organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-bromo­phenyl-2-oxo-2H-chromene-3-carboxyl­ate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore, Karnataka 570 005, India, bDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka 560080, India, and dDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 13 March 2015; accepted 3 April 2015; online 22 April 2015)

In the title compound, C16H9BrO4, the coumarin ring system is approximately planar, with an r.m.s deviation of the ten fitted non-H atoms of 0.031 Å, and forms a dihedral angle of 25.85 (10)° with the bromo­benzene ring. The carbonyl atoms are syn. In the crystal, mol­ecules are connected along [001] via C—H⋯O inter­actions, forming C(6) chains. Neighbouring C(6) chains are connected via several ππ inter­actions [range of centroid–centroid distances = 3.7254 (15)–3.7716 (16) Å], leading to sheets propagating in the bc plane.

1. Related literature

For related structures, see: Sreenivasa et al. (2013[Sreenivasa, S., Srinivasa, H. T., Palakshamurthy, B. S., Kumar, V. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o266.]); Palakshamurthy, Sreenivasa et al. (2013[Palakshamurthy, B. S., Sreenivasa, S., Srinivasa, H. T., Roopashree, K. R. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o212.]); Palakshamurthy, Devarajegowda et al. (2013[Palakshamurthy, B. S., Devarajegowda, H. C., Srinivasa, H. T., Sreenivasa, S. & Vijithkumar, (2013). Acta Cryst. E69, o621-o622.]); Devarajegowda et al. (2013[Devarajegowda, H. C., Palakshamurthy, B. S., Harishkumar, H. N., Suchetan, P. A. & Sreenivasa, S. (2013). Acta Cryst. E69, o1355-o1356.]). For the biological activity and other applications of 2-oxo-2H-chromene derivatives, see: Abdel-Aziz et al. (2013[Abdel-Aziz, H. A., Elsaman, T., Al-Dhfyan, A., Attia, M. I., Al-Rashood, K. A. & Al-Obaid, A. M. (2013). Eur. J. Med. Chem. 70, 358-363.]); Kostova (2006[Kostova, I. (2006). Curr. HIV Res. 4, 347-363.]); Chandrasekharan & Kelly (2002[Chandrasekharan, N. & Kelly, L. (2002). Spectrum, 15, 1-7.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H9BrO4

  • Mr = 345.14

  • Monoclinic, P 21 /c

  • a = 16.0782 (10) Å

  • b = 7.2618 (4) Å

  • c = 12.7396 (8) Å

  • β = 113.311 (4)°

  • V = 1366.01 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 296 K

  • 0.24 × 0.18 × 0.16 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.526, Tmax = 0.617

  • 20483 measured reflections

  • 2395 independent reflections

  • 1831 reflections with I > 2σ(I)

  • Rint = 0.037

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.079

  • S = 1.01

  • 2395 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O3i 0.93 2.40 3.124 (3) 134
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Chemical context top

Hetero cyclic compounds of 2-oxo-2H-chromenes display wide range of biological activities such as anti-HIV (Kostova, et al., 2006), anti-cancer (Abdel-Aziz et al.,2013), etc. They also play a significant role as chemical sensors, fluorescent probes and laser dyes (Chandrasekharan et al., 2002). In continuation of our work on 2-oxo-2H-chromene derivatives (Sreenivasa et al., 2013; Palakshamurthy, Sreenivasa et al., 2013; Palakshamurthy, Devarajegowda et al., 2013; Devarajegowda, et al.,2013), in the present work we report the synthesis and crystal structure of 4-bromo­phenyl-2-oxo-2H-chromene-3-carboxyl­ate (I), an inter­mediate compound obtained during synthesis of coumarin–based Liquid Crystals (LCs).

Structural commentary top

The dihedral angle between the coumarin ring and the bromo­benzene ring in (I) is 25.85 (10)°. Compared to this, the dihedral angle is 22.95 (11)° in 4'-cyano­biphenyl-4-yl-7-di­ethyl­amino-2-oxo-2H-chromene-3-carboxyl­ate (II) (Sreenivasa et al., 2013), 62.97 (2)° in 4-(decyl­oxy)phenyl 2-oxo-7-tri­fluoro­methyl-2H-chromene-3-carboxyl­ate (III) (Palakshamurthy, Sreenivasa et al., 2013), 21.00 (1)° in 4-(octyl­oxy)phenyl 2-oxo-2H-chromene-3-carboxyl­ate (IV) (Palakshamurthy, Devarajegowda et al., 2013) and 54.46 (17)° in 4-[4-(heptyl­oxy)benzoyl­oxy] phenyl 2-oxo-7-tri­fluoro­methyl-2H-chromene-3-carboxyl­ate (V) (Devarajegowda, et al., 2013). Further, in (I), the torsions C9—C8—C10—O3, O3—C10—O4—C11 and C12—C11—O4—C10 have values 27.6 (4), 6.3 (3) and 124.6 (2)°, respectively.

Supra­molecular features top

In the crystal structure, the molecules are connected along [001] via C12—H12···O3 inter­actions forming C(6) chains (Fig 2., Table 2). Further, neighbouring C(6) chains are inter­locked via π···π inter­actions (Fig. 3), namely, Cg1··· Cg3i [3.7254 (15) Å, i: 1-x, 1/2+y, 1/2-z] and Cg2··· Cg3i,ii [3.7303 (16) and 3.7716 (16) Å, ii: 1-x, 1/2+y, 1/2-z], where Cg1, Cg2 and Cg3 are the centroids of the C6/C7/C8/C9/O1/C1, C1–C6 and C11–C16 rings, respectively). Overall, a two-dimensional architecture is observed in the bc plane.

Synthesis and crystallization top

Coumarin 3-carb­oxy­lic acid (1.0 mmol), 4-bromo­phenol (1.0 mmol) and a catalytic amount of N,N-di­methyl­amino­pyrimidine (DMAP) were dissolved in anhydrous CH2Cl2. To this solution, a solution of di­cyclo­hexyl­carbodimide (DCC) in dried CH2Cl2 was added and stirred. After 24 h of stirring, di­cyclo­hexyl­urea was filtered off and the solution was concentrated. The solid residue obtained was purified by column chromatography on silica gel using CHCl3 as the eluent. Single crystals suitable for X-ray studies were grown by slow evaporation technique at room temperature using ethanol as the solvent.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93Å, and with 1.2Ueq(C). Owing to poor agreement, several reflections, i.e. (0 2 5), (-1 0 2), (-2 0 8), (7 0 0) and (-7 2 5), were omitted from the final cycles of refinement.

Related literature top

For related structures, see: Sreenivasa et al. (2013); Palakshamurthy, Sreenivasa et al. (2013); Palakshamurthy, Devarajegowda et al. (2013); Devarajegowda et al. (2013). For the biological activity and other applications of 2-oxo-2H-chromene derivatives, see: Abdel-Aziz et al. (2013); Kostova (2006); Chandrasekharan & Kelly (2002).

Structure description top

Hetero cyclic compounds of 2-oxo-2H-chromenes display wide range of biological activities such as anti-HIV (Kostova, et al., 2006), anti-cancer (Abdel-Aziz et al.,2013), etc. They also play a significant role as chemical sensors, fluorescent probes and laser dyes (Chandrasekharan et al., 2002). In continuation of our work on 2-oxo-2H-chromene derivatives (Sreenivasa et al., 2013; Palakshamurthy, Sreenivasa et al., 2013; Palakshamurthy, Devarajegowda et al., 2013; Devarajegowda, et al.,2013), in the present work we report the synthesis and crystal structure of 4-bromo­phenyl-2-oxo-2H-chromene-3-carboxyl­ate (I), an inter­mediate compound obtained during synthesis of coumarin–based Liquid Crystals (LCs).

The dihedral angle between the coumarin ring and the bromo­benzene ring in (I) is 25.85 (10)°. Compared to this, the dihedral angle is 22.95 (11)° in 4'-cyano­biphenyl-4-yl-7-di­ethyl­amino-2-oxo-2H-chromene-3-carboxyl­ate (II) (Sreenivasa et al., 2013), 62.97 (2)° in 4-(decyl­oxy)phenyl 2-oxo-7-tri­fluoro­methyl-2H-chromene-3-carboxyl­ate (III) (Palakshamurthy, Sreenivasa et al., 2013), 21.00 (1)° in 4-(octyl­oxy)phenyl 2-oxo-2H-chromene-3-carboxyl­ate (IV) (Palakshamurthy, Devarajegowda et al., 2013) and 54.46 (17)° in 4-[4-(heptyl­oxy)benzoyl­oxy] phenyl 2-oxo-7-tri­fluoro­methyl-2H-chromene-3-carboxyl­ate (V) (Devarajegowda, et al., 2013). Further, in (I), the torsions C9—C8—C10—O3, O3—C10—O4—C11 and C12—C11—O4—C10 have values 27.6 (4), 6.3 (3) and 124.6 (2)°, respectively.

In the crystal structure, the molecules are connected along [001] via C12—H12···O3 inter­actions forming C(6) chains (Fig 2., Table 2). Further, neighbouring C(6) chains are inter­locked via π···π inter­actions (Fig. 3), namely, Cg1··· Cg3i [3.7254 (15) Å, i: 1-x, 1/2+y, 1/2-z] and Cg2··· Cg3i,ii [3.7303 (16) and 3.7716 (16) Å, ii: 1-x, 1/2+y, 1/2-z], where Cg1, Cg2 and Cg3 are the centroids of the C6/C7/C8/C9/O1/C1, C1–C6 and C11–C16 rings, respectively). Overall, a two-dimensional architecture is observed in the bc plane.

For related structures, see: Sreenivasa et al. (2013); Palakshamurthy, Sreenivasa et al. (2013); Palakshamurthy, Devarajegowda et al. (2013); Devarajegowda et al. (2013). For the biological activity and other applications of 2-oxo-2H-chromene derivatives, see: Abdel-Aziz et al. (2013); Kostova (2006); Chandrasekharan & Kelly (2002).

Synthesis and crystallization top

Coumarin 3-carb­oxy­lic acid (1.0 mmol), 4-bromo­phenol (1.0 mmol) and a catalytic amount of N,N-di­methyl­amino­pyrimidine (DMAP) were dissolved in anhydrous CH2Cl2. To this solution, a solution of di­cyclo­hexyl­carbodimide (DCC) in dried CH2Cl2 was added and stirred. After 24 h of stirring, di­cyclo­hexyl­urea was filtered off and the solution was concentrated. The solid residue obtained was purified by column chromatography on silica gel using CHCl3 as the eluent. Single crystals suitable for X-ray studies were grown by slow evaporation technique at room temperature using ethanol as the solvent.

Refinement details top

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93Å, and with 1.2Ueq(C). Owing to poor agreement, several reflections, i.e. (0 2 5), (-1 0 2), (-2 0 8), (7 0 0) and (-7 2 5), were omitted from the final cycles of refinement.

Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound via C—H···O interactions along [001]. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Various ππ interactions observed in the crystal packing
4-Bromophenyl-2-oxo-2H-chromene-3-carboxylate top
Crystal data top
C16H9BrO4Prism
Mr = 345.14Dx = 1.678 Mg m3
Monoclinic, P21/cMelting point: 523 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.0782 (10) ÅCell parameters from 2395 reflections
b = 7.2618 (4) Åθ = 2.8–25.0°
c = 12.7396 (8) ŵ = 3.02 mm1
β = 113.311 (4)°T = 296 K
V = 1366.01 (15) Å3Prism, colourless
Z = 40.24 × 0.18 × 0.16 mm
F(000) = 688
Data collection top
Bruker APEXII CCD
diffractometer
2395 independent reflections
Radiation source: fine-focus sealed tube1831 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 2.01 pixels mm-1θmax = 25.0°, θmin = 2.8°
φ and ω scansh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 88
Tmin = 0.526, Tmax = 0.617l = 1515
20483 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.8274P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2395 reflectionsΔρmax = 0.45 e Å3
191 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0062 (6)
Primary atom site location: structure-invariant direct methods
Crystal data top
C16H9BrO4V = 1366.01 (15) Å3
Mr = 345.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.0782 (10) ŵ = 3.02 mm1
b = 7.2618 (4) ÅT = 296 K
c = 12.7396 (8) Å0.24 × 0.18 × 0.16 mm
β = 113.311 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2395 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
1831 reflections with I > 2σ(I)
Tmin = 0.526, Tmax = 0.617Rint = 0.037
20483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.01Δρmax = 0.45 e Å3
2395 reflectionsΔρmin = 0.54 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.94359 (2)0.14526 (6)0.64830 (3)0.0907 (2)
O10.31144 (12)0.1686 (2)0.06316 (14)0.0517 (5)
O20.44603 (13)0.1964 (3)0.06745 (15)0.0612 (5)
O30.58965 (12)0.2657 (3)0.15291 (14)0.0556 (5)
O40.56890 (11)0.0734 (2)0.27929 (13)0.0428 (4)
C10.25543 (17)0.1424 (3)0.0061 (2)0.0460 (6)
C20.1631 (2)0.1504 (4)0.0694 (3)0.0613 (8)
H20.14030.17200.14770.074*
C30.1059 (2)0.1257 (4)0.0142 (3)0.0709 (9)
H30.04360.13220.05580.085*
C40.1389 (2)0.0915 (4)0.1017 (3)0.0673 (9)
H40.09900.07340.13720.081*
C50.23074 (18)0.0840 (4)0.1648 (3)0.0547 (7)
H50.25300.06130.24290.066*
C60.29078 (17)0.1108 (3)0.1108 (2)0.0413 (6)
C70.38706 (16)0.1145 (3)0.1709 (2)0.0394 (6)
H70.41220.09390.24930.047*
C80.44200 (16)0.1472 (3)0.11609 (19)0.0364 (6)
C90.40485 (18)0.1736 (3)0.0079 (2)0.0440 (6)
C100.54071 (17)0.1702 (3)0.18007 (19)0.0385 (6)
C110.65769 (16)0.0988 (3)0.36007 (19)0.0370 (5)
C120.66608 (17)0.1487 (3)0.4677 (2)0.0433 (6)
H120.61490.17110.48270.052*
C130.75178 (19)0.1654 (4)0.5536 (2)0.0517 (7)
H130.75900.20000.62700.062*
C140.82608 (18)0.1301 (4)0.5288 (2)0.0499 (7)
C150.81735 (18)0.0805 (4)0.4214 (2)0.0538 (7)
H150.86860.05810.40650.065*
C160.73210 (17)0.0637 (4)0.3352 (2)0.0452 (6)
H160.72510.02930.26190.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0491 (2)0.1081 (3)0.0795 (3)0.01632 (19)0.01221 (17)0.0173 (2)
O10.0460 (11)0.0681 (12)0.0343 (9)0.0056 (9)0.0087 (8)0.0015 (8)
O20.0622 (13)0.0888 (15)0.0368 (10)0.0067 (11)0.0240 (10)0.0059 (10)
O30.0497 (11)0.0724 (13)0.0443 (10)0.0097 (10)0.0181 (9)0.0127 (9)
O40.0364 (9)0.0547 (10)0.0336 (9)0.0038 (8)0.0100 (7)0.0081 (8)
C10.0401 (15)0.0421 (15)0.0489 (15)0.0008 (11)0.0102 (13)0.0059 (12)
C20.0473 (18)0.0615 (19)0.0576 (18)0.0004 (14)0.0020 (15)0.0034 (14)
C30.0383 (17)0.064 (2)0.096 (3)0.0063 (14)0.0115 (18)0.0058 (18)
C40.0465 (18)0.064 (2)0.094 (3)0.0078 (15)0.0305 (18)0.0008 (18)
C50.0470 (17)0.0564 (17)0.0636 (17)0.0055 (14)0.0250 (15)0.0011 (14)
C60.0403 (14)0.0363 (14)0.0455 (14)0.0000 (11)0.0150 (12)0.0028 (11)
C70.0421 (14)0.0375 (13)0.0367 (13)0.0018 (11)0.0135 (11)0.0006 (10)
C80.0421 (14)0.0352 (13)0.0316 (12)0.0027 (10)0.0144 (11)0.0010 (10)
C90.0464 (15)0.0485 (15)0.0335 (13)0.0059 (12)0.0121 (12)0.0013 (11)
C100.0433 (14)0.0409 (14)0.0336 (13)0.0007 (11)0.0178 (11)0.0006 (10)
C110.0333 (13)0.0405 (13)0.0354 (12)0.0006 (11)0.0117 (10)0.0040 (10)
C120.0401 (15)0.0506 (15)0.0407 (14)0.0037 (12)0.0177 (12)0.0031 (11)
C130.0576 (18)0.0535 (16)0.0374 (14)0.0025 (13)0.0120 (13)0.0006 (12)
C140.0381 (15)0.0502 (16)0.0487 (16)0.0054 (12)0.0036 (12)0.0084 (12)
C150.0375 (15)0.0610 (17)0.0630 (18)0.0030 (13)0.0200 (14)0.0106 (14)
C160.0445 (15)0.0535 (16)0.0399 (13)0.0011 (12)0.0192 (12)0.0023 (12)
Geometric parameters (Å, º) top
Br1—C141.903 (3)C5—H50.9300
O1—C11.376 (3)C6—C71.430 (3)
O1—C91.384 (3)C7—C81.346 (3)
O2—C91.200 (3)C7—H70.9300
O3—C101.198 (3)C8—C91.463 (3)
O4—C101.358 (3)C8—C101.479 (3)
O4—C111.403 (3)C11—C121.372 (3)
C1—C21.382 (4)C11—C161.377 (3)
C1—C61.387 (4)C12—C131.385 (4)
C2—C31.373 (5)C12—H120.9300
C2—H20.9300C13—C141.375 (4)
C3—C41.380 (5)C13—H130.9300
C3—H30.9300C14—C151.368 (4)
C4—C51.374 (4)C15—C161.381 (4)
C4—H40.9300C15—H150.9300
C5—C61.402 (4)C16—H160.9300
C1—O1—C9122.67 (19)C9—C8—C10118.1 (2)
C10—O4—C11118.88 (18)O2—C9—O1116.2 (2)
O1—C1—C2117.5 (2)O2—C9—C8127.5 (2)
O1—C1—C6121.0 (2)O1—C9—C8116.3 (2)
C2—C1—C6121.5 (3)O3—C10—O4123.6 (2)
C3—C2—C1118.6 (3)O3—C10—C8126.2 (2)
C3—C2—H2120.7O4—C10—C8110.2 (2)
C1—C2—H2120.7C12—C11—C16121.9 (2)
C2—C3—C4121.3 (3)C12—C11—O4115.9 (2)
C2—C3—H3119.4C16—C11—O4122.1 (2)
C4—C3—H3119.4C11—C12—C13119.1 (2)
C5—C4—C3120.2 (3)C11—C12—H12120.4
C5—C4—H4119.9C13—C12—H12120.4
C3—C4—H4119.9C14—C13—C12119.0 (2)
C4—C5—C6119.8 (3)C14—C13—H13120.5
C4—C5—H5120.1C12—C13—H13120.5
C6—C5—H5120.1C15—C14—C13121.6 (2)
C1—C6—C5118.7 (2)C15—C14—Br1119.5 (2)
C1—C6—C7117.9 (2)C13—C14—Br1118.9 (2)
C5—C6—C7123.3 (2)C14—C15—C16119.7 (2)
C8—C7—C6121.3 (2)C14—C15—H15120.2
C8—C7—H7119.4C16—C15—H15120.2
C6—C7—H7119.4C11—C16—C15118.7 (2)
C7—C8—C9120.8 (2)C11—C16—H16120.7
C7—C8—C10121.0 (2)C15—C16—H16120.7
C9—O1—C1—C2176.4 (2)C7—C8—C9—O12.0 (3)
C9—O1—C1—C63.1 (4)C10—C8—C9—O1173.9 (2)
O1—C1—C2—C3179.7 (2)C11—O4—C10—O36.3 (3)
C6—C1—C2—C30.2 (4)C11—O4—C10—C8170.71 (19)
C1—C2—C3—C40.7 (4)C7—C8—C10—O3148.3 (3)
C2—C3—C4—C50.9 (5)C9—C8—C10—O327.6 (4)
C3—C4—C5—C60.2 (4)C7—C8—C10—O428.7 (3)
O1—C1—C6—C5179.7 (2)C9—C8—C10—O4155.5 (2)
C2—C1—C6—C50.9 (4)C10—O4—C11—C12124.6 (2)
O1—C1—C6—C72.8 (3)C10—O4—C11—C1659.7 (3)
C2—C1—C6—C7176.7 (2)C16—C11—C12—C130.4 (4)
C4—C5—C6—C10.7 (4)O4—C11—C12—C13176.2 (2)
C4—C5—C6—C7176.7 (3)C11—C12—C13—C140.5 (4)
C1—C6—C7—C80.1 (3)C12—C13—C14—C150.5 (4)
C5—C6—C7—C8177.6 (2)C12—C13—C14—Br1177.94 (19)
C6—C7—C8—C92.2 (3)C13—C14—C15—C160.5 (4)
C6—C7—C8—C10173.5 (2)Br1—C14—C15—C16178.0 (2)
C1—O1—C9—O2179.7 (2)C12—C11—C16—C150.3 (4)
C1—O1—C9—C80.7 (3)O4—C11—C16—C15175.9 (2)
C7—C8—C9—O2176.9 (3)C14—C15—C16—C110.4 (4)
C10—C8—C9—O27.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3i0.932.403.124 (3)134
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O3i0.932.403.124 (3)134
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

BSPM thanks the UGC–India for financial support under its Minor Research Project Scheme, and also acknowledges Mr Biraj, Tezpur University, Tezpur, for his help with the data collection.

References

First citationAbdel-Aziz, H. A., Elsaman, T., Al-Dhfyan, A., Attia, M. I., Al-Rashood, K. A. & Al-Obaid, A. M. (2013). Eur. J. Med. Chem. 70, 358–363.  CAS PubMed Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekharan, N. & Kelly, L. (2002). Spectrum, 15, 1–7.  CAS Google Scholar
First citationDevarajegowda, H. C., Palakshamurthy, B. S., Harishkumar, H. N., Suchetan, P. A. & Sreenivasa, S. (2013). Acta Cryst. E69, o1355–o1356.  CSD CrossRef IUCr Journals Google Scholar
First citationKostova, I. (2006). Curr. HIV Res. 4, 347–363.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalakshamurthy, B. S., Devarajegowda, H. C., Srinivasa, H. T., Sreenivasa, S. & Vijithkumar, (2013). Acta Cryst. E69, o621–o622.  Google Scholar
First citationPalakshamurthy, B. S., Sreenivasa, S., Srinivasa, H. T., Roopashree, K. R. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o212.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSreenivasa, S., Srinivasa, H. T., Palakshamurthy, B. S., Kumar, V. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o266.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds