research communications
of a new hybrid antimony–halide-based compound for possible non-linear optical applications
aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: tarekbenrhaiem@hotmail.fr
The hybrid title compound, catena-poly[[[bis(1,4-diazoniabicyclo[2.2.2]octane) [tetraachloridoantimonate(III)]-μ-chlorido-[tetrachloridoantimonate(III)]-μ-chlorido]] monohydrate], {(C6H14N2)2[Sb2Cl10]·H2O}n, is self-assembled into alternating organic and inorganic layers parallel to the bc plane. The anionic inorganic layer consists of infinite zigzag chains of corner-sharing [SbCl6]3− octahedra running along the b axis. The organic part is made up of 1,4-diazoniabicyclo[2.2.2]octane dications (dabcoH22+). The water molecules in the structure connect inorganic and organic layers. Hydrogen-bonding interactions between the ammonium groups, water molecules and Cl atoms ensure the structure cohesion.
Keywords: crystal structure; chloridoantimonate(III); one-dimensional hybrid compound; (dabcoH2)2+ cation.
CCDC reference: 943047
1. Chemical context
Organic–inorganic hybrid structures with the general formula {(Ra)n+MbX3b+na} (where R is an organic cation; M is any trivalent metal and X is Cl, Br or/and I) are able to combine desirable characteristics from both types of constituents into a molecular scale composite. These hybrids have been extensively studied for their excitonic and magneto-optical properties. In recent years, a significant number of organic–inorganic hybrid materials based on antimony–halide units have been studied. Six-coordinate antimony halides can arrange themselves in three-, two- or one-dimensional networks through sharing halides in the SbX6 octahedra, separated by organic cations (Ben Rhaiem et al., 2013; Leblanc et al., 2012; Piecha et al., 2012; Bujack & Angel, 2005, 2006; Bujack & Zaleski, 2004). One-dimensional extended chains can be formed by one, two or three bridging halides and combinations thereof. The use of one bridging halide leads to two types of chains; if the two bridging halides connecting the central octahedron to its neighbours are related cis, a zigzag pattern is obtained; if they are trans, the chain is linear.
2. Structural commentary
The 6H14N2)2[Sb2Cl10]·H2O, (I), consists of two symmetry-independant (dabcoH2)2+ dications, a corner sharing bi-octahedron decachloridodiantimonate(III) anion and one crystallization water molecule. The cations are labeled Cat1 (containing atoms N1 and N2) and Cat2 (containing N3 and N4) and the atomic numbering scheme is shown in Fig. 1.
of the new chloridoantimonate(III) compound, (CThe structure of the title compound, (I), is self-assembled into an alternating organic and inorganic layered structure. The anionic layer consists of infinite zigzag chains of corner-sharing [SbCl6]3− octahedra running along the b axis. Thus, (I) can be classified among the one-dimensional hybrid structures. The organic part is made up of (dabcoH2)2+ cations located in the holes around the corner-sharing octahedra. The layers are stacked along the a axis and water molecules connect the organic and inorganic components (Fig. 2).
The inorganic structural unit part of (I) is build up by two Sb atoms in an octahedral coordination ([Sb1Cl6]3− and [Sb2Cl6]3−) joined by the Cl2 ion. Both octahedra are severely distorted with Sb—Cl bond lengths lying in the range of 2.5233 (18)–3.073 (2) Å for the bridging ones and 2.4277 (15)–2.8233 (17) Å for the terminal ones. The two bridging halides (Cl2 and Cl4) connecting the central octahedron to its neighbours are related cis, leading to zigzag chain of corner-sharing [SbCl6]3− octahedra running along the b axis (Fig. 3).
It is worth noting that at room temperature the DABCO molecule crystallizes in the hexagonal system (P63/m) (Nimmo & Lucas, 1976). In our case, Cat2 seems to be more distorted than Cat1. In fact, the highest absolute value of the N—C—C—N torsion angle of 7.80 (14)° proves that both (dabcoH2)2+ cations exhibit deviations from ideal D3h symmetry. The observed lowering symmetry (hexagonal to orthorhombic) is probably due to the distortion of the (dabcoH2)2+ cation and can be related to the complex hydrogen-bond network linking the molecular components (cations, anions and water molecules).
The studied compound crystals are transparent and the structure is noncentrosymmetric (Pna21). These are two indispensable conditions making this phase a potential promising candidate for non-linear optical (NLO) behaviour as is the case for the well-known KTiOPO4 (KTP) and equivalent efficient NLO materials.
3. Supramolecular features
As shown in Fig. 3, every bi-octahedron unit is linked to four (dabcoH2)2+ cations and two water molecules via hydrogen bonds (Table 1): on one side Cat1 via Cl6⋯H1iv—N1iv and Cat 2 by Cl8⋯H3v—N3v, Cl9⋯H3v—N3v [symmetry codes: (iv) −x + 1, −y + 1, −z − ; (v) −x + , y − , z − ] and the other side Cat1 via Cl1⋯H2iii—N2iii, Cl3⋯H2iii—N2iii and Cat2 by Cl3⋯H4ii—N4ii [symmetry codes: (ii) x, y + 1, z; (iii) −x + 1, −y + 1, z + ]. The water molecules are linked by Cl5⋯H13A—O and Cl9⋯H13Bv—Ov [symmetry code: (v) −x + , y − , z − ].
Using ammonium groups, both cations (Cat1 and Cat2) are linked to the anionic chains by hydrogen bonds via halogenous octahedral vertices. As shown in Fig. 4, Cat1 is linked by N1—H1⋯Cl6i hydrogen bond and three interactions between N2—H2 group, both vertices Cl1ii—Sb1ii, Cl3ii—Sb1ii and O atom of the water molecule [symmetry codes: (i) −x + 1, −y + 1, z + ; (ii) −x + 1, −y + 1, z − ]. On the other hand, each ammonium group of Cat 2 interacts by two hydrogen bonds. N4—H4 to Cl3i—Sb1i and the O atom and N3—H3 group to both Cl8ii—Sb2ii and Cl9ii—Sb2ii vertices (Fig. 5) [symmetry codes: (i) x, y − 1, z; (ii) −x + , y + , z + ].
As can be seen in Fig. 6, the water molecule plays an important role in the structure connectivity. It is establishing four hydrogen links joining Cat1 by O⋯H2ii—N2ii, Cat2 through O⋯H4i—N4i and two [SbCl6]3− octahedra via O—H13A⋯Cl5 and O—H13B⋯Cl9iii [symmetry codes: (i) x, y + 1, z; (ii) −x + 1, −y + 1, z + ; (iii) −x + , y + , z + ].
4. Database survey
A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) gave 184 hits for organic–inorganic hybrid materials based on antimony chloride units. For this class of compounds with (dabcoH2)2+ cations, there is only one zero-dimensional compound, (C6H14N2)2[Sb2Cl10]·2H2O containing isolated [Sb2Cl10]4− double octahedra, (dabcoH2)2+ cations and water molecules (Ben Rhaiem et al., 2013). Indeed, this compound is a pseudo-polymorph over the title compound. For similar one-dimensional compounds with N,N-dimethylethylenediammonium cations, [(CH3)2NH(CH2)2NH3]2+, see: Bujack & Angel (2006). For two-dimensional compounds with [{Sb2Cl9}n]3n− polyanionic layers, see: Bujack & Angel (2005); Bujack & Zaleski (2004).
5. Synthesis and crystallization
A mixture of SbCl3 (1 mmol) and DABCO (0.5 mmol) was dissolved in a hydrochloric aqueous solution and stirred for several minutes at 353 K. Colourless crystals suitable for X-ray were obtained by slow evaporation at room temperature after two weeks.
6. Refinement
Data collection and structure . H atoms were localized from geometrical constraint conditions using adequate AFIX and DFIX SHELXL (Sheldrick, 2008) options and parameters were refined with a common isotropic displacement parameter. Water H atoms were found in difference Fourier maps and O—H distances were refined using DFIX and DANG soft restraints. The was refined despite the low coverage because the structure contains a sufficient number of relatively strong anomalous scatterers.
details are summarized in Table 2
|
Supporting information
CCDC reference: 943047
https://doi.org/10.1107/S2056989015007379/vn2091sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015007379/vn2091Isup2.hkl
Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).(C6H14N2)2[Sb2Cl10]·H2O | Dx = 2.018 Mg m−3 |
Mr = 844.40 | Melting point: 594 K |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 3492 reflections |
a = 29.122 (3) Å | θ = 2.4–27.0° |
b = 8.4029 (10) Å | µ = 2.92 mm−1 |
c = 11.358 (2) Å | T = 298 K |
V = 2779.4 (7) Å3 | Prism, colourless |
Z = 4 | 0.13 × 0.06 × 0.02 mm |
F(000) = 1640 |
Enraf–Nonius CAD-4 diffractometer | 2988 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.041 |
Graphite monochromator | θmax = 27.0°, θmin = 2.3° |
non–profiled ω/2θ scans | h = −37→1 |
Absorption correction: ψ scan (North et al., 1968) | k = −10→10 |
Tmin = 0.358, Tmax = 0.555 | l = −1→14 |
7000 measured reflections | 2 standard reflections every 120 min |
3492 independent reflections | intensity decay: −1% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0316P)2 + 2.3277P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.070 | (Δ/σ)max = 0.001 |
S = 1.09 | Δρmax = 0.72 e Å−3 |
3492 reflections | Δρmin = −0.62 e Å−3 |
273 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
5 restraints | Extinction coefficient: 0.00168 (12) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 66 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.01 (3) |
Experimental. Absorption correction: North et al. (1968) Number of psi-scan sets used was 6 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sb1 | 0.593657 (12) | 0.74481 (3) | 0.49688 (3) | 0.02787 (11) | |
Sb2 | 0.657146 (11) | 0.24077 (3) | 0.22050 (3) | 0.02842 (11) | |
Cl1 | 0.57361 (5) | 0.54093 (18) | 0.66622 (15) | 0.0452 (4) | |
Cl2 | 0.61712 (8) | 0.5151 (2) | 0.3671 (2) | 0.0760 (6) | |
Cl3 | 0.57606 (5) | 0.97355 (17) | 0.67100 (15) | 0.0437 (3) | |
Cl4 | 0.61408 (7) | 0.9753 (2) | 0.3459 (2) | 0.0765 (6) | |
Cl5 | 0.67713 (6) | 0.75095 (17) | 0.56999 (19) | 0.0522 (4) | |
Cl6 | 0.50864 (7) | 0.7328 (2) | 0.3883 (2) | 0.0619 (5) | |
Cl7 | 0.69068 (7) | 0.4519 (2) | 0.09980 (17) | 0.0645 (5) | |
Cl8 | 0.68555 (6) | 0.0345 (2) | 0.08973 (16) | 0.0562 (5) | |
Cl9 | 0.74068 (5) | 0.19561 (18) | 0.34215 (18) | 0.0430 (3) | |
Cl10 | 0.58708 (5) | 0.25828 (14) | 0.1013 (2) | 0.0478 (4) | |
N1 | 0.49311 (19) | 0.2444 (5) | 0.5900 (5) | 0.0390 (12) | |
H1 | 0.5113 (15) | 0.2480 (6) | 0.659 (6) | 0.047* | |
N2 | 0.44602 (17) | 0.2354 (5) | 0.4084 (5) | 0.0378 (11) | |
H2 | 0.4294 (4) | 0.2318 (5) | 0.3440 (16) | 0.045* | |
N3 | 0.72003 (16) | 0.3837 (5) | 0.7294 (5) | 0.0389 (11) | |
H3 | 0.7352 (10) | 0.475 (6) | 0.7261 (5) | 0.047* | |
N4 | 0.6767 (2) | 0.1317 (6) | 0.7367 (7) | 0.068 (2) | |
H4 | 0.6616 (14) | 0.044 (8) | 0.7384 (7) | 0.082* | |
C1 | 0.5235 (2) | 0.2498 (6) | 0.4859 (7) | 0.0455 (16) | |
H1A | 0.5447 | 0.1609 | 0.4882 | 0.055* | |
H1B | 0.5412 | 0.3475 | 0.4867 | 0.055* | |
C2 | 0.4952 (2) | 0.2417 (8) | 0.3748 (8) | 0.059 (2) | |
H2A | 0.5010 | 0.3347 | 0.3264 | 0.071* | |
H2B | 0.5033 | 0.1476 | 0.3299 | 0.071* | |
C3 | 0.4365 (2) | 0.0911 (7) | 0.4788 (6) | 0.0481 (17) | |
H3A | 0.4434 | −0.0030 | 0.4326 | 0.058* | |
H3B | 0.4043 | 0.0880 | 0.5001 | 0.058* | |
C4 | 0.4656 (2) | 0.0921 (7) | 0.5887 (6) | 0.0479 (15) | |
H4A | 0.4860 | 0.0010 | 0.5891 | 0.057* | |
H4B | 0.4461 | 0.0865 | 0.6579 | 0.057* | |
C5 | 0.4622 (2) | 0.3851 (8) | 0.5871 (6) | 0.0510 (16) | |
H5A | 0.4802 | 0.4821 | 0.5888 | 0.061* | |
H5B | 0.4423 | 0.3844 | 0.6556 | 0.061* | |
C6 | 0.4333 (2) | 0.3800 (6) | 0.4754 (6) | 0.0467 (17) | |
H6A | 0.4010 | 0.3773 | 0.4953 | 0.056* | |
H6B | 0.4391 | 0.4742 | 0.4283 | 0.056* | |
C7 | 0.7097 (3) | 0.3302 (8) | 0.6095 (6) | 0.063 (2) | |
H7A | 0.7381 | 0.3127 | 0.5668 | 0.075* | |
H7B | 0.6924 | 0.4116 | 0.5685 | 0.075* | |
C8 | 0.6829 (4) | 0.1808 (11) | 0.6134 (8) | 0.092 (4) | |
H8A | 0.6532 | 0.1972 | 0.5767 | 0.110* | |
H8B | 0.6989 | 0.0981 | 0.5702 | 0.110* | |
C9 | 0.6768 (2) | 0.4080 (7) | 0.7935 (7) | 0.0473 (15) | |
H9A | 0.6577 | 0.4839 | 0.7516 | 0.057* | |
H9B | 0.6831 | 0.4505 | 0.8712 | 0.057* | |
C10 | 0.6519 (2) | 0.2512 (6) | 0.8042 (8) | 0.0479 (18) | |
H10A | 0.6502 | 0.2195 | 0.8862 | 0.057* | |
H10B | 0.6208 | 0.2617 | 0.7744 | 0.057* | |
C11 | 0.7484 (3) | 0.2641 (9) | 0.7941 (10) | 0.081 (3) | |
H11A | 0.7525 | 0.2964 | 0.8754 | 0.097* | |
H11B | 0.7784 | 0.2535 | 0.7577 | 0.097* | |
C12 | 0.7221 (3) | 0.1056 (10) | 0.7878 (11) | 0.107 (4) | |
H12A | 0.7391 | 0.0303 | 0.7399 | 0.129* | |
H12B | 0.7190 | 0.0612 | 0.8662 | 0.129* | |
O | 0.65412 (17) | 0.8095 (7) | 0.8407 (6) | 0.0637 (14) | |
H13A | 0.662 (3) | 0.760 (8) | 0.780 (4) | 0.070* | |
H13B | 0.674 (2) | 0.788 (9) | 0.890 (5) | 0.070* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sb1 | 0.0343 (2) | 0.02365 (18) | 0.0257 (2) | −0.00135 (12) | 0.00135 (16) | −0.00099 (18) |
Sb2 | 0.03007 (18) | 0.02876 (19) | 0.0264 (2) | 0.00021 (12) | −0.00028 (17) | −0.0021 (2) |
Cl1 | 0.0497 (9) | 0.0439 (7) | 0.0421 (8) | −0.0053 (6) | −0.0007 (7) | −0.0001 (7) |
Cl2 | 0.0915 (15) | 0.0703 (11) | 0.0662 (14) | 0.0140 (11) | 0.0062 (12) | −0.0308 (11) |
Cl3 | 0.0418 (8) | 0.0419 (7) | 0.0473 (8) | 0.0013 (6) | −0.0043 (7) | 0.0077 (7) |
Cl4 | 0.0833 (14) | 0.0808 (13) | 0.0655 (14) | −0.0231 (11) | −0.0066 (13) | 0.0276 (12) |
Cl5 | 0.0457 (8) | 0.0532 (9) | 0.0578 (12) | −0.0055 (7) | 0.0018 (8) | 0.0039 (8) |
Cl6 | 0.0538 (10) | 0.0626 (11) | 0.0695 (14) | −0.0031 (8) | 0.0168 (10) | 0.0005 (10) |
Cl7 | 0.0750 (12) | 0.0718 (11) | 0.0466 (10) | −0.0361 (9) | −0.0079 (10) | 0.0184 (9) |
Cl8 | 0.0638 (11) | 0.0643 (9) | 0.0406 (9) | 0.0285 (8) | −0.0105 (8) | −0.0222 (8) |
Cl9 | 0.0429 (7) | 0.0501 (7) | 0.0360 (7) | 0.0012 (7) | 0.0007 (7) | −0.0113 (7) |
Cl10 | 0.0447 (8) | 0.0333 (7) | 0.0652 (12) | 0.0041 (5) | −0.0225 (8) | −0.0034 (7) |
N1 | 0.044 (3) | 0.038 (3) | 0.035 (3) | 0.001 (2) | −0.007 (2) | 0.000 (2) |
N2 | 0.039 (3) | 0.036 (2) | 0.038 (3) | 0.0019 (18) | −0.007 (2) | 0.003 (2) |
N3 | 0.046 (3) | 0.033 (2) | 0.038 (3) | −0.0052 (18) | 0.004 (3) | −0.003 (2) |
N4 | 0.089 (5) | 0.028 (2) | 0.088 (5) | −0.010 (3) | 0.049 (4) | 0.000 (3) |
C1 | 0.034 (3) | 0.041 (3) | 0.062 (5) | −0.004 (2) | 0.004 (3) | 0.003 (3) |
C2 | 0.045 (4) | 0.089 (6) | 0.043 (4) | −0.001 (3) | 0.003 (3) | −0.001 (4) |
C3 | 0.057 (4) | 0.031 (2) | 0.057 (4) | −0.008 (2) | −0.021 (4) | 0.009 (3) |
C4 | 0.053 (4) | 0.046 (3) | 0.044 (4) | −0.011 (3) | −0.002 (3) | 0.013 (3) |
C5 | 0.055 (4) | 0.051 (3) | 0.047 (4) | 0.012 (3) | 0.000 (3) | −0.009 (3) |
C6 | 0.057 (4) | 0.032 (3) | 0.051 (4) | 0.010 (3) | −0.014 (3) | −0.004 (3) |
C7 | 0.110 (7) | 0.051 (3) | 0.026 (3) | −0.031 (4) | 0.009 (4) | −0.004 (3) |
C8 | 0.133 (9) | 0.087 (6) | 0.054 (5) | −0.071 (6) | 0.028 (6) | −0.035 (5) |
C9 | 0.052 (4) | 0.038 (3) | 0.052 (4) | 0.002 (3) | 0.008 (3) | −0.015 (3) |
C10 | 0.047 (4) | 0.051 (4) | 0.046 (4) | 0.004 (3) | 0.017 (3) | 0.004 (3) |
C11 | 0.056 (5) | 0.111 (7) | 0.075 (7) | 0.033 (5) | −0.011 (5) | −0.004 (5) |
C12 | 0.103 (8) | 0.071 (5) | 0.148 (10) | 0.047 (5) | 0.079 (7) | 0.060 (6) |
O | 0.055 (3) | 0.067 (3) | 0.069 (4) | 0.017 (2) | −0.010 (3) | −0.016 (3) |
Sb1—Cl2 | 2.5233 (18) | C1—H1B | 0.9700 |
Sb1—Cl5 | 2.5695 (18) | C2—H2A | 0.9700 |
Sb1—Cl1 | 2.6411 (17) | C2—H2B | 0.9700 |
Sb1—Cl4 | 2.654 (2) | C3—C4 | 1.507 (9) |
Sb1—Cl6 | 2.768 (2) | C3—H3A | 0.9700 |
Sb1—Cl3 | 2.8051 (17) | C3—H3B | 0.9700 |
Sb2—Cl8 | 2.4277 (15) | C4—H4A | 0.9700 |
Sb2—Cl7 | 2.4457 (17) | C4—H4B | 0.9700 |
Sb2—Cl10 | 2.4532 (16) | C5—C6 | 1.521 (9) |
Sb2—Cl9 | 2.8233 (17) | C5—H5A | 0.9700 |
Sb2—Cl2 | 3.073 (2) | C5—H5B | 0.9700 |
Sb2—Cl4i | 2.9291 (19) | C6—H6A | 0.9700 |
N1—C1 | 1.477 (9) | C6—H6B | 0.9700 |
N1—C5 | 1.487 (8) | C7—C8 | 1.480 (10) |
N1—C4 | 1.510 (7) | C7—H7A | 0.9700 |
N1—H1 | 0.9496 | C7—H7B | 0.9700 |
N2—C3 | 1.478 (7) | C8—H8A | 0.9700 |
N2—C6 | 1.481 (7) | C8—H8B | 0.9700 |
N2—C2 | 1.483 (9) | C9—C10 | 1.509 (7) |
N2—H2 | 0.8784 | C9—H9A | 0.9700 |
N3—C7 | 1.465 (8) | C9—H9B | 0.9700 |
N3—C9 | 1.469 (8) | C10—H10A | 0.9700 |
N3—C11 | 1.494 (9) | C10—H10B | 0.9700 |
N3—H3 | 0.8858 | C11—C12 | 1.538 (11) |
N4—C10 | 1.456 (8) | C11—H11A | 0.9700 |
N4—C12 | 1.462 (12) | C11—H11B | 0.9700 |
N4—C8 | 1.471 (11) | C12—H12A | 0.9700 |
N4—H4 | 0.8565 | C12—H12B | 0.9700 |
C1—C2 | 1.508 (11) | O—H13A | 0.84 (2) |
C1—H1A | 0.9700 | O—H13B | 0.82 (2) |
Cl2—Sb1—Cl5 | 87.02 (7) | C1—C2—H2B | 110.0 |
Cl2—Sb1—Cl1 | 89.38 (7) | H2A—C2—H2B | 108.4 |
Cl5—Sb1—Cl1 | 89.25 (6) | N2—C3—C4 | 109.8 (5) |
Cl2—Sb1—Cl4 | 96.90 (9) | N2—C3—H3A | 109.7 |
Cl5—Sb1—Cl4 | 88.98 (6) | C4—C3—H3A | 109.7 |
Cl1—Sb1—Cl4 | 173.38 (6) | N2—C3—H3B | 109.7 |
Cl2—Sb1—Cl6 | 87.36 (7) | C4—C3—H3B | 109.7 |
Cl5—Sb1—Cl6 | 172.33 (7) | H3A—C3—H3B | 108.2 |
Cl1—Sb1—Cl6 | 95.92 (6) | C3—C4—N1 | 108.1 (5) |
Cl4—Sb1—Cl6 | 86.51 (6) | C3—C4—H4A | 110.1 |
Cl2—Sb1—Cl3 | 170.28 (7) | N1—C4—H4A | 110.1 |
Cl5—Sb1—Cl3 | 86.05 (5) | C3—C4—H4B | 110.1 |
Cl1—Sb1—Cl3 | 83.72 (5) | N1—C4—H4B | 110.1 |
Cl4—Sb1—Cl3 | 89.79 (6) | H4A—C4—H4B | 108.4 |
Cl6—Sb1—Cl3 | 100.12 (5) | N1—C5—C6 | 109.3 (5) |
Cl8—Sb2—Cl7 | 92.23 (8) | N1—C5—H5A | 109.8 |
Cl8—Sb2—Cl10 | 89.35 (6) | C6—C5—H5A | 109.8 |
Cl7—Sb2—Cl10 | 88.82 (7) | N1—C5—H5B | 109.8 |
Cl8—Sb2—Cl9 | 84.83 (5) | C6—C5—H5B | 109.8 |
Cl7—Sb2—Cl9 | 91.59 (6) | H5A—C5—H5B | 108.3 |
Cl10—Sb2—Cl9 | 174.17 (6) | N2—C6—C5 | 108.3 (5) |
Cl4i—Sb2—Cl10 | 87.62 (5) | N2—C6—H6A | 110.0 |
Cl2—Sb2—Cl10 | 86.49 (6) | C5—C6—H6A | 110.0 |
Cl4i—Sb2—Cl9 | 91.63 (5) | N2—C6—H6B | 110.0 |
Cl2—Sb2—Cl9 | 99.35 (5) | C5—C6—H6B | 110.0 |
Cl8—Sb2—Cl4i | 84.24 (6) | H6A—C6—H6B | 108.4 |
Cl4i—Sb2—Cl2 | 98.36 (5) | N3—C7—C8 | 109.9 (6) |
Cl2—Sb2—Cl7 | 84.89 (6) | N3—C7—H7A | 109.7 |
Cl2—Sb2—Cl8 | 174.98 (6) | C8—C7—H7A | 109.7 |
Cl4i—Sb2—Cl7 | 175.00 (6) | N3—C7—H7B | 109.7 |
C1—N1—C5 | 108.7 (5) | C8—C7—H7B | 109.7 |
C1—N1—C4 | 109.6 (5) | H7A—C7—H7B | 108.2 |
C5—N1—C4 | 110.6 (5) | N4—C8—C7 | 109.3 (6) |
C1—N1—H1 | 109.3 | N4—C8—H8A | 109.8 |
C5—N1—H1 | 109.3 | C7—C8—H8A | 109.8 |
C4—N1—H1 | 109.3 | N4—C8—H8B | 109.8 |
C3—N2—C6 | 110.4 (5) | C7—C8—H8B | 109.8 |
C3—N2—C2 | 110.4 (5) | H8A—C8—H8B | 108.3 |
C6—N2—C2 | 110.1 (5) | N3—C9—C10 | 109.3 (5) |
C3—N2—H2 | 108.6 | N3—C9—H9A | 109.8 |
C6—N2—H2 | 108.6 | C10—C9—H9A | 109.8 |
C2—N2—H2 | 108.6 | N3—C9—H9B | 109.8 |
C7—N3—C9 | 109.1 (5) | C10—C9—H9B | 109.8 |
C7—N3—C11 | 111.4 (6) | H9A—C9—H9B | 108.3 |
C9—N3—C11 | 108.9 (6) | N4—C10—C9 | 108.7 (5) |
C7—N3—H3 | 109.1 | N4—C10—H10A | 109.9 |
C9—N3—H3 | 109.1 | C9—C10—H10A | 109.9 |
C11—N3—H3 | 109.1 | N4—C10—H10B | 109.9 |
C10—N4—C12 | 110.1 (7) | C9—C10—H10B | 109.9 |
C10—N4—C8 | 111.6 (7) | H10A—C10—H10B | 108.3 |
C12—N4—C8 | 108.0 (8) | N3—C11—C12 | 106.5 (7) |
C10—N4—H4 | 109.0 | N3—C11—H11A | 110.4 |
C12—N4—H4 | 109.0 | C12—C11—H11A | 110.4 |
C8—N4—H4 | 109.0 | N3—C11—H11B | 110.4 |
N1—C1—C2 | 110.0 (5) | C12—C11—H11B | 110.4 |
N1—C1—H1A | 109.7 | H11A—C11—H11B | 108.6 |
C2—C1—H1A | 109.7 | N4—C12—C11 | 109.8 (6) |
N1—C1—H1B | 109.7 | N4—C12—H12A | 109.7 |
C2—C1—H1B | 109.7 | C11—C12—H12A | 109.7 |
H1A—C1—H1B | 108.2 | N4—C12—H12B | 109.7 |
N2—C2—C1 | 108.3 (6) | C11—C12—H12B | 109.7 |
N2—C2—H2A | 110.0 | H12A—C12—H12B | 108.2 |
C1—C2—H2A | 110.0 | H13A—O—H13B | 105 (4) |
N2—C2—H2B | 110.0 |
Symmetry code: (i) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl6ii | 0.95 | 2.67 | 3.391 (6) | 134 |
N2—H2···Cl1iii | 0.88 | 2.78 | 3.378 (4) | 126 |
N2—H2···Cl3iii | 0.88 | 2.62 | 3.281 (6) | 133 |
N2—H2···Oiii | 0.88 | 2.46 | 3.040 (7) | 124 |
N3—H3···Cl8iv | 0.89 | 2.82 | 3.418 (7) | 126 |
N3—H3···Cl9iv | 0.89 | 2.38 | 3.132 (9) | 143 |
N4—H4···Cl3i | 0.87 | 2.66 | 3.303 (6) | 131 |
N4—H4···Oi | 0.87 | 2.30 | 3.026 (8) | 143 |
O—H13A···Cl5 | 0.84 | 2.43 | 3.185 (7) | 151 |
O—H13B···Cl9iv | 0.83 | 2.66 | 3.210 (5) | 126 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, −y+1, z+1/2; (iii) −x+1, −y+1, z−1/2; (iv) −x+3/2, y+1/2, z+1/2. |
References
Ben Rhaiem, T., Boughzala, H. & Driss, A. (2013). Acta Cryst. E69, m330. CSD CrossRef IUCr Journals Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bujack, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237–2246. Google Scholar
Bujack, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322–10331. PubMed Google Scholar
Bujack, M. & Zaleski, J. (2004). J. Solid State Chem. 177, 3202–3211. Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Leblanc, N., Mercier, N., Allain, M., Toma, O., Auban-Senzier, P. & Pasquier, C. (2012). J. Solid State Chem. 195, 140–148. CSD CrossRef CAS Google Scholar
Nimmo, J. K. & Lucas, B. W. (1976). Acta Cryst. B32, 348–353. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Piecha, A., Bialonska, A. & Jakubas, R. (2012). J. Mater. Chem. 22, 333–335. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.