organic compounds
of ethyl 2-{4-[(5-chloro-1-benzofuran-2-yl)methyl]-3-methyl-6-oxo-1,6-dihydropyridazin-1-yl}acetate
aLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, BP 6203, Rabat Institute, University Mohammed V, Rabat, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP. 1014, Rabat, Morocco
*Correspondence e-mail: y_boukharsa@yahoo.fr
In the title compound, C18H17ClN2O4, the dihedral angle between the benzofuran ring system [maximum deviation 0.014 (2) Å] and the oxopyradizine ring is 73.33 (8)°. The structure is characterized by disorder of the ethyl group, which is split into two parts, with a major component of 0.57 (3), and the acetate carbonyl O atom, which is statistically disordered. In the crystal, the molecules are linked by C—H⋯O interactions, forming a three-dimensional network.
Keywords: crystal structure; pyridazinone derivative; hydrogen bonding.
CCDC reference: 1056731
1. Related literature
For pharmacological activities of pyridazinones, e.g. antimicrobial, see: Boukharsa et al. (2014); Nagle et al. (2014); El-Hashash et al. (2014); Tiryaki et al. (2013); Csókás et al. (2013); Asif et al. (2014); Garkani-Nejad & Poshteh-Shirani (2013). For biological activities of pyridazinone derivatives and their applications, e.g. as insecticides and herbicides, see: Cao et al. (2003); Jamet & Piedallu (1975). For pyridazin-3(2H)-one derivatives, see: Taoufik et al. (1984); Benchat et al. (1998); Abourichaa et al. (2003).
2. Experimental
2.1. Crystal data
|
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1056731
https://doi.org/10.1107/S2056989015006301/tk5363sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015006301/tk5363Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015006301/tk5363Isup3.cml
To a solution of 5-((5-chlorobenzofuran-2-yl)methyl)-6-methylpyridazin-3(2H)-one (0.5 g, 1.82 mmol) dissolved in tetrahydrofuran (15 ml) was added ethyl 2-bromoacetate (0.30 ml, 2.73 mmol), potassium carbonate (0.5 g, 3.64 mmol) and a catalytic amount of tetra-n-butylammonium bromide (0.05 g, 0.15 mmol). The mixture was stirred at room temperature for 6 h, and monitored by thin layer
The compound was removed by filtration and the filtrate concentrated under vacuum. The solid obtained was crystallized from ethanol to afford colourless crystals (Yield = 77%; M.pt = 136.9 °C).The H atoms were located in a difference map and treated as riding with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl), and with Uiso(H) = 1.2 Ueq (aromatic and methylene) and Uiso(H) = 1.5 Ueq for methyl. This structure is characterized by a partial disorder at the acetate group, with the ethyl group split into two parts. The major component had a site occupancy factor = 0.57 (3). The carbonyl-O3 was statistically disordered. Owing to poor agreement, the (0 0 2) reflection was omitted from the final cycles of refinement.
During recent years, pyridazinones have been a subject of numerous recent studies (Boukharsa et al., 2014) owing to their wide spectrum of pharmacological activities such as antimicrobial (Nagle et al., 2014), anti-fungal (El-Hashash et al., 2014), analgesic & anti-inflammatory (Tiryaki et al., 2013), anticancer (Csókás et al., 2013), anti-tubercular (Asif et al., 2014) and anti-hypertensive activities (Garkani-Nejad & Poshteh-Shirani, 2013). It has also been reported that pyridazinone derivative have remarkable insecticidal (Cao et al., 2003) and herbicidal activities (Jamet & Piedallu, 1975). In continuation of this line of research (Taoufik et al., 1984; Benchat et al., 1998; Abourichaa et al., 2003), we have developed a new pyridazin-3(2H)-one derivative. It will be subjected to further pharmacological investigations, especially tests of anticancer activity. Compound (I) is stable at room temperature, and its structure has been determined by NMR (1H and 13 C). In this paper we wish to report the
determination of the title compound possessing the biologically active pyridazinone ring.The molecule of the title compound is build up from 5-chlorobenzofuran-2-yl linked, via –CH2– group, to six-membered heterocyclic ring which is related to acetate group as shown in Fig. 1. The benzofuran system is virtually planar with the largest deviation from the mean plane being -0.014 (2) Å at C4, and makes dihedral angle of 73.33 (8)° with the mean plane through the oxopyridazin (C10–C13,N1,N2) ring. Non classical C—H···O hydrogen bonds link the molecules into a three-dimensional network.
For pharmacological activities, e.g. antimicrobial, of pyridazinones, see: Boukharsa et al. (2014); Nagle et al. (2014); El-Hashash et al. (2014); Tiryaki et al. (2013); Csókás et al. (2013); Asif et al. (2014); Garkani-Nejad & Poshteh-Shirani (2013). For activities of pyridazinone derivative, e.g. as insecticides and herbicides, see: Cao et al. (2003); Jamet & Piedallu (1975). For new pyridazin-3(2H)-one derivatives, see: Taoufik et al. (1984); Benchat et al. (1998); Abourichaa et al. (2003).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).C18H17ClN2O4 | F(000) = 752 |
Mr = 360.79 | Dx = 1.362 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: p 2ac 2ab | Cell parameters from 4925 reflections |
a = 7.9792 (2) Å | θ = 2.5–29.6° |
b = 8.7460 (2) Å | µ = 0.24 mm−1 |
c = 25.2064 (6) Å | T = 296 K |
V = 1759.06 (7) Å3 | Block, colourless |
Z = 4 | 0.37 × 0.34 × 0.29 mm |
Bruker APEXII CCD diffractometer | 4925 independent reflections |
Radiation source: fine-focus sealed tube | 3350 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
ω and φ scans | θmax = 29.6°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→6 |
Tmin = 0.589, Tmax = 0.746 | k = −12→11 |
12689 measured reflections | l = −35→34 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0511P)2 + 0.0996P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.043 |
4925 reflections | Δρmax = 0.25 e Å−3 |
255 parameters | Δρmin = −0.34 e Å−3 |
0 restraints | Absolute structure: Flack & Bernardinelli (2000), 2104 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.02 (7) |
C18H17ClN2O4 | V = 1759.06 (7) Å3 |
Mr = 360.79 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.9792 (2) Å | µ = 0.24 mm−1 |
b = 8.7460 (2) Å | T = 296 K |
c = 25.2064 (6) Å | 0.37 × 0.34 × 0.29 mm |
Bruker APEXII CCD diffractometer | 4925 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3350 reflections with I > 2σ(I) |
Tmin = 0.589, Tmax = 0.746 | Rint = 0.031 |
12689 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.114 | Δρmax = 0.25 e Å−3 |
S = 1.02 | Δρmin = −0.34 e Å−3 |
4925 reflections | Absolute structure: Flack & Bernardinelli (2000), 2104 Friedel pairs |
255 parameters | Absolute structure parameter: 0.02 (7) |
0 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.0331 (3) | 0.7077 (3) | 0.55647 (8) | 0.0497 (5) | |
C2 | −0.0495 (3) | 0.7389 (3) | 0.50905 (9) | 0.0551 (6) | |
H2 | −0.1006 | 0.8335 | 0.5042 | 0.066* | |
C3 | −0.0561 (3) | 0.6314 (3) | 0.46924 (8) | 0.0500 (5) | |
H3 | −0.1101 | 0.6507 | 0.4372 | 0.060* | |
C4 | 0.0215 (2) | 0.4935 (2) | 0.47935 (7) | 0.0408 (4) | |
C5 | 0.1023 (2) | 0.4581 (2) | 0.52669 (7) | 0.0401 (5) | |
C6 | 0.1087 (3) | 0.5691 (3) | 0.56674 (8) | 0.0493 (6) | |
H6 | 0.1618 | 0.5500 | 0.5989 | 0.059* | |
C7 | 0.1597 (3) | 0.3032 (3) | 0.52045 (8) | 0.0448 (5) | |
H7 | 0.2188 | 0.2460 | 0.5453 | 0.054* | |
C8 | 0.1118 (3) | 0.2568 (3) | 0.47190 (8) | 0.0431 (5) | |
C9 | 0.1316 (3) | 0.1120 (3) | 0.44154 (8) | 0.0472 (5) | |
H9A | 0.0220 | 0.0785 | 0.4297 | 0.057* | |
H9B | 0.1755 | 0.0342 | 0.4652 | 0.057* | |
C10 | 0.2463 (2) | 0.1236 (2) | 0.39358 (7) | 0.0368 (4) | |
C11 | 0.3432 (2) | 0.2461 (2) | 0.38377 (7) | 0.0414 (4) | |
H11 | 0.3383 | 0.3299 | 0.4064 | 0.050* | |
C12 | 0.4547 (3) | 0.2499 (2) | 0.33859 (8) | 0.0409 (4) | |
C13 | 0.2541 (2) | −0.0037 (3) | 0.35783 (7) | 0.0384 (4) | |
C14 | 0.1523 (3) | −0.1455 (3) | 0.36636 (9) | 0.0514 (5) | |
H14A | 0.1751 | −0.2173 | 0.3385 | 0.077* | |
H14B | 0.0353 | −0.1198 | 0.3662 | 0.077* | |
H14C | 0.1812 | −0.1902 | 0.3999 | 0.077* | |
C15 | 0.5492 (3) | 0.1158 (3) | 0.25914 (8) | 0.0460 (5) | |
H15A | 0.5611 | 0.2173 | 0.2441 | 0.055* | |
H15B | 0.4950 | 0.0513 | 0.2329 | 0.055* | |
C16 | 0.7196 (3) | 0.0523 (3) | 0.27179 (9) | 0.0570 (6) | |
C17A | 0.9885 (15) | 0.004 (2) | 0.2313 (4) | 0.090 (4) | 0.57 (3) |
H17A | 1.0439 | 0.0692 | 0.2571 | 0.108* | 0.57 (3) |
H17B | 0.9939 | −0.0998 | 0.2446 | 0.108* | 0.57 (3) |
C18A | 1.0731 (14) | 0.0109 (18) | 0.1866 (4) | 0.115 (5) | 0.57 (3) |
H18A | 1.1866 | −0.0209 | 0.1927 | 0.173* | 0.57 (3) |
H18B | 1.0723 | 0.1140 | 0.1735 | 0.173* | 0.57 (3) |
H18C | 1.0220 | −0.0555 | 0.1609 | 0.173* | 0.57 (3) |
C17B | 0.967 (2) | −0.045 (3) | 0.2318 (8) | 0.136 (9) | 0.43 (3) |
H17C | 1.0491 | 0.0111 | 0.2524 | 0.164* | 0.43 (3) |
H17D | 0.9406 | −0.1378 | 0.2511 | 0.164* | 0.43 (3) |
C18B | 1.027 (3) | −0.078 (5) | 0.1915 (11) | 0.201 (15) | 0.43 (3) |
H18D | 1.1232 | −0.1419 | 0.1977 | 0.302* | 0.43 (3) |
H18E | 1.0608 | 0.0124 | 0.1729 | 0.302* | 0.43 (3) |
H18F | 0.9469 | −0.1334 | 0.1705 | 0.302* | 0.43 (3) |
N1 | 0.3493 (2) | −0.0030 (2) | 0.31573 (6) | 0.0420 (4) | |
N2 | 0.4446 (2) | 0.12399 (19) | 0.30664 (6) | 0.0407 (4) | |
O1 | 0.02722 (17) | 0.37131 (17) | 0.44539 (5) | 0.0441 (3) | |
O2 | 0.5521 (2) | 0.35450 (19) | 0.32838 (6) | 0.0604 (4) | |
O3A | 0.776 (2) | 0.037 (5) | 0.3148 (7) | 0.069 (5) | 0.50 (10) |
O3B | 0.756 (4) | −0.019 (7) | 0.3125 (11) | 0.088 (6) | 0.50 (10) |
O4 | 0.8114 (2) | 0.0497 (3) | 0.22828 (6) | 0.0776 (7) | |
Cl1 | 0.04000 (9) | 0.85141 (8) | 0.60423 (3) | 0.0730 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0478 (12) | 0.0520 (13) | 0.0493 (11) | −0.0015 (11) | 0.0142 (10) | −0.0084 (11) |
C2 | 0.0546 (14) | 0.0482 (12) | 0.0626 (13) | 0.0075 (12) | 0.0102 (11) | 0.0050 (12) |
C3 | 0.0488 (12) | 0.0569 (13) | 0.0443 (10) | 0.0067 (11) | 0.0026 (9) | 0.0085 (11) |
C4 | 0.0382 (10) | 0.0484 (11) | 0.0358 (9) | −0.0006 (9) | 0.0078 (8) | −0.0005 (9) |
C5 | 0.0345 (10) | 0.0498 (12) | 0.0359 (9) | 0.0013 (8) | 0.0070 (8) | 0.0022 (10) |
C6 | 0.0447 (12) | 0.0665 (15) | 0.0367 (10) | −0.0003 (10) | 0.0053 (9) | −0.0045 (11) |
C7 | 0.0416 (11) | 0.0528 (13) | 0.0401 (10) | 0.0069 (9) | 0.0050 (9) | 0.0063 (10) |
C8 | 0.0390 (11) | 0.0473 (12) | 0.0430 (10) | 0.0028 (9) | 0.0124 (9) | 0.0046 (10) |
C9 | 0.0465 (12) | 0.0468 (12) | 0.0483 (11) | −0.0017 (10) | 0.0151 (9) | −0.0004 (11) |
C10 | 0.0324 (9) | 0.0403 (11) | 0.0377 (9) | 0.0021 (8) | 0.0025 (7) | −0.0010 (9) |
C11 | 0.0407 (11) | 0.0402 (11) | 0.0433 (10) | −0.0007 (9) | 0.0069 (8) | −0.0071 (9) |
C12 | 0.0364 (10) | 0.0396 (10) | 0.0466 (10) | −0.0023 (9) | 0.0049 (8) | −0.0003 (9) |
C13 | 0.0342 (9) | 0.0410 (11) | 0.0400 (9) | −0.0008 (8) | −0.0001 (8) | −0.0031 (9) |
C14 | 0.0514 (13) | 0.0480 (13) | 0.0549 (12) | −0.0116 (11) | 0.0066 (10) | −0.0053 (12) |
C15 | 0.0453 (11) | 0.0537 (13) | 0.0390 (10) | 0.0022 (11) | 0.0098 (9) | −0.0005 (10) |
C16 | 0.0521 (13) | 0.0725 (18) | 0.0463 (12) | 0.0110 (12) | 0.0144 (11) | 0.0093 (13) |
C17A | 0.061 (5) | 0.144 (10) | 0.064 (4) | 0.038 (5) | −0.005 (4) | 0.003 (6) |
C18A | 0.061 (5) | 0.197 (12) | 0.088 (6) | 0.058 (6) | 0.045 (4) | 0.051 (8) |
C17B | 0.068 (7) | 0.191 (18) | 0.150 (13) | 0.082 (9) | 0.079 (8) | 0.109 (12) |
C18B | 0.098 (14) | 0.31 (4) | 0.195 (19) | 0.098 (18) | −0.032 (12) | −0.15 (2) |
N1 | 0.0421 (9) | 0.0420 (10) | 0.0420 (9) | −0.0047 (7) | 0.0043 (7) | −0.0046 (8) |
N2 | 0.0385 (9) | 0.0433 (9) | 0.0403 (8) | −0.0028 (8) | 0.0092 (7) | −0.0037 (8) |
O1 | 0.0458 (8) | 0.0520 (9) | 0.0345 (6) | 0.0025 (7) | 0.0015 (6) | −0.0032 (7) |
O2 | 0.0626 (10) | 0.0545 (10) | 0.0640 (9) | −0.0194 (9) | 0.0233 (8) | −0.0068 (9) |
O3A | 0.063 (4) | 0.096 (10) | 0.047 (4) | 0.021 (5) | 0.006 (3) | 0.022 (5) |
O3B | 0.086 (7) | 0.110 (15) | 0.069 (5) | 0.038 (8) | 0.029 (4) | 0.046 (7) |
O4 | 0.0519 (10) | 0.1259 (19) | 0.0549 (9) | 0.0329 (11) | 0.0193 (8) | 0.0216 (11) |
Cl1 | 0.0791 (5) | 0.0674 (4) | 0.0725 (4) | −0.0034 (4) | 0.0133 (3) | −0.0271 (3) |
C1—C6 | 1.378 (3) | C13—C14 | 1.498 (3) |
C1—C2 | 1.392 (3) | C14—H14A | 0.9600 |
C1—Cl1 | 1.742 (2) | C14—H14B | 0.9600 |
C2—C3 | 1.376 (3) | C14—H14C | 0.9600 |
C2—H2 | 0.9300 | C15—N2 | 1.461 (2) |
C3—C4 | 1.380 (3) | C15—C16 | 1.504 (3) |
C3—H3 | 0.9300 | C15—H15A | 0.9700 |
C4—O1 | 1.370 (2) | C15—H15B | 0.9700 |
C4—C5 | 1.391 (3) | C16—O3A | 1.182 (17) |
C5—C6 | 1.401 (3) | C16—O3B | 1.234 (17) |
C5—C7 | 1.439 (3) | C16—O4 | 1.319 (2) |
C6—H6 | 0.9300 | C17A—C18A | 1.316 (15) |
C7—C8 | 1.345 (3) | C17A—O4 | 1.470 (12) |
C7—H7 | 0.9300 | C17A—H17A | 0.9700 |
C8—O1 | 1.380 (3) | C17A—H17B | 0.9700 |
C8—C9 | 1.488 (3) | C18A—H18A | 0.9600 |
C9—C10 | 1.520 (3) | C18A—H18B | 0.9600 |
C9—H9A | 0.9700 | C18A—H18C | 0.9600 |
C9—H9B | 0.9700 | C17B—C18B | 1.16 (3) |
C10—C11 | 1.344 (3) | C17B—O4 | 1.493 (18) |
C10—C13 | 1.434 (3) | C17B—H17C | 0.9700 |
C11—C12 | 1.446 (3) | C17B—H17D | 0.9700 |
C11—H11 | 0.9300 | C18B—H18D | 0.9600 |
C12—O2 | 1.228 (2) | C18B—H18E | 0.9600 |
C12—N2 | 1.367 (3) | C18B—H18F | 0.9600 |
C13—N1 | 1.305 (2) | N1—N2 | 1.365 (2) |
C6—C1—C2 | 122.8 (2) | H14A—C14—H14C | 109.5 |
C6—C1—Cl1 | 119.41 (17) | H14B—C14—H14C | 109.5 |
C2—C1—Cl1 | 117.82 (18) | N2—C15—C16 | 111.14 (17) |
C3—C2—C1 | 120.7 (2) | N2—C15—H15A | 109.4 |
C3—C2—H2 | 119.7 | C16—C15—H15A | 109.4 |
C1—C2—H2 | 119.7 | N2—C15—H15B | 109.4 |
C2—C3—C4 | 116.43 (19) | C16—C15—H15B | 109.4 |
C2—C3—H3 | 121.8 | H15A—C15—H15B | 108.0 |
C4—C3—H3 | 121.8 | O3A—C16—O3B | 24.8 (15) |
O1—C4—C3 | 125.54 (18) | O3A—C16—O4 | 123.2 (9) |
O1—C4—C5 | 110.30 (18) | O3B—C16—O4 | 123.6 (10) |
C3—C4—C5 | 124.13 (19) | O3A—C16—C15 | 125.6 (9) |
C4—C5—C6 | 118.7 (2) | O3B—C16—C15 | 124.9 (11) |
C4—C5—C7 | 105.27 (18) | O4—C16—C15 | 109.41 (19) |
C6—C5—C7 | 136.0 (2) | C18A—C17A—O4 | 115.8 (9) |
C1—C6—C5 | 117.23 (19) | C18A—C17A—H17A | 108.3 |
C1—C6—H6 | 121.4 | O4—C17A—H17A | 108.3 |
C5—C6—H6 | 121.4 | C18A—C17A—H17B | 108.3 |
C8—C7—C5 | 107.06 (19) | O4—C17A—H17B | 108.3 |
C8—C7—H7 | 126.5 | H17A—C17A—H17B | 107.4 |
C5—C7—H7 | 126.5 | C17A—C18A—H18A | 109.5 |
C7—C8—O1 | 111.11 (19) | C17A—C18A—H18B | 109.5 |
C7—C8—C9 | 134.0 (2) | H18A—C18A—H18B | 109.5 |
O1—C8—C9 | 114.88 (17) | C17A—C18A—H18C | 109.5 |
C8—C9—C10 | 114.63 (18) | H18A—C18A—H18C | 109.5 |
C8—C9—H9A | 108.6 | H18B—C18A—H18C | 109.5 |
C10—C9—H9A | 108.6 | C18B—C17B—O4 | 115.6 (19) |
C8—C9—H9B | 108.6 | C18B—C17B—H17C | 108.3 |
C10—C9—H9B | 108.6 | O4—C17B—H17C | 108.4 |
H9A—C9—H9B | 107.6 | C18B—C17B—H17D | 108.5 |
C11—C10—C13 | 118.60 (17) | O4—C17B—H17D | 108.4 |
C11—C10—C9 | 123.06 (18) | H17C—C17B—H17D | 107.4 |
C13—C10—C9 | 118.33 (18) | C17B—C18B—H18D | 109.4 |
C10—C11—C12 | 121.13 (18) | C17B—C18B—H18E | 109.6 |
C10—C11—H11 | 119.4 | H18D—C18B—H18E | 109.5 |
C12—C11—H11 | 119.4 | C17B—C18B—H18F | 109.4 |
O2—C12—N2 | 120.95 (17) | H18D—C18B—H18F | 109.5 |
O2—C12—C11 | 124.88 (19) | H18E—C18B—H18F | 109.5 |
N2—C12—C11 | 114.17 (17) | C13—N1—N2 | 117.70 (16) |
N1—C13—C10 | 122.17 (19) | N1—N2—C12 | 126.10 (15) |
N1—C13—C14 | 115.89 (18) | N1—N2—C15 | 114.57 (16) |
C10—C13—C14 | 121.94 (17) | C12—N2—C15 | 119.25 (16) |
C13—C14—H14A | 109.5 | C4—O1—C8 | 106.25 (15) |
C13—C14—H14B | 109.5 | C16—O4—C17A | 119.7 (5) |
H14A—C14—H14B | 109.5 | C16—O4—C17B | 114.9 (7) |
C13—C14—H14C | 109.5 | C17A—O4—C17B | 17.9 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3Bi | 0.93 | 2.37 | 3.291 (19) | 170 |
C15—H15B···O2ii | 0.97 | 2.34 | 3.278 (3) | 161 |
C18A—H18A···O2iii | 0.96 | 2.41 | 3.310 (10) | 156 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3Bi | 0.93 | 2.37 | 3.291 (19) | 170 |
C15—H15B···O2ii | 0.97 | 2.34 | 3.278 (3) | 161 |
C18A—H18A···O2iii | 0.96 | 2.41 | 3.310 (10) | 156 |
Symmetry codes: (i) x−1/2, −y+1/2, −z+1; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+2, y−1/2, −z+1/2. |
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements, and the University Mohammed V, Rabat, Morocco, for financial support.
References
Abourichaa, S., Benchat, N., Anaflous, A., Melhaoui, A., Ben-Hadda, T., Oussaid, B., Mimouni, M., El Bali, B. & Bolte, M. (2003). Acta Cryst. E59, o1041–o1042. Web of Science CSD CrossRef IUCr Journals Google Scholar
Asif, M., Singh, A. & Lakshmayya, L. (2014). Am. J. Pharmacol. Sci. 2, 1–6. Google Scholar
Benchat, N.-E., Taoufik, J., Essassi, E.-M., Ramdani, A., El-Bali, B. & Bolte, M. (1998). Acta Cryst. C54, 964–966. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Boukharsa, Y., Zaoui, Y., Taoufik, J. & Ansar, M. (2014). J. Chem. Pharm. Res. 6, 297–310. CAS Google Scholar
Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cao, S., Qian, X., Song, G., Chai, B. & Jiang, Z. (2003). J. Agric. Food Chem. 51, 152–155. Web of Science CrossRef PubMed CAS Google Scholar
Csókás, D., Zupkó, I., Károlyi, B. I., Drahos, L., Holczbauer, T., Palló, A., Czugler, M. & Csámpai, A. (2013). J. Organomet. Chem. 743, 130–138. Google Scholar
El-Hashash, M., Guirguis, D., Abd El-Wahed, N. & Kadhim, M. (2014). J Chem. Eng. Process. Technol. 5, 72–78. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garkani-Nejad, Z. & Poshteh-Shirani, M. (2013). Med. Chem. Res. 22, 3389–3397. CAS Google Scholar
Jamet, P. & Piedallu, M.-A. (1975). Weed Res. 15, 113–121. CrossRef CAS Web of Science Google Scholar
Nagle, P., Pawar, Y., Sonawane, A., Bhosale, S. & More, D. (2014). Med. Chem. Res. 23, 918–926. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taoufik, J., Couquelet, J. D., Couquelet, J. M. & Carpy, A. (1984). J. Heterocycl. Chem. 21, 305–310. CrossRef CAS Google Scholar
Tiryaki, D., Sukuroglu, M., Dogruer, D., Akkol, E., Ozgen, S. & Sahin, M. F. (2013). Med. Chem. Res. 22, 2553–2560. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
During recent years, pyridazinones have been a subject of numerous recent studies (Boukharsa et al., 2014) owing to their wide spectrum of pharmacological activities such as antimicrobial (Nagle et al., 2014), anti-fungal (El-Hashash et al., 2014), analgesic & anti-inflammatory (Tiryaki et al., 2013), anticancer (Csókás et al., 2013), anti-tubercular (Asif et al., 2014) and anti-hypertensive activities (Garkani-Nejad & Poshteh-Shirani, 2013). It has also been reported that pyridazinone derivative have remarkable insecticidal (Cao et al., 2003) and herbicidal activities (Jamet & Piedallu, 1975). In continuation of this line of research (Taoufik et al., 1984; Benchat et al., 1998; Abourichaa et al., 2003), we have developed a new pyridazin-3(2H)-one derivative. It will be subjected to further pharmacological investigations, especially tests of anticancer activity. Compound (I) is stable at room temperature, and its structure has been determined by NMR (1H and 13 C). In this paper we wish to report the crystal structure determination of the title compound possessing the biologically active pyridazinone ring.
The molecule of the title compound is build up from 5-chlorobenzofuran-2-yl linked, via –CH2– group, to six-membered heterocyclic ring which is related to acetate group as shown in Fig. 1. The benzofuran system is virtually planar with the largest deviation from the mean plane being -0.014 (2) Å at C4, and makes dihedral angle of 73.33 (8)° with the mean plane through the oxopyridazin (C10–C13,N1,N2) ring. Non classical C—H···O hydrogen bonds link the molecules into a three-dimensional network.