research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (Z)-N′-[1-(3-methyl-5-oxo-1-phenyl-1,5-di­hydro-4H-pyrazol-4-yl­­idene)prop­yl]benzene­sulfono­hydrazide

aInstitute of Applied Chemistry, Xinjiang University, Urumqi, 830046 Xinjiang, People's Republic of China
*Correspondence e-mail: xuguancheng@163.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 3 April 2015; accepted 9 April 2015; online 15 April 2015)

The title compound, C19H20N4O3S, was synthesized by refluxing equimolar amounts of 1-phenyl-3-methyl-4-propionylpyrazol-5-one and benzene­sulfonyl hydrazide in ethanol. The compound crystallizes in the keto form and the carbonyl O atom forms an intra­molecular N—H⋯O hydrogen bond with the neighbouring NH group. There is also C—H⋯O short contact involving the neighbouring phenyl ring. Probably as a result of this, the phenyl ring is inclined to the pyrazolone ring by only 7.58 (12)°. The dihedral angle between the phenyl ring and the benzene­sulfonyl ring is 22.78 (11)°. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with an R22(14) ring motif. The dimers are linked via pairs of C—H⋯O hydrogen bonds, forming chains propagating along [100].

1. Chemical context

Many pyrazolo­nes and their derivatives possess biological and pharmaceutical activities, such as anti­cancer, anti­tumor and anti­fungal activities as well as the inhibition of lipid peroxidation (Wang et al., 1991[Wang, L. F., Zhu, Y., Yang, Z. Y., Wu, J. G. & Wang, Q. (1991). Polyhedron, 10, 2477-2461.]; Yu et al., 1993[Yu, S. Y., Wang, S. X., Luo, Q. H., Wang, L. F., Peng, Z. & Gao, X. (1993). Polyhedron, 12, 1093-1096.]; Padhyé & Kauffman, 1985[Padhyé, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127-160.]; Yang et al., 1992[Yang, Z. Y., Wang, L. F., Wu, J. Q. & Li, X. Y. (1992). Chin. J. Appl. Chem. 9, 31-36.]). Among them, the 4-acyl pyrazolone derivatives have aroused great scientific inter­est because of their relatively simple synthesis, wide availability and structural versatility (Raman et al., 2001[Raman, N., Kulandaisamy, A., Shunmugasundaram, A. & Jeyasubramanian, K. (2001). Transition Met. Chem. 26, 131-135.]; Yoshikuni, 1999[Yoshikuni, T. (1999). J. Mol. Catal. A Chem. 148, 285-288.]; Uzoukwu et al., 1996[Uzoukwu, B. A., Adiukwu, P. U., Al-Juaid, S. S., Hitchcock, P. B. & Smith, J. D. (1996). Inorg. Chim. Acta, 250, 173-176.]; Yang et al., 2000[Yang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599-2604.]).

[Scheme 1]

In recent years, we have devoted our efforts to the design and synthesis of 4-acyl pyrazolone derivatives and their transition metal complexes (Zhang et al., 2004[Zhang, L., Liu, L., Jia, D. Z., Xu, G. C. & Yu, K. B. (2004). Inorg. Chem. Commun. 7, 1306-1310.]; Xu et al., 2013[Xu, G. C., Zhang, L., Zhang, Y. H., Guo, J. X., Shi, M. Q. & Jia, D. Z. (2013). CrystEngComm, 15, 2873-2880.]; Yi et al., 2014[Yi, L. J., Xu, G. C., Zhang, L. & Jia, D. Z. (2014). Inorg. Chem. Commun. 45, 36-39.]; Li et al., 2013[Li, H., Xu, G. C., Zhang, L., Guo, J. X. & Jia, D. Z. (2013). Polyhedron, 55, 209-215.]). Such 4-acyl pyrazolone derivatives can form different types of complexes due to the multiple coordination sites and the tautomeric enol-to-keto effect. Furthermore, some of complexes have been shown to have strong anti­bacterial activity. For example, the copper complex [CuL(EtOH)] [where L is the N-(1-phenyl-3-methyl-4-propenyl­idene-5-pyrazolone)salicyl­idene hydrazide anion] may be a promising drug for cancer chemotherapy (Wang et al., 2007[Wang, X. H., Jia, D. Z., Liang, Y. J., Yan, S. L., Ding, Y., Chen, L. M., Shi, Z., Zeng, M. S., Liu, G. F. & Fu, L. W. (2007). Cancer Lett. 249, 256-270.]). This has encouraged us to investigate more 4-acyl pyrazolone derivatives and herein we report on the synthesis and crystal structure of the title compound.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The bond lengths and angles are close to the expected values. For example, the C7—O1 bond length of 1.259 (2) Å is in good agreement with that for a C=O double bond. The C9—N2 bond length of 1.298 (3) Å is consistent with that for a normal C=N double bond, which indicates that the compound exists in the keto form. In addition, the C11—N3 bond length of 1.335 (2) Å, is very close to that for a C—N single bond. The C8—C11 bond [1.387 (3) Å] approaches the normal C=C bond length. These results indicate that the compound does not adopt the structure of a Schiff base.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The carbonyl O atom, O1, forms an intra­molecular N—H⋯O hydrogen bond with the neighbouring NH group (N3—H3A), and there is a short intra­molecular C—H⋯O contact involving the neighbouring phenyl ring (C1–C6) (Table 1[link] and Fig. 1[link]). This phenyl ring is inclined to the pyrazolone ring (N1/N2/C7–C9) by 7.58 (12)°, which is close to the value of 6.2 (2)° reported for a related compound, 4-iso­propyl­idene-3-methyl-1-(3-nitro­phen­yl)-1H-pyrazol-5(4H)-one, which also exists in the keto form (Wardell et al., 2007[Wardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462-o467.]). The dihedral angle between the phenyl ring and the benzene­sulfonyl ring (C14–C19) is 22.78 (11)°. Hence, the whole mol­ecule is non-planar, with the torsion angle about the hydrazide bond, C11—N3—N4—S1, being −105.91 (18)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O1 0.92 1.88 2.667 (2) 142
C2—H2⋯O1 0.93 2.35 2.958 (3) 123
N4—H4A⋯O1i 0.93 1.90 2.800 (2) 162
C5—H5⋯O2ii 0.93 2.56 3.299 (3) 137
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) -x+1, -y+2, -z+1.

3. Supra­molecular features

In the crystal, atom N4 acts as a donor and forms an N—H⋯O hydrogen bond with atom O1i (Table 1[link]). Mol­ecules are linked by pairs of these hydrogen bonds, forming inversion dimers with an R22(14) ring motif. Neighbouring dimers are linked by pairs of C—H⋯O hydrogen bonds, forming chains propagating along [100] (Table 1[link] and Fig. 2[link]).

[Figure 2]
Figure 2
A view of the crystal packing of the title compound, with the hydrogen bonds shown as dashed lines (see Table 1[link] for details).

4. Synthesis and crystallization

1-Phenyl-3-methyl-4-propionyl-pyrazolone-5 (20 mmol, 4.6 g) was dissolved in 25 mL of hot anhydrous ethanol, and an ethanol solution of benzene­sulfonyl hydrazide (20 mmol, 3.4 g) was slowly added with constant stirring. After adding a few drops of glacial acetic acid as catalyst, the mixture was refluxed for 4 h. After cooling, the precipitate that had formed was collected by filtration. A light-yellow product was obtained (yield 87%; m.p.: 483–484 K). Yellow block-like crystals, suitable for X-ray diffraction analysis, were obtained from a methanol solution upon slow evaporation at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH H atoms were located in a difference Fourier map and refined as riding atoms. C-bound H atoms were positioned geometrically and refined as riding: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(N,C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C19H20N4O3S
Mr 384.45
Crystal system, space group Monoclinic, P21/n
Temperature (K) 295
a, b, c (Å) 10.601 (2), 16.954 (3), 11.246 (2)
β (°) 107.19 (3)
V3) 1931.0 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.22 × 0.21 × 0.20
 
Data collection
Diffractometer Rigaku R-AXIS SPIDER
Absorption correction Multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.959, 0.962
No. of measured, independent and observed [I > 2σ(I)] reflections 14175, 3339, 2574
Rint 0.024
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.131, 1.08
No. of reflections 3339
No. of parameters 247
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.26
Computer programs: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(Z)-N'-[1-(3-Methyl-5-oxo-1-phenyl-1,5-dihydro-4H-pyrazol-4-ylidene)propyl]benzenesulfonohydrazide top
Crystal data top
C19H20N4O3SF(000) = 808
Mr = 384.45Dx = 1.322 Mg m3
Monoclinic, P21/nMelting point: 483 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.601 (2) ÅCell parameters from 11125 reflections
b = 16.954 (3) Åθ = 3.1–27.5°
c = 11.246 (2) ŵ = 0.19 mm1
β = 107.19 (3)°T = 295 K
V = 1931.0 (7) Å3Block, yellow
Z = 40.22 × 0.21 × 0.20 mm
Data collection top
Rigaku R-AXIS SPIDER
diffractometer
3339 independent reflections
Radiation source: fine-focus sealed tube2574 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω oscillation scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.959, Tmax = 0.962k = 2020
14175 measured reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.2317P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
3339 reflectionsΔρmax = 0.19 e Å3
247 parametersΔρmin = 0.26 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.016 (2)
Special details top

Experimental. Jacobson, R. (1998) Private communication

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.51056 (18)0.94366 (12)0.32605 (18)0.0557 (5)
N10.60151 (15)0.92936 (10)0.44496 (15)0.0567 (4)
O10.78565 (13)1.00662 (8)0.44919 (12)0.0578 (4)
S11.10584 (5)1.10154 (3)0.79571 (4)0.0588 (2)
C20.5311 (2)1.00300 (15)0.2494 (2)0.0724 (6)
H20.60531.03520.27520.087*
N20.56682 (17)0.87417 (11)0.52278 (17)0.0663 (5)
O21.00939 (16)1.10824 (10)0.85989 (14)0.0776 (5)
C30.4398 (3)1.01385 (17)0.1336 (2)0.0815 (7)
H30.45381.05320.08130.098*
N30.97144 (15)0.98778 (9)0.66664 (14)0.0547 (4)
H3A0.93751.00740.58690.066*
O31.24221 (15)1.11194 (9)0.85898 (14)0.0796 (5)
C40.3288 (2)0.96752 (17)0.0949 (2)0.0838 (8)
H40.26830.97520.01700.101*
N41.09686 (15)1.00946 (9)0.74215 (14)0.0535 (4)
H4A1.15241.00600.69150.064*
C50.3086 (2)0.91035 (17)0.1718 (2)0.0815 (7)
H50.23290.87940.14640.098*
C60.3989 (2)0.89727 (13)0.2873 (2)0.0676 (6)
H60.38430.85740.33850.081*
C70.72508 (18)0.95903 (11)0.49872 (17)0.0501 (4)
C80.76992 (18)0.92317 (11)0.61970 (17)0.0503 (4)
C90.66454 (19)0.87097 (12)0.62447 (19)0.0589 (5)
C100.6554 (2)0.81416 (16)0.7229 (2)0.0835 (7)
H10A0.57410.78530.69470.125*
H10B0.65780.84250.79740.125*
H10C0.72840.77810.73990.125*
C110.89157 (18)0.93953 (11)0.70462 (16)0.0493 (4)
C120.9392 (2)0.90616 (12)0.83395 (18)0.0600 (5)
H12A0.86370.89130.86100.072*
H12B0.98790.94640.89030.072*
C131.0270 (3)0.83473 (15)0.8404 (2)0.0869 (8)
H13A0.98120.79620.78060.130*
H13B1.04920.81240.92240.130*
H13C1.10640.85040.82220.130*
C141.06098 (19)1.16434 (11)0.66519 (18)0.0568 (5)
C151.1583 (2)1.20180 (14)0.6279 (2)0.0734 (6)
H151.24701.19310.66980.088*
C161.1223 (3)1.25235 (15)0.5273 (2)0.0871 (7)
H161.18711.27790.50120.104*
C170.9924 (3)1.26498 (15)0.4660 (2)0.0838 (7)
H170.96911.30050.40010.101*
C180.8952 (3)1.22547 (15)0.5008 (2)0.0790 (6)
H180.80681.23260.45640.095*
C190.9296 (2)1.17543 (13)0.60173 (19)0.0655 (6)
H190.86461.14930.62680.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0531 (11)0.0625 (12)0.0501 (11)0.0071 (8)0.0130 (8)0.0009 (9)
N10.0555 (9)0.0618 (10)0.0502 (9)0.0073 (7)0.0115 (7)0.0068 (8)
O10.0642 (8)0.0615 (8)0.0462 (7)0.0117 (6)0.0141 (6)0.0059 (6)
S10.0705 (4)0.0586 (4)0.0406 (3)0.0030 (2)0.0062 (2)0.0046 (2)
C20.0652 (13)0.0841 (16)0.0624 (14)0.0019 (11)0.0100 (10)0.0130 (12)
N20.0668 (11)0.0688 (12)0.0632 (11)0.0128 (8)0.0187 (9)0.0121 (9)
O20.1026 (11)0.0837 (11)0.0520 (9)0.0062 (8)0.0312 (8)0.0069 (8)
C30.0821 (17)0.0970 (19)0.0604 (14)0.0190 (13)0.0132 (12)0.0191 (13)
N30.0611 (10)0.0595 (10)0.0388 (8)0.0095 (7)0.0075 (7)0.0013 (7)
O30.0780 (8)0.0758 (10)0.0623 (9)0.0147 (7)0.0146 (7)0.0001 (7)
C40.0763 (16)0.100 (2)0.0614 (15)0.0200 (14)0.0012 (12)0.0071 (14)
N40.0558 (9)0.0574 (10)0.0437 (9)0.0033 (7)0.0091 (7)0.0008 (7)
C50.0689 (15)0.0896 (18)0.0735 (16)0.0018 (12)0.0019 (12)0.0150 (14)
C60.0627 (13)0.0680 (14)0.0670 (14)0.0012 (10)0.0112 (10)0.0069 (11)
C70.0576 (11)0.0464 (10)0.0469 (11)0.0025 (8)0.0162 (8)0.0002 (8)
C80.0609 (11)0.0474 (10)0.0427 (10)0.0016 (8)0.0156 (8)0.0021 (8)
C90.0655 (12)0.0557 (12)0.0559 (12)0.0068 (9)0.0185 (10)0.0068 (9)
C100.0920 (17)0.0807 (16)0.0752 (16)0.0210 (12)0.0207 (13)0.0245 (13)
C110.0635 (11)0.0435 (10)0.0409 (10)0.0012 (8)0.0154 (8)0.0002 (8)
C120.0749 (13)0.0577 (12)0.0436 (11)0.0016 (9)0.0116 (9)0.0051 (9)
C130.1057 (19)0.0747 (17)0.0699 (16)0.0203 (13)0.0099 (13)0.0182 (12)
C140.0694 (13)0.0503 (11)0.0460 (11)0.0037 (9)0.0099 (9)0.0067 (8)
C150.0750 (14)0.0680 (14)0.0705 (14)0.0041 (11)0.0113 (11)0.0089 (12)
C160.1027 (19)0.0792 (17)0.0794 (17)0.0031 (14)0.0272 (15)0.0186 (14)
C170.1109 (19)0.0750 (16)0.0588 (14)0.0157 (12)0.0145 (13)0.0111 (12)
C180.0837 (15)0.0764 (16)0.0664 (14)0.0237 (11)0.0060 (11)0.0025 (12)
C190.0697 (13)0.0644 (13)0.0600 (13)0.0122 (10)0.0155 (10)0.0039 (10)
Geometric parameters (Å, º) top
C1—C61.380 (3)C8—C111.387 (3)
C1—C21.383 (3)C8—C91.439 (3)
C1—N11.419 (2)C9—C101.492 (3)
N1—C71.366 (2)C10—H10A0.9600
N1—N21.402 (2)C10—H10B0.9600
O1—C71.259 (2)C10—H10C0.9600
S1—O21.4197 (17)C11—C121.502 (3)
S1—O31.4211 (16)C12—C131.517 (3)
S1—N41.6658 (17)C12—H12A0.9700
S1—C141.761 (2)C12—H12B0.9700
C2—C31.386 (3)C13—H13A0.9600
C2—H20.9300C13—H13B0.9600
N2—C91.298 (3)C13—H13C0.9600
C3—C41.374 (4)C14—C191.378 (3)
C3—H30.9300C14—C151.379 (3)
N3—C111.335 (2)C15—C161.380 (3)
N3—N41.399 (2)C15—H150.9300
N3—H3A0.9241C16—C171.362 (3)
C4—C51.357 (4)C16—H160.9300
C4—H40.9300C17—C181.380 (4)
N4—H4A0.9335C17—H170.9300
C5—C61.385 (3)C18—C191.377 (3)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.437 (3)
C6—C1—C2119.73 (19)N2—C9—C10118.08 (18)
C6—C1—N1118.73 (19)C8—C9—C10130.27 (18)
C2—C1—N1121.54 (18)C9—C10—H10A109.5
C7—N1—N2111.31 (15)C9—C10—H10B109.5
C7—N1—C1130.51 (17)H10A—C10—H10B109.5
N2—N1—C1118.13 (15)C9—C10—H10C109.5
O2—S1—O3120.96 (10)H10A—C10—H10C109.5
O2—S1—N4106.62 (9)H10B—C10—H10C109.5
O3—S1—N4103.79 (9)N3—C11—C8116.80 (16)
O2—S1—C14108.53 (10)N3—C11—C12118.51 (16)
O3—S1—C14109.05 (10)C8—C11—C12124.69 (17)
N4—S1—C14107.02 (8)C11—C12—C13111.87 (18)
C1—C2—C3119.1 (2)C11—C12—H12A109.2
C1—C2—H2120.4C13—C12—H12A109.2
C3—C2—H2120.4C11—C12—H12B109.2
C9—N2—N1106.83 (16)C13—C12—H12B109.2
C4—C3—C2121.1 (3)H12A—C12—H12B107.9
C4—C3—H3119.4C12—C13—H13A109.5
C2—C3—H3119.4C12—C13—H13B109.5
C11—N3—N4123.07 (15)H13A—C13—H13B109.5
C11—N3—H3A115.4C12—C13—H13C109.5
N4—N3—H3A121.5H13A—C13—H13C109.5
C5—C4—C3119.2 (2)H13B—C13—H13C109.5
C5—C4—H4120.4C19—C14—C15120.9 (2)
C3—C4—H4120.4C19—C14—S1119.79 (17)
N3—N4—S1114.10 (12)C15—C14—S1119.35 (16)
N3—N4—H4A105.7C14—C15—C16119.0 (2)
S1—N4—H4A107.5C14—C15—H15120.5
C4—C5—C6121.1 (2)C16—C15—H15120.5
C4—C5—H5119.5C17—C16—C15120.4 (2)
C6—C5—H5119.5C17—C16—H16119.8
C1—C6—C5119.7 (2)C15—C16—H16119.8
C1—C6—H6120.2C16—C17—C18120.5 (2)
C5—C6—H6120.2C16—C17—H17119.7
O1—C7—N1126.01 (17)C18—C17—H17119.7
O1—C7—C8128.38 (17)C19—C18—C17119.7 (2)
N1—C7—C8105.59 (16)C19—C18—H18120.2
C11—C8—C7123.18 (17)C17—C18—H18120.2
C11—C8—C9132.19 (17)C18—C19—C14119.5 (2)
C7—C8—C9104.62 (16)C18—C19—H19120.3
N2—C9—C8111.59 (18)C14—C19—H19120.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O10.921.882.667 (2)142
C2—H2···O10.932.352.958 (3)123
N4—H4A···O1i0.931.902.800 (2)162
C5—H5···O2ii0.932.563.299 (3)137
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the National Science Foundation of China (No. 21161019).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Xu, G. C., Zhang, L., Guo, J. X. & Jia, D. Z. (2013). Polyhedron, 55, 209–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationPadhyé, S. & Kauffman, G. B. (1985). Coord. Chem. Rev. 63, 127–160.  CrossRef CAS Web of Science Google Scholar
First citationRaman, N., Kulandaisamy, A., Shunmugasundaram, A. & Jeyasubramanian, K. (2001). Transition Met. Chem. 26, 131–135.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUzoukwu, B. A., Adiukwu, P. U., Al-Juaid, S. S., Hitchcock, P. B. & Smith, J. D. (1996). Inorg. Chim. Acta, 250, 173–176.  CSD CrossRef CAS Web of Science Google Scholar
First citationWang, X. H., Jia, D. Z., Liang, Y. J., Yan, S. L., Ding, Y., Chen, L. M., Shi, Z., Zeng, M. S., Liu, G. F. & Fu, L. W. (2007). Cancer Lett. 249, 256–270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, L. F., Zhu, Y., Yang, Z. Y., Wu, J. G. & Wang, Q. (1991). Polyhedron, 10, 2477–2461.  CSD CrossRef CAS Web of Science Google Scholar
First citationWardell, J. L., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o462–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, G. C., Zhang, L., Zhang, Y. H., Guo, J. X., Shi, M. Q. & Jia, D. Z. (2013). CrystEngComm, 15, 2873–2880.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, Z. Y., Wang, L. F., Wu, J. Q. & Li, X. Y. (1992). Chin. J. Appl. Chem. 9, 31–36.  CAS Google Scholar
First citationYang, Z. Y., Yang, R. D., Li, F. S. & Yu, K. B. (2000). Polyhedron, 19, 2599–2604.  Web of Science CSD CrossRef CAS Google Scholar
First citationYi, L. J., Xu, G. C., Zhang, L. & Jia, D. Z. (2014). Inorg. Chem. Commun. 45, 36–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationYoshikuni, T. (1999). J. Mol. Catal. A Chem. 148, 285–288.  Web of Science CrossRef CAS Google Scholar
First citationYu, S. Y., Wang, S. X., Luo, Q. H., Wang, L. F., Peng, Z. & Gao, X. (1993). Polyhedron, 12, 1093–1096.  CrossRef CAS Web of Science Google Scholar
First citationZhang, L., Liu, L., Jia, D. Z., Xu, G. C. & Yu, K. B. (2004). Inorg. Chem. Commun. 7, 1306–1310.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds