organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 2-{4-[(5-chloro-1-benzo­furan-2-yl)meth­yl]-3-methyl-6-oxo-1,6-di­hydro­pyridazin-1-yl}acetate

aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, BP 6203, Rabat Institute, University Mohammed V, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: y_boukharsa@yahoo.fr

Edited by E. R. T. Tiekink, University of Malaya, Malaysia (Received 19 March 2015; accepted 27 March 2015; online 9 April 2015)

In the title compound, C18H17ClN2O4, the dihedral angle between the benzofuran ring system [maximum deviation 0.014 (2) Å] and the oxopyradizine ring is 73.33 (8)°. The structure is characterized by disorder of the ethyl group, which is split into two parts, with a major component of 0.57 (3), and the acetate carbonyl O atom, which is statistically disordered. In the crystal, the molecules are linked by C—H⋯O inter­actions, forming a three-dimensional network.

1. Related literature

For pharmacological activities of pyridazinones, e.g. anti­microbial, see: Boukharsa et al. (2014[Boukharsa, Y., Zaoui, Y., Taoufik, J. & Ansar, M. (2014). J. Chem. Pharm. Res. 6, 297-310.]); Nagle et al. (2014[Nagle, P., Pawar, Y., Sonawane, A., Bhosale, S. & More, D. (2014). Med. Chem. Res. 23, 918-926.]); El-Hashash et al. (2014[El-Hashash, M., Guirguis, D., Abd El-Wahed, N. & Kadhim, M. (2014). J Chem. Eng. Process. Technol. 5, 72-78.]); Tiryaki et al. (2013[Tiryaki, D., Sukuroglu, M., Dogruer, D., Akkol, E., Ozgen, S. & Sahin, M. F. (2013). Med. Chem. Res. 22, 2553-2560.]); Csókás et al. (2013[Csókás, D., Zupkó, I., Károlyi, B. I., Drahos, L., Holczbauer, T., Palló, A., Czugler, M. & Csámpai, A. (2013). J. Organomet. Chem. 743, 130-138.]); Asif et al. (2014[Asif, M., Singh, A. & Lakshmayya, L. (2014). Am. J. Pharmacol. Sci. 2, 1-6.]); Garkani-Nejad & Poshteh-Shirani (2013[Garkani-Nejad, Z. & Poshteh-Shirani, M. (2013). Med. Chem. Res. 22, 3389-3397.]). For biological activities of pyridazinone derivatives and their applications, e.g. as insecticides and herbicides, see: Cao et al. (2003[Cao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152-155.]); Jamet & Piedallu (1975[Jamet, P. & Piedallu, M.-A. (1975). Weed Res. 15, 113-121.]). For pyridazin-3(2H)-one derivatives, see: Taoufik et al. (1984[Taoufik, J., Couquelet, J. D., Couquelet, J. M. & Carpy, A. (1984). J. Heterocycl. Chem. 21, 305-310.]); Benchat et al. (1998[Benchat, N.-E., Taoufik, J., Essassi, E.-M., Ramdani, A., El-Bali, B. & Bolte, M. (1998). Acta Cryst. C54, 964-966.]); Abourichaa et al. (2003[Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041-o1042.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H17ClN2O4

  • Mr = 360.79

  • Orthorhombic, P 21 21 21

  • a = 7.9792 (2) Å

  • b = 8.7460 (2) Å

  • c = 25.2064 (6) Å

  • V = 1759.06 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.37 × 0.34 × 0.29 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.589, Tmax = 0.746

  • 12689 measured reflections

  • 4925 independent reflections

  • 3350 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.02

  • 4925 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000[Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.]), 2104 Friedel pairs

  • Absolute structure parameter: 0.02 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3Bi 0.93 2.37 3.291 (19) 170
C15—H15B⋯O2ii 0.97 2.34 3.278 (3) 161
C18A—H18A⋯O2iii 0.96 2.41 3.310 (10) 156
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

During recent years, pyridazinones have been a subject of numerous recent studies (Boukharsa et al., 2014) owing to their wide spectrum of pharmacological activities such as antimicrobial (Nagle et al., 2014), anti-fungal (El-Hashash et al., 2014), analgesic & anti-inflammatory (Tiryaki et al., 2013), anticancer (Csókás et al., 2013), anti-tubercular (Asif et al., 2014) and anti-hypertensive activities (Garkani-Nejad & Poshteh-Shirani, 2013). It has also been reported that pyridazinone derivative have remarkable insecticidal (Cao et al., 2003) and herbicidal activities (Jamet & Piedallu, 1975). In continuation of this line of research (Taoufik et al., 1984; Benchat et al., 1998; Abourichaa et al., 2003), we have developed a new pyridazin-3(2H)-one derivative. It will be subjected to further pharmacological investigations, especially tests of anticancer activity. Compound (I) is stable at room temperature, and its structure has been determined by NMR (1H and 13 C). In this paper we wish to report the crystal structure determination of the title compound possessing the biologically active pyridazinone ring.

The molecule of the title compound is build up from 5-chlorobenzofuran-2-yl linked, via –CH2– group, to six-membered heterocyclic ring which is related to acetate group as shown in Fig. 1. The benzofuran system is virtually planar with the largest deviation from the mean plane being -0.014 (2) Å at C4, and makes dihedral angle of 73.33 (8)° with the mean plane through the oxopyridazin (C10–C13,N1,N2) ring. Non classical C—H···O hydrogen bonds link the molecules into a three-dimensional network.

Related literature top

For pharmacological activities, e.g. antimicrobial, of pyridazinones, see: Boukharsa et al. (2014); Nagle et al. (2014); El-Hashash et al. (2014); Tiryaki et al. (2013); Csókás et al. (2013); Asif et al. (2014); Garkani-Nejad & Poshteh-Shirani (2013). For activities of pyridazinone derivative, e.g. as insecticides and herbicides, see: Cao et al. (2003); Jamet & Piedallu (1975). For new pyridazin-3(2H)-one derivatives, see: Taoufik et al. (1984); Benchat et al. (1998); Abourichaa et al. (2003).

Experimental top

To a solution of 5-((5-chlorobenzofuran-2-yl)methyl)-6-methylpyridazin-3(2H)-one (0.5 g, 1.82 mmol) dissolved in tetrahydrofuran (15 ml) was added ethyl 2-bromoacetate (0.30 ml, 2.73 mmol), potassium carbonate (0.5 g, 3.64 mmol) and a catalytic amount of tetra-n-butylammonium bromide (0.05 g, 0.15 mmol). The mixture was stirred at room temperature for 6 h, and monitored by thin layer chromatography. The compound was removed by filtration and the filtrate concentrated under vacuum. The solid obtained was crystallized from ethanol to afford colourless crystals (Yield = 77%; M.pt = 136.9 °C).

Refinement top

The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl), and with Uiso(H) = 1.2 Ueq (aromatic and methylene) and Uiso(H) = 1.5 Ueq for methyl. This structure is characterized by a partial disorder at the acetate group, with the ethyl group split into two parts. The major component had a site occupancy factor = 0.57 (3). The carbonyl-O3 was statistically disordered. Owing to poor agreement, the (0 0 2) reflection was omitted from the final cycles of refinement.

Structure description top

During recent years, pyridazinones have been a subject of numerous recent studies (Boukharsa et al., 2014) owing to their wide spectrum of pharmacological activities such as antimicrobial (Nagle et al., 2014), anti-fungal (El-Hashash et al., 2014), analgesic & anti-inflammatory (Tiryaki et al., 2013), anticancer (Csókás et al., 2013), anti-tubercular (Asif et al., 2014) and anti-hypertensive activities (Garkani-Nejad & Poshteh-Shirani, 2013). It has also been reported that pyridazinone derivative have remarkable insecticidal (Cao et al., 2003) and herbicidal activities (Jamet & Piedallu, 1975). In continuation of this line of research (Taoufik et al., 1984; Benchat et al., 1998; Abourichaa et al., 2003), we have developed a new pyridazin-3(2H)-one derivative. It will be subjected to further pharmacological investigations, especially tests of anticancer activity. Compound (I) is stable at room temperature, and its structure has been determined by NMR (1H and 13 C). In this paper we wish to report the crystal structure determination of the title compound possessing the biologically active pyridazinone ring.

The molecule of the title compound is build up from 5-chlorobenzofuran-2-yl linked, via –CH2– group, to six-membered heterocyclic ring which is related to acetate group as shown in Fig. 1. The benzofuran system is virtually planar with the largest deviation from the mean plane being -0.014 (2) Å at C4, and makes dihedral angle of 73.33 (8)° with the mean plane through the oxopyridazin (C10–C13,N1,N2) ring. Non classical C—H···O hydrogen bonds link the molecules into a three-dimensional network.

For pharmacological activities, e.g. antimicrobial, of pyridazinones, see: Boukharsa et al. (2014); Nagle et al. (2014); El-Hashash et al. (2014); Tiryaki et al. (2013); Csókás et al. (2013); Asif et al. (2014); Garkani-Nejad & Poshteh-Shirani (2013). For activities of pyridazinone derivative, e.g. as insecticides and herbicides, see: Cao et al. (2003); Jamet & Piedallu (1975). For new pyridazin-3(2H)-one derivatives, see: Taoufik et al. (1984); Benchat et al. (1998); Abourichaa et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Crystal packing in the structure of the title compound, showing molecules linked by C—H···O hydrogen bonds (dashed lines).
Ethyl 2-{4-[(5-chloro-1-benzofuran-2-yl)methyl]-3-methyl-6-oxo-1,6-dihydropyridazin-1-yl}acetate top
Crystal data top
C18H17ClN2O4F(000) = 752
Mr = 360.79Dx = 1.362 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: p 2ac 2abCell parameters from 4925 reflections
a = 7.9792 (2) Åθ = 2.5–29.6°
b = 8.7460 (2) ŵ = 0.24 mm1
c = 25.2064 (6) ÅT = 296 K
V = 1759.06 (7) Å3Block, colourless
Z = 40.37 × 0.34 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
4925 independent reflections
Radiation source: fine-focus sealed tube3350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 29.6°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 116
Tmin = 0.589, Tmax = 0.746k = 1211
12689 measured reflectionsl = 3534
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.0996P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.043
4925 reflectionsΔρmax = 0.25 e Å3
255 parametersΔρmin = 0.34 e Å3
0 restraintsAbsolute structure: Flack & Bernardinelli (2000), 2104 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (7)
Crystal data top
C18H17ClN2O4V = 1759.06 (7) Å3
Mr = 360.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.9792 (2) ŵ = 0.24 mm1
b = 8.7460 (2) ÅT = 296 K
c = 25.2064 (6) Å0.37 × 0.34 × 0.29 mm
Data collection top
Bruker APEXII CCD
diffractometer
4925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3350 reflections with I > 2σ(I)
Tmin = 0.589, Tmax = 0.746Rint = 0.031
12689 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.114Δρmax = 0.25 e Å3
S = 1.02Δρmin = 0.34 e Å3
4925 reflectionsAbsolute structure: Flack & Bernardinelli (2000), 2104 Friedel pairs
255 parametersAbsolute structure parameter: 0.02 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0331 (3)0.7077 (3)0.55647 (8)0.0497 (5)
C20.0495 (3)0.7389 (3)0.50905 (9)0.0551 (6)
H20.10060.83350.50420.066*
C30.0561 (3)0.6314 (3)0.46924 (8)0.0500 (5)
H30.11010.65070.43720.060*
C40.0215 (2)0.4935 (2)0.47935 (7)0.0408 (4)
C50.1023 (2)0.4581 (2)0.52669 (7)0.0401 (5)
C60.1087 (3)0.5691 (3)0.56674 (8)0.0493 (6)
H60.16180.55000.59890.059*
C70.1597 (3)0.3032 (3)0.52045 (8)0.0448 (5)
H70.21880.24600.54530.054*
C80.1118 (3)0.2568 (3)0.47190 (8)0.0431 (5)
C90.1316 (3)0.1120 (3)0.44154 (8)0.0472 (5)
H9A0.02200.07850.42970.057*
H9B0.17550.03420.46520.057*
C100.2463 (2)0.1236 (2)0.39358 (7)0.0368 (4)
C110.3432 (2)0.2461 (2)0.38377 (7)0.0414 (4)
H110.33830.32990.40640.050*
C120.4547 (3)0.2499 (2)0.33859 (8)0.0409 (4)
C130.2541 (2)0.0037 (3)0.35783 (7)0.0384 (4)
C140.1523 (3)0.1455 (3)0.36636 (9)0.0514 (5)
H14A0.17510.21730.33850.077*
H14B0.03530.11980.36620.077*
H14C0.18120.19020.39990.077*
C150.5492 (3)0.1158 (3)0.25914 (8)0.0460 (5)
H15A0.56110.21730.24410.055*
H15B0.49500.05130.23290.055*
C160.7196 (3)0.0523 (3)0.27179 (9)0.0570 (6)
C17A0.9885 (15)0.004 (2)0.2313 (4)0.090 (4)0.57 (3)
H17A1.04390.06920.25710.108*0.57 (3)
H17B0.99390.09980.24460.108*0.57 (3)
C18A1.0731 (14)0.0109 (18)0.1866 (4)0.115 (5)0.57 (3)
H18A1.18660.02090.19270.173*0.57 (3)
H18B1.07230.11400.17350.173*0.57 (3)
H18C1.02200.05550.16090.173*0.57 (3)
C17B0.967 (2)0.045 (3)0.2318 (8)0.136 (9)0.43 (3)
H17C1.04910.01110.25240.164*0.43 (3)
H17D0.94060.13780.25110.164*0.43 (3)
C18B1.027 (3)0.078 (5)0.1915 (11)0.201 (15)0.43 (3)
H18D1.12320.14190.19770.302*0.43 (3)
H18E1.06080.01240.17290.302*0.43 (3)
H18F0.94690.13340.17050.302*0.43 (3)
N10.3493 (2)0.0030 (2)0.31573 (6)0.0420 (4)
N20.4446 (2)0.12399 (19)0.30664 (6)0.0407 (4)
O10.02722 (17)0.37131 (17)0.44539 (5)0.0441 (3)
O20.5521 (2)0.35450 (19)0.32838 (6)0.0604 (4)
O3A0.776 (2)0.037 (5)0.3148 (7)0.069 (5)0.50 (10)
O3B0.756 (4)0.019 (7)0.3125 (11)0.088 (6)0.50 (10)
O40.8114 (2)0.0497 (3)0.22828 (6)0.0776 (7)
Cl10.04000 (9)0.85141 (8)0.60423 (3)0.0730 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0478 (12)0.0520 (13)0.0493 (11)0.0015 (11)0.0142 (10)0.0084 (11)
C20.0546 (14)0.0482 (12)0.0626 (13)0.0075 (12)0.0102 (11)0.0050 (12)
C30.0488 (12)0.0569 (13)0.0443 (10)0.0067 (11)0.0026 (9)0.0085 (11)
C40.0382 (10)0.0484 (11)0.0358 (9)0.0006 (9)0.0078 (8)0.0005 (9)
C50.0345 (10)0.0498 (12)0.0359 (9)0.0013 (8)0.0070 (8)0.0022 (10)
C60.0447 (12)0.0665 (15)0.0367 (10)0.0003 (10)0.0053 (9)0.0045 (11)
C70.0416 (11)0.0528 (13)0.0401 (10)0.0069 (9)0.0050 (9)0.0063 (10)
C80.0390 (11)0.0473 (12)0.0430 (10)0.0028 (9)0.0124 (9)0.0046 (10)
C90.0465 (12)0.0468 (12)0.0483 (11)0.0017 (10)0.0151 (9)0.0004 (11)
C100.0324 (9)0.0403 (11)0.0377 (9)0.0021 (8)0.0025 (7)0.0010 (9)
C110.0407 (11)0.0402 (11)0.0433 (10)0.0007 (9)0.0069 (8)0.0071 (9)
C120.0364 (10)0.0396 (10)0.0466 (10)0.0023 (9)0.0049 (8)0.0003 (9)
C130.0342 (9)0.0410 (11)0.0400 (9)0.0008 (8)0.0001 (8)0.0031 (9)
C140.0514 (13)0.0480 (13)0.0549 (12)0.0116 (11)0.0066 (10)0.0053 (12)
C150.0453 (11)0.0537 (13)0.0390 (10)0.0022 (11)0.0098 (9)0.0005 (10)
C160.0521 (13)0.0725 (18)0.0463 (12)0.0110 (12)0.0144 (11)0.0093 (13)
C17A0.061 (5)0.144 (10)0.064 (4)0.038 (5)0.005 (4)0.003 (6)
C18A0.061 (5)0.197 (12)0.088 (6)0.058 (6)0.045 (4)0.051 (8)
C17B0.068 (7)0.191 (18)0.150 (13)0.082 (9)0.079 (8)0.109 (12)
C18B0.098 (14)0.31 (4)0.195 (19)0.098 (18)0.032 (12)0.15 (2)
N10.0421 (9)0.0420 (10)0.0420 (9)0.0047 (7)0.0043 (7)0.0046 (8)
N20.0385 (9)0.0433 (9)0.0403 (8)0.0028 (8)0.0092 (7)0.0037 (8)
O10.0458 (8)0.0520 (9)0.0345 (6)0.0025 (7)0.0015 (6)0.0032 (7)
O20.0626 (10)0.0545 (10)0.0640 (9)0.0194 (9)0.0233 (8)0.0068 (9)
O3A0.063 (4)0.096 (10)0.047 (4)0.021 (5)0.006 (3)0.022 (5)
O3B0.086 (7)0.110 (15)0.069 (5)0.038 (8)0.029 (4)0.046 (7)
O40.0519 (10)0.1259 (19)0.0549 (9)0.0329 (11)0.0193 (8)0.0216 (11)
Cl10.0791 (5)0.0674 (4)0.0725 (4)0.0034 (4)0.0133 (3)0.0271 (3)
Geometric parameters (Å, º) top
C1—C61.378 (3)C13—C141.498 (3)
C1—C21.392 (3)C14—H14A0.9600
C1—Cl11.742 (2)C14—H14B0.9600
C2—C31.376 (3)C14—H14C0.9600
C2—H20.9300C15—N21.461 (2)
C3—C41.380 (3)C15—C161.504 (3)
C3—H30.9300C15—H15A0.9700
C4—O11.370 (2)C15—H15B0.9700
C4—C51.391 (3)C16—O3A1.182 (17)
C5—C61.401 (3)C16—O3B1.234 (17)
C5—C71.439 (3)C16—O41.319 (2)
C6—H60.9300C17A—C18A1.316 (15)
C7—C81.345 (3)C17A—O41.470 (12)
C7—H70.9300C17A—H17A0.9700
C8—O11.380 (3)C17A—H17B0.9700
C8—C91.488 (3)C18A—H18A0.9600
C9—C101.520 (3)C18A—H18B0.9600
C9—H9A0.9700C18A—H18C0.9600
C9—H9B0.9700C17B—C18B1.16 (3)
C10—C111.344 (3)C17B—O41.493 (18)
C10—C131.434 (3)C17B—H17C0.9700
C11—C121.446 (3)C17B—H17D0.9700
C11—H110.9300C18B—H18D0.9600
C12—O21.228 (2)C18B—H18E0.9600
C12—N21.367 (3)C18B—H18F0.9600
C13—N11.305 (2)N1—N21.365 (2)
C6—C1—C2122.8 (2)H14A—C14—H14C109.5
C6—C1—Cl1119.41 (17)H14B—C14—H14C109.5
C2—C1—Cl1117.82 (18)N2—C15—C16111.14 (17)
C3—C2—C1120.7 (2)N2—C15—H15A109.4
C3—C2—H2119.7C16—C15—H15A109.4
C1—C2—H2119.7N2—C15—H15B109.4
C2—C3—C4116.43 (19)C16—C15—H15B109.4
C2—C3—H3121.8H15A—C15—H15B108.0
C4—C3—H3121.8O3A—C16—O3B24.8 (15)
O1—C4—C3125.54 (18)O3A—C16—O4123.2 (9)
O1—C4—C5110.30 (18)O3B—C16—O4123.6 (10)
C3—C4—C5124.13 (19)O3A—C16—C15125.6 (9)
C4—C5—C6118.7 (2)O3B—C16—C15124.9 (11)
C4—C5—C7105.27 (18)O4—C16—C15109.41 (19)
C6—C5—C7136.0 (2)C18A—C17A—O4115.8 (9)
C1—C6—C5117.23 (19)C18A—C17A—H17A108.3
C1—C6—H6121.4O4—C17A—H17A108.3
C5—C6—H6121.4C18A—C17A—H17B108.3
C8—C7—C5107.06 (19)O4—C17A—H17B108.3
C8—C7—H7126.5H17A—C17A—H17B107.4
C5—C7—H7126.5C17A—C18A—H18A109.5
C7—C8—O1111.11 (19)C17A—C18A—H18B109.5
C7—C8—C9134.0 (2)H18A—C18A—H18B109.5
O1—C8—C9114.88 (17)C17A—C18A—H18C109.5
C8—C9—C10114.63 (18)H18A—C18A—H18C109.5
C8—C9—H9A108.6H18B—C18A—H18C109.5
C10—C9—H9A108.6C18B—C17B—O4115.6 (19)
C8—C9—H9B108.6C18B—C17B—H17C108.3
C10—C9—H9B108.6O4—C17B—H17C108.4
H9A—C9—H9B107.6C18B—C17B—H17D108.5
C11—C10—C13118.60 (17)O4—C17B—H17D108.4
C11—C10—C9123.06 (18)H17C—C17B—H17D107.4
C13—C10—C9118.33 (18)C17B—C18B—H18D109.4
C10—C11—C12121.13 (18)C17B—C18B—H18E109.6
C10—C11—H11119.4H18D—C18B—H18E109.5
C12—C11—H11119.4C17B—C18B—H18F109.4
O2—C12—N2120.95 (17)H18D—C18B—H18F109.5
O2—C12—C11124.88 (19)H18E—C18B—H18F109.5
N2—C12—C11114.17 (17)C13—N1—N2117.70 (16)
N1—C13—C10122.17 (19)N1—N2—C12126.10 (15)
N1—C13—C14115.89 (18)N1—N2—C15114.57 (16)
C10—C13—C14121.94 (17)C12—N2—C15119.25 (16)
C13—C14—H14A109.5C4—O1—C8106.25 (15)
C13—C14—H14B109.5C16—O4—C17A119.7 (5)
H14A—C14—H14B109.5C16—O4—C17B114.9 (7)
C13—C14—H14C109.5C17A—O4—C17B17.9 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3Bi0.932.373.291 (19)170
C15—H15B···O2ii0.972.343.278 (3)161
C18A—H18A···O2iii0.962.413.310 (10)156
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3Bi0.932.373.291 (19)170
C15—H15B···O2ii0.972.343.278 (3)161
C18A—H18A···O2iii0.962.413.310 (10)156
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and the University Mohammed V, Rabat, Morocco, for financial support.

References

First citationAbourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041–o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsif, M., Singh, A. & Lakshmayya, L. (2014). Am. J. Pharmacol. Sci. 2, 1–6.  Google Scholar
First citationBenchat, N.-E., Taoufik, J., Essassi, E.-M., Ramdani, A., El-Bali, B. & Bolte, M. (1998). Acta Cryst. C54, 964–966.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoukharsa, Y., Zaoui, Y., Taoufik, J. & Ansar, M. (2014). J. Chem. Pharm. Res. 6, 297–310.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152–155.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCsókás, D., Zupkó, I., Károlyi, B. I., Drahos, L., Holczbauer, T., Palló, A., Czugler, M. & Csámpai, A. (2013). J. Organomet. Chem. 743, 130–138.  Google Scholar
First citationEl-Hashash, M., Guirguis, D., Abd El-Wahed, N. & Kadhim, M. (2014). J Chem. Eng. Process. Technol. 5, 72–78.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarkani-Nejad, Z. & Poshteh-Shirani, M. (2013). Med. Chem. Res. 22, 3389–3397.  CAS Google Scholar
First citationJamet, P. & Piedallu, M.-A. (1975). Weed Res. 15, 113–121.  CrossRef CAS Web of Science Google Scholar
First citationNagle, P., Pawar, Y., Sonawane, A., Bhosale, S. & More, D. (2014). Med. Chem. Res. 23, 918–926.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaoufik, J., Couquelet, J. D., Couquelet, J. M. & Carpy, A. (1984). J. Heterocycl. Chem. 21, 305–310.  CrossRef CAS Google Scholar
First citationTiryaki, D., Sukuroglu, M., Dogruer, D., Akkol, E., Ozgen, S. & Sahin, M. F. (2013). Med. Chem. Res. 22, 2553–2560.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds