organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(4-chloro­phen­yl)benzo­thio­amide

aChangsha Environmental Protection College, Changsha 410004, People's Republic of China
*Correspondence e-mail: hbxygcx2011@126.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 April 2015; accepted 23 April 2015; online 30 April 2015)

The title compound, C13H10ClNS, exhibits a trans conformation with regard to the axis of the C—N bond. The benzene and phenyl rings are inclined to one another by 85.06 (8)°. In the crystal, mol­ecules are linked by N—H⋯S=C hydrogen bonds, forming chains along [001].

1. Related literature

For hydrogen bonding of amides, see: Taylor et al. (1984[Taylor, R., Kennard, O. & Versichel, W. (1984). Acta Cryst. B40, 280-288.]); Leiserowitz & Schmidt (1969[Leiserowitz, L. & Schmidt, G. M. (1969). J. Chem. Soc. A, pp. 2372-2382.]). For the preparation and for the use of thio­amides as inter­mediates in chemical transformations, see: Li et al. (2012[Li, J. S., Cheng, C., Zhang, X. R., Li, Z. W., Cai, F. F., Xue, Y. & Liu, W. D. (2012). Chin. J. Chem. 30, 1687-1689.], 2015[Li, J. S., Xue, Y., Li, P. Y., Li, Z. W., Lu, C. H., Liu, W. D., Pang, H. L., Liu, D. H., Lin, M. S., Luo, B. B. & Jiang, W. (2015). Res. Chem. Intermed. 41, 2235-2247.]). For related structures, see: Omondi et al. (2012[Omondi, B. & Levendis, D. C. (2012). Acta Cryst. E68, o2604.]); Nagasawa et al. (2014[Nagasawa, M., Sasanuma, Y. & Masu, H. (2014). Acta Cryst. E70, o639.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H10ClNS

  • Mr = 247.73

  • Monoclinic, P 21 /c

  • a = 11.943 (2) Å

  • b = 12.689 (3) Å

  • c = 7.9764 (16) Å

  • β = 109.30 (3)°

  • V = 1140.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 113 K

  • 0.22 × 0.20 × 0.12 mm

2.2. Data collection

  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.901, Tmax = 0.944

  • 7517 measured reflections

  • 2010 independent reflections

  • 1701 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.05

  • 2010 reflections

  • 150 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.89 (1) 2.49 (1) 3.346 (15) 163 (1)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thioamides are extensively used as extractant for heavy metals in environmental chemistry, as intermediate for important chemical transformations (Li et al., 2015), and also used to replace the amide bonds as isosteres. It's well known that amide units can be connected by a N—H···O=C hydrogen bonds (Taylor et al., 1984; Leiserowitz & Schmidt, 1969), and also the structures of some thioamides have been documented (Omondi et al., 2012; Nagasawa et al., 2014). Herein, we report the crystal structure of the title compound (I).

Figure 1 has shows the molecular structure of the title compound, whose thioamide unit adopts a trans conformation around the central C-N bond. The C=S double bond is deviated from its connected phenyl ring [torsion angles: S1/C7/C8/C9 -145.34 (13)°,S1/C7/C8/C13 33.62 (19)°]. The benzene and phenyl rings are inclined to one another by 85.06 (8) °.

In the crystal, molecules are linked via N—H···SC hydrogen bonds, forming chains along the c axis direction (Table 1 and Fig. 2).

Related literature top

For hydrogen bonding of amides, see: Taylor et al. (1984); Leiserowitz & Schmidt (1969). For the preparation and for the use of thioamides as intermediates in chemical transformations, see: Li et al. (2012, 2015). For related structures, see: Omondi et al. (2012); Nagasawa et al. (2014).

Experimental top

The title compound was prepared from the Beckmann rearrangement from its corresponding ketoximes following a published procedure (Li et al., 2012). It was isolated by flash chromatography and yellow block-like crystal of the title compound were obtained via natural evaporation from the diluent.

Refinement top

The thioamide N—H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and refined as riding atoms: C—H = 0.93 Å with Uiso(H) = 1.2 Ueq(C).

Structure description top

Thioamides are extensively used as extractant for heavy metals in environmental chemistry, as intermediate for important chemical transformations (Li et al., 2015), and also used to replace the amide bonds as isosteres. It's well known that amide units can be connected by a N—H···O=C hydrogen bonds (Taylor et al., 1984; Leiserowitz & Schmidt, 1969), and also the structures of some thioamides have been documented (Omondi et al., 2012; Nagasawa et al., 2014). Herein, we report the crystal structure of the title compound (I).

Figure 1 has shows the molecular structure of the title compound, whose thioamide unit adopts a trans conformation around the central C-N bond. The C=S double bond is deviated from its connected phenyl ring [torsion angles: S1/C7/C8/C9 -145.34 (13)°,S1/C7/C8/C13 33.62 (19)°]. The benzene and phenyl rings are inclined to one another by 85.06 (8) °.

In the crystal, molecules are linked via N—H···SC hydrogen bonds, forming chains along the c axis direction (Table 1 and Fig. 2).

For hydrogen bonding of amides, see: Taylor et al. (1984); Leiserowitz & Schmidt (1969). For the preparation and for the use of thioamides as intermediates in chemical transformations, see: Li et al. (2012, 2015). For related structures, see: Omondi et al. (2012); Nagasawa et al. (2014).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound. The N—H···S hydrogen bonds are shown as dashed lines (see Table 1 for details).
N-(4-Chlorophenyl)benzothioamide top
Crystal data top
C13H10ClNSF(000) = 512
Mr = 247.73Dx = 1.442 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3499 reflections
a = 11.943 (2) Åθ = 1.8–27.9°
b = 12.689 (3) ŵ = 0.49 mm1
c = 7.9764 (16) ÅT = 113 K
β = 109.30 (3)°Block, yellow
V = 1140.9 (4) Å30.22 × 0.20 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2010 independent reflections
Radiation source: rotating anode1701 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.030
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω and φ scansh = 1114
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1515
Tmin = 0.901, Tmax = 0.944l = 99
7517 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.1743P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2010 reflectionsΔρmax = 0.22 e Å3
150 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.050 (4)
Crystal data top
C13H10ClNSV = 1140.9 (4) Å3
Mr = 247.73Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.943 (2) ŵ = 0.49 mm1
b = 12.689 (3) ÅT = 113 K
c = 7.9764 (16) Å0.22 × 0.20 × 0.12 mm
β = 109.30 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2010 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1701 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.944Rint = 0.030
7517 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0281 restraint
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
2010 reflectionsΔρmin = 0.18 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.94504 (4)0.58973 (3)1.20150 (5)0.01919 (16)
Cl11.47747 (4)0.84240 (4)1.54329 (6)0.02760 (17)
N11.02619 (11)0.71403 (10)0.99722 (17)0.0160 (3)
C11.13474 (13)0.74209 (12)1.1311 (2)0.0159 (3)
C21.21244 (14)0.66609 (13)1.2321 (2)0.0201 (4)
H21.19360.59491.21470.024*
C31.31777 (14)0.69722 (13)1.3583 (2)0.0218 (4)
H31.36980.64701.42640.026*
C41.34551 (14)0.80302 (13)1.3828 (2)0.0186 (4)
C51.26984 (15)0.87901 (13)1.2816 (2)0.0219 (4)
H51.28950.95011.29820.026*
C61.16448 (15)0.84782 (13)1.1550 (2)0.0194 (4)
H61.11340.89821.08570.023*
C70.94159 (14)0.64895 (12)1.0128 (2)0.0159 (4)
C80.83987 (14)0.63239 (12)0.8467 (2)0.0161 (4)
C90.85648 (15)0.62942 (12)0.6821 (2)0.0182 (4)
H90.93200.63890.67510.022*
C100.76076 (16)0.61237 (13)0.5280 (2)0.0226 (4)
H100.77250.61060.41840.027*
C110.64826 (16)0.59810 (13)0.5376 (2)0.0249 (4)
H110.58420.58680.43470.030*
C120.63130 (15)0.60079 (13)0.7015 (2)0.0251 (4)
H120.55570.59100.70820.030*
C130.72593 (14)0.61784 (12)0.8545 (2)0.0201 (4)
H130.71370.61970.96370.024*
H11.0058 (16)0.7552 (13)0.9013 (17)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0205 (2)0.0192 (2)0.0179 (3)0.00251 (17)0.00650 (18)0.00248 (16)
Cl10.0174 (2)0.0353 (3)0.0268 (3)0.00442 (18)0.00281 (18)0.00048 (18)
N10.0177 (7)0.0151 (7)0.0155 (7)0.0010 (6)0.0057 (6)0.0010 (6)
C10.0158 (8)0.0181 (8)0.0164 (8)0.0003 (7)0.0090 (7)0.0010 (6)
C20.0187 (9)0.0154 (8)0.0280 (9)0.0004 (7)0.0102 (7)0.0010 (7)
C30.0170 (8)0.0215 (9)0.0279 (10)0.0042 (7)0.0089 (7)0.0066 (7)
C40.0138 (8)0.0245 (9)0.0186 (8)0.0014 (7)0.0070 (7)0.0008 (7)
C50.0231 (9)0.0177 (8)0.0249 (9)0.0026 (7)0.0081 (8)0.0024 (7)
C60.0192 (9)0.0175 (8)0.0211 (9)0.0029 (7)0.0063 (7)0.0016 (6)
C70.0173 (8)0.0118 (7)0.0210 (9)0.0028 (6)0.0096 (7)0.0021 (6)
C80.0186 (8)0.0098 (7)0.0201 (8)0.0007 (6)0.0065 (7)0.0005 (6)
C90.0202 (9)0.0133 (8)0.0223 (9)0.0018 (7)0.0085 (7)0.0000 (7)
C100.0300 (10)0.0194 (8)0.0186 (9)0.0017 (8)0.0081 (8)0.0018 (7)
C110.0234 (9)0.0257 (9)0.0202 (9)0.0010 (8)0.0001 (7)0.0017 (7)
C120.0171 (9)0.0280 (9)0.0285 (10)0.0010 (8)0.0052 (7)0.0009 (8)
C130.0192 (9)0.0210 (9)0.0212 (9)0.0019 (7)0.0080 (7)0.0011 (7)
Geometric parameters (Å, º) top
S1—C71.6705 (16)C6—H60.9300
Cl1—C41.7430 (17)C7—C81.487 (2)
N1—C71.342 (2)C8—C91.391 (2)
N1—C11.426 (2)C8—C131.395 (2)
N1—H10.891 (9)C9—C101.392 (2)
C1—C61.385 (2)C9—H90.9300
C1—C21.395 (2)C10—C111.383 (2)
C2—C31.384 (2)C10—H100.9300
C2—H20.9300C11—C121.388 (3)
C3—C41.381 (2)C11—H110.9300
C3—H30.9300C12—C131.379 (2)
C4—C51.384 (2)C12—H120.9300
C5—C61.385 (2)C13—H130.9300
C5—H50.9300
C7—N1—C1127.60 (13)N1—C7—C8115.00 (13)
C7—N1—H1116.1 (12)N1—C7—S1124.40 (13)
C1—N1—H1114.8 (12)C8—C7—S1120.59 (12)
C6—C1—C2119.92 (15)C9—C8—C13118.95 (15)
C6—C1—N1118.25 (14)C9—C8—C7121.01 (15)
C2—C1—N1121.77 (14)C13—C8—C7120.03 (15)
C3—C2—C1119.60 (15)C8—C9—C10120.42 (16)
C3—C2—H2120.2C8—C9—H9119.8
C1—C2—H2120.2C10—C9—H9119.8
C4—C3—C2119.90 (15)C11—C10—C9120.03 (16)
C4—C3—H3120.0C11—C10—H10120.0
C2—C3—H3120.0C9—C10—H10120.0
C3—C4—C5120.96 (15)C10—C11—C12119.76 (16)
C3—C4—Cl1119.94 (13)C10—C11—H11120.1
C5—C4—Cl1119.09 (13)C12—C11—H11120.1
C4—C5—C6119.13 (15)C13—C12—C11120.34 (16)
C4—C5—H5120.4C13—C12—H12119.8
C6—C5—H5120.4C11—C12—H12119.8
C1—C6—C5120.46 (15)C12—C13—C8120.50 (16)
C1—C6—H6119.8C12—C13—H13119.7
C5—C6—H6119.8C8—C13—H13119.7
C7—N1—C1—C6131.37 (16)C1—N1—C7—S12.6 (2)
C7—N1—C1—C251.1 (2)N1—C7—C8—C935.2 (2)
C6—C1—C2—C31.3 (2)S1—C7—C8—C9145.34 (13)
N1—C1—C2—C3178.80 (14)N1—C7—C8—C13145.86 (15)
C1—C2—C3—C40.3 (2)S1—C7—C8—C1333.62 (19)
C2—C3—C4—C50.7 (2)C13—C8—C9—C100.1 (2)
C2—C3—C4—Cl1179.35 (12)C7—C8—C9—C10179.08 (14)
C3—C4—C5—C60.5 (2)C8—C9—C10—C110.1 (2)
Cl1—C4—C5—C6179.46 (12)C9—C10—C11—C120.0 (2)
C2—C1—C6—C51.5 (2)C10—C11—C12—C130.2 (3)
N1—C1—C6—C5179.01 (14)C11—C12—C13—C80.1 (2)
C4—C5—C6—C10.5 (2)C9—C8—C13—C120.0 (2)
C1—N1—C7—C8177.96 (13)C7—C8—C13—C12178.98 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.89 (1)2.49 (1)3.346 (15)163 (1)
Symmetry code: (i) x, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.891 (14)2.485 (14)3.346 (15)162.50 (13)
Symmetry code: (i) x, y+3/2, z1/2.
 

References

First citationLeiserowitz, L. & Schmidt, G. M. (1969). J. Chem. Soc. A, pp. 2372–2382.  CrossRef Web of Science Google Scholar
First citationLi, J. S., Cheng, C., Zhang, X. R., Li, Z. W., Cai, F. F., Xue, Y. & Liu, W. D. (2012). Chin. J. Chem. 30, 1687–1689.  CrossRef CAS Google Scholar
First citationLi, J. S., Xue, Y., Li, P. Y., Li, Z. W., Lu, C. H., Liu, W. D., Pang, H. L., Liu, D. H., Lin, M. S., Luo, B. B. & Jiang, W. (2015). Res. Chem. Intermed. 41, 2235–2247.  CrossRef CAS Google Scholar
First citationNagasawa, M., Sasanuma, Y. & Masu, H. (2014). Acta Cryst. E70, o639.  CSD CrossRef IUCr Journals Google Scholar
First citationOmondi, B. & Levendis, D. C. (2012). Acta Cryst. E68, o2604.  CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, R., Kennard, O. & Versichel, W. (1984). Acta Cryst. B40, 280–288.  CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds