi, R., Kiran, M. & Ansari, F. L. (2007). Turk. J. Chem. 31, 25–34.  CAS Google Scholar
First citationSashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480–4484.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSathya, S., Reuben Jonathan, D., Prathebha, K., Jovita, J. & Usha, G. (2014). Acta Cryst. E70, o1007.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSivakumar, P. M., Geetha Babu, S. K. & Mukesh, D. (2007). Chem. Pharm. Bull. 55, 44–49.  CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViana, G. S., Bandeira, M. A. & Matos, F. A. (2003). Phytomedicine, 10, 189–195.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds