research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new hybrid anti­mony–halide-based compound for possible non-linear optical applications

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: tarekbenrhaiem@hotmail.fr

Edited by A. Van der Lee, Université de Montpellier II, France (Received 31 March 2015; accepted 14 April 2015; online 18 April 2015)

The hybrid title compound, catena-poly[[[bis­(1,4-diazo­niabi­cyclo­[2.2.2]octa­ne) [tetra­achlorido­anti­monate(III)]-μ-chlorido-[tetra­chlorido­anti­monate(III)]-μ-chlorido]] monohydrate], {(C6H14N2)2[Sb2Cl10]·H2O}n, is self-assembled into alternating organic and inorganic layers parallel to the bc plane. The anionic inorganic layer consists of infinite zigzag chains of corner-sharing [SbCl6]3− octa­hedra running along the b axis. The organic part is made up of 1,4-diazo­niabi­cyclo­[2.2.2]octane dications (dabcoH22+). The water mol­ecules in the structure connect inorganic and organic layers. Hydrogen-bonding inter­actions between the ammonium groups, water mol­ecules and Cl atoms ensure the structure cohesion.

1. Chemical context

Organic–inorganic hybrid structures with the general formula {(Ra)n+MbX3b+na} (where R is an organic cation; M is any trivalent metal and X is Cl, Br or/and I) are able to combine desirable characteristics from both types of constituents into a mol­ecular scale composite. These hybrids have been extensively studied for their excitonic and magneto-optical properties. In recent years, a significant number of organic–inorganic hybrid materials based on anti­mony–halide units have been studied. Six-coordinate anti­mony halides can arrange themselves in three-, two- or one-dimensional networks through sharing halides in the SbX6 octa­hedra, separated by organic cations (Ben Rhaiem et al., 2013[Ben Rhaiem, T., Boughzala, H. & Driss, A. (2013). Acta Cryst. E69, m330.]; Leblanc et al., 2012[Leblanc, N., Mercier, N., Allain, M., Toma, O., Auban-Senzier, P. & Pasquier, C. (2012). J. Solid State Chem. 195, 140-148.]; Piecha et al., 2012[Piecha, A., Bialonska, A. & Jakubas, R. (2012). J. Mater. Chem. 22, 333-335.]; Bujack & Angel, 2005[Bujack, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237-2246.], 2006[Bujack, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322-10331.]; Bujack & Zaleski, 2004[Bujack, M. & Zaleski, J. (2004). J. Solid State Chem. 177, 3202-3211.]). One-dimensional extended chains can be formed by one, two or three bridging halides and combinations thereof. The use of one bridging halide leads to two types of chains; if the two bridging halides connecting the central octa­hedron to its neighbours are related cis, a zigzag pattern is obtained; if they are trans, the chain is linear.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the new chlorido­anti­monate(III) compound, (C6H14N2)2[Sb2Cl10]·H2O, (I)[link], consists of two symmetry-independant (dabcoH2)2+ dications, a corner sharing bi-octa­hedron deca­chlorido­dianti­monate(III) anion and one crystallization water mol­ecule. The cations are labeled Cat1 (containing atoms N1 and N2) and Cat2 (containing N3 and N4) and the atomic numbering scheme is shown in Fig. 1[link].

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] completed by Cl4i, showing the atomic numbering scheme. Displacement ellipsoids are shown at 30% probability level. [Symmetry code: (i) x, y − 1, z.]

The structure of the title compound, (I)[link], is self-assembled into an alternating organic and inorganic layered structure. The anionic layer consists of infinite zigzag chains of corner-sharing [SbCl6]3− octa­hedra running along the b axis. Thus, (I)[link] can be classified among the one-dimensional hybrid structures. The organic part is made up of (dabcoH2)2+ cations located in the holes around the corner-sharing octa­hedra. The layers are stacked along the a axis and water mol­ecules connect the organic and inorganic components (Fig. 2[link]).

[Figure 2]
Figure 2
The organic–inorganic layered structure of (I)[link], projected along the c axis, showing the zigzag chains of corner-sharing [SbCl6]3− octa­hedra.

The inorganic structural unit part of (I)[link] is build up by two Sb atoms in an octa­hedral coordination ([Sb1Cl6]3− and [Sb2Cl6]3−) joined by the Cl2 ion. Both octa­hedra are severely distorted with Sb—Cl bond lengths lying in the range of 2.5233 (18)–3.073 (2) Å for the bridging ones and 2.4277 (15)–2.8233 (17) Å for the terminal ones. The two bridging halides (Cl2 and Cl4) connecting the central octa­hedron to its neighbours are related cis, leading to zigzag chain of corner-sharing [SbCl6]3− octa­hedra running along the b axis (Fig. 3[link]).

[Figure 3]
Figure 3
A magnified view of the hydrogen bonding of the inorganic chain in (I)[link]. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x, y − 1, z; (ii) x, y + 1, z; (iii) −x + 1, −y + 1, z + [{1\over 2}]; (iv) −x + 1, −y + 1, z − [{1\over 2}]; (v) −x + [{3\over 2}], y − [{1\over 2}], z − [{1\over 2}].]

It is worth noting that at room temperature the DABCO mol­ecule crystallizes in the hexa­gonal system (P63/m) (Nimmo & Lucas, 1976[Nimmo, J. K. & Lucas, B. W. (1976). Acta Cryst. B32, 348-353.]). In our case, Cat2 seems to be more distorted than Cat1. In fact, the highest absolute value of the N—C—C—N torsion angle of 7.80 (14)° proves that both (dabcoH2)2+ cations exhibit deviations from ideal D3h symmetry. The observed lowering symmetry (hexa­gonal to ortho­rhom­bic) is probably due to the distortion of the (dabcoH2)2+ cation and can be related to the complex hydrogen-bond network linking the mol­ecular components (cations, anions and water mol­ecules).

The studied compound crystals are transparent and the structure is noncentrosymmetric (Pna21). These are two indispensable conditions making this phase a potential promising candidate for non-linear optical (NLO) behaviour as is the case for the well-known KTiOPO4 (KTP) and equivalent efficient NLO materials.

3. Supra­molecular features

As shown in Fig. 3[link], every bi-octa­hedron unit is linked to four (dabcoH2)2+ cations and two water mol­ecules via hydrogen bonds (Table 1[link]): on one side Cat1 via Cl6⋯H1iv—N1iv and Cat 2 by Cl8⋯H3v—N3v, Cl9⋯H3v—N3v [symmetry codes: (iv) −x + 1, −y + 1, −z − [{1\over 2}]; (v) −x + [{3\over 2}], y − [{1\over 2}], z − [{1\over 2}]] and the other side Cat1 via Cl1⋯H2iii—N2iii, Cl3⋯H2iii—N2iii and Cat2 by Cl3⋯H4ii—N4ii [symmetry codes: (ii) x, y + 1, z; (iii) −x + 1, −y + 1, z + [{1\over 2}]]. The water mol­ecules are linked by Cl5⋯H13A—O and Cl9⋯H13Bv—Ov [symmetry code: (v) −x + [{3\over 2}], y − [{1\over 2}], z − [{1\over 2}]].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl6i 0.95 2.67 3.391 (6) 134
N2—H2⋯Cl1ii 0.88 2.78 3.378 (4) 126
N2—H2⋯Cl3ii 0.88 2.62 3.281 (6) 133
N2—H2⋯Oii 0.88 2.46 3.040 (7) 124
N3—H3⋯Cl8iii 0.89 2.82 3.418 (7) 126
N3—H3⋯Cl9iii 0.89 2.38 3.132 (9) 143
N4—H4⋯Cl3iv 0.87 2.66 3.303 (6) 131
N4—H4⋯Oiv 0.87 2.30 3.026 (8) 143
O—H13A⋯Cl5 0.84 2.43 3.185 (7) 151
O—H13B⋯Cl9iii 0.83 2.66 3.210 (5) 126
Symmetry codes: (i) [-x+1, -y+1, z+{\script{1\over 2}}]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y-1, z.

Using ammonium groups, both cations (Cat1 and Cat2) are linked to the anionic chains by hydrogen bonds via halogenous octa­hedral vertices. As shown in Fig. 4[link], Cat1 is linked by N1—H1⋯Cl6i hydrogen bond and three inter­actions between N2—H2 group, both vertices Cl1ii—Sb1ii, Cl3ii—Sb1ii and O atom of the water mol­ecule [symmetry codes: (i) −x + 1, −y + 1, z + [{1\over 2}]; (ii) −x + 1, −y + 1, z − [{1\over 2}]]. On the other hand, each ammonium group of Cat 2 inter­acts by two hydrogen bonds. N4—H4 to Cl3i—Sb1i and the O atom and N3—H3 group to both Cl8ii—Sb2ii and Cl9ii—Sb2ii vertices (Fig. 5[link]) [symmetry codes: (i) x, y − 1, z; (ii) −x + [{3\over 2}], y + [{1\over 2}], z + [{1\over 2}]].

[Figure 4]
Figure 4
The hydrogen-bonding environment of Cat 1 in (I)[link]. Only H atoms involved in hydrogen bonding have been represented. [Symmetry codes: (i) −x + 1, −y + 1, z + [{1\over 2}]; (ii) −x + 1, −y + 1, z − [{1\over 2}].]
[Figure 5]
Figure 5
The hydrogen-bonding environment of Cat 2 in (I)[link]. Only H atoms involved in hydrogen bonding have been represented. [Symmetry codes: (i) x, y − 1, z; (ii) −x + [{3\over 2}], y + [{1\over 2}], z + [{1\over 2}].]

As can be seen in Fig. 6[link], the water mol­ecule plays an important role in the structure connectivity. It is establishing four hydrogen links joining Cat1 by O⋯H2ii—N2ii, Cat2 through O⋯H4i—N4i and two [SbCl6]3− octa­hedra via O—H13A⋯Cl5 and O—H13B⋯Cl9iii [symmetry codes: (i) x, y + 1, z; (ii) −x + 1, −y + 1, z + [{1\over 2}]; (iii) −x + [{3\over 2}], y + [{1\over 2}], z + [{1\over 2}]].

[Figure 6]
Figure 6
Water-mol­ecule hydrogen-bonding inter­actions in (I)[link]. C—H bonds have been omitted for clarity. [Symmetry codes: (i) x, y + 1, z; (ii) −x + 1, −y + 1, z + [{1\over 2}]; (iii) −x + [{3\over 2}], y + [{1\over 2}], z + [{1\over 2}].]

4. Database survey

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) gave 184 hits for organic–inorganic hybrid materials based on anti­mony chloride units. For this class of compounds with (dabcoH2)2+ cations, there is only one zero-dimensional compound, (C6H14N2)2[Sb2Cl10]·2H2O containing isolated [Sb2Cl10]4− double octa­hedra, (dabcoH2)2+ cations and water mol­ecules (Ben Rhaiem et al., 2013[Ben Rhaiem, T., Boughzala, H. & Driss, A. (2013). Acta Cryst. E69, m330.]). Indeed, this compound is a pseudo-polymorph over the title compound. For similar one-dimensional compounds with N,N-di­methyl­ethylenedi­ammonium cations, [(CH3)2NH(CH2)2NH3]2+, see: Bujack & Angel (2006[Bujack, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322-10331.]). For two-dimensional compounds with [{Sb2Cl9}n]3n polyanionic layers, see: Bujack & Angel (2005[Bujack, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237-2246.]); Bujack & Zaleski (2004[Bujack, M. & Zaleski, J. (2004). J. Solid State Chem. 177, 3202-3211.]).

5. Synthesis and crystallization

A mixture of SbCl3 (1 mmol) and DABCO (0.5 mmol) was dissolved in a hydro­chloric aqueous solution and stirred for several minutes at 353 K. Colourless crystals suitable for X-ray diffraction analysis were obtained by slow evaporation at room temperature after two weeks.

6. Refinement

Data collection and structure refinement details are summarized in Table 2[link]. H atoms were localized from geometrical constraint conditions using adequate AFIX and DFIX SHELXL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) options and parameters were refined with a common isotropic displacement parameter. Water H atoms were found in difference Fourier maps and O—H distances were refined using DFIX and DANG soft restraints. The Flack parameter was refined despite the low Friedel pair coverage because the structure contains a sufficient number of relatively strong anomalous scatterers.

Table 2
Experimental details

Crystal data
Chemical formula (C6H14N2)2[Sb2Cl10]·H2O
Mr 844.40
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 298
a, b, c (Å) 29.122 (3), 8.4029 (10), 11.358 (2)
V3) 2779.4 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.92
Crystal size (mm) 0.13 × 0.06 × 0.02
 
Data collection
Diffractometer Enraf–Nonius CAD-4
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.358, 0.555
No. of measured, independent and observed [I > 2σ(I)] reflections 7000, 3492, 2988
Rint 0.041
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.070, 1.09
No. of reflections 3492
No. of parameters 273
No. of restraints 5
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.62
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 66 Friedel pairs
Absolute structure parameter −0.01 (3)
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]), XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-poly[[[bis(1,4-diazoniabicyclo[2.2.2]octane) [tetraachloridoantimonate(III)]-µ-chlorido-[tetrachloridoantimonate(III)]-µ-chlorido]] monohydrate] top
Crystal data top
(C6H14N2)2[Sb2Cl10]·H2ODx = 2.018 Mg m3
Mr = 844.40Melting point: 594 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3492 reflections
a = 29.122 (3) Åθ = 2.4–27.0°
b = 8.4029 (10) ŵ = 2.92 mm1
c = 11.358 (2) ÅT = 298 K
V = 2779.4 (7) Å3Prism, colourless
Z = 40.13 × 0.06 × 0.02 mm
F(000) = 1640
Data collection top
Enraf–Nonius CAD-4
diffractometer
2988 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
non–profiled ω/2θ scansh = 371
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.358, Tmax = 0.555l = 114
7000 measured reflections2 standard reflections every 120 min
3492 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0316P)2 + 2.3277P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.72 e Å3
3492 reflectionsΔρmin = 0.62 e Å3
273 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.00168 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 66 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (3)
Special details top

Experimental. Absorption correction: North et al. (1968) Number of psi-scan sets used was 6 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.593657 (12)0.74481 (3)0.49688 (3)0.02787 (11)
Sb20.657146 (11)0.24077 (3)0.22050 (3)0.02842 (11)
Cl10.57361 (5)0.54093 (18)0.66622 (15)0.0452 (4)
Cl20.61712 (8)0.5151 (2)0.3671 (2)0.0760 (6)
Cl30.57606 (5)0.97355 (17)0.67100 (15)0.0437 (3)
Cl40.61408 (7)0.9753 (2)0.3459 (2)0.0765 (6)
Cl50.67713 (6)0.75095 (17)0.56999 (19)0.0522 (4)
Cl60.50864 (7)0.7328 (2)0.3883 (2)0.0619 (5)
Cl70.69068 (7)0.4519 (2)0.09980 (17)0.0645 (5)
Cl80.68555 (6)0.0345 (2)0.08973 (16)0.0562 (5)
Cl90.74068 (5)0.19561 (18)0.34215 (18)0.0430 (3)
Cl100.58708 (5)0.25828 (14)0.1013 (2)0.0478 (4)
N10.49311 (19)0.2444 (5)0.5900 (5)0.0390 (12)
H10.5113 (15)0.2480 (6)0.659 (6)0.047*
N20.44602 (17)0.2354 (5)0.4084 (5)0.0378 (11)
H20.4294 (4)0.2318 (5)0.3440 (16)0.045*
N30.72003 (16)0.3837 (5)0.7294 (5)0.0389 (11)
H30.7352 (10)0.475 (6)0.7261 (5)0.047*
N40.6767 (2)0.1317 (6)0.7367 (7)0.068 (2)
H40.6616 (14)0.044 (8)0.7384 (7)0.082*
C10.5235 (2)0.2498 (6)0.4859 (7)0.0455 (16)
H1A0.54470.16090.48820.055*
H1B0.54120.34750.48670.055*
C20.4952 (2)0.2417 (8)0.3748 (8)0.059 (2)
H2A0.50100.33470.32640.071*
H2B0.50330.14760.32990.071*
C30.4365 (2)0.0911 (7)0.4788 (6)0.0481 (17)
H3A0.44340.00300.43260.058*
H3B0.40430.08800.50010.058*
C40.4656 (2)0.0921 (7)0.5887 (6)0.0479 (15)
H4A0.48600.00100.58910.057*
H4B0.44610.08650.65790.057*
C50.4622 (2)0.3851 (8)0.5871 (6)0.0510 (16)
H5A0.48020.48210.58880.061*
H5B0.44230.38440.65560.061*
C60.4333 (2)0.3800 (6)0.4754 (6)0.0467 (17)
H6A0.40100.37730.49530.056*
H6B0.43910.47420.42830.056*
C70.7097 (3)0.3302 (8)0.6095 (6)0.063 (2)
H7A0.73810.31270.56680.075*
H7B0.69240.41160.56850.075*
C80.6829 (4)0.1808 (11)0.6134 (8)0.092 (4)
H8A0.65320.19720.57670.110*
H8B0.69890.09810.57020.110*
C90.6768 (2)0.4080 (7)0.7935 (7)0.0473 (15)
H9A0.65770.48390.75160.057*
H9B0.68310.45050.87120.057*
C100.6519 (2)0.2512 (6)0.8042 (8)0.0479 (18)
H10A0.65020.21950.88620.057*
H10B0.62080.26170.77440.057*
C110.7484 (3)0.2641 (9)0.7941 (10)0.081 (3)
H11A0.75250.29640.87540.097*
H11B0.77840.25350.75770.097*
C120.7221 (3)0.1056 (10)0.7878 (11)0.107 (4)
H12A0.73910.03030.73990.129*
H12B0.71900.06120.86620.129*
O0.65412 (17)0.8095 (7)0.8407 (6)0.0637 (14)
H13A0.662 (3)0.760 (8)0.780 (4)0.070*
H13B0.674 (2)0.788 (9)0.890 (5)0.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0343 (2)0.02365 (18)0.0257 (2)0.00135 (12)0.00135 (16)0.00099 (18)
Sb20.03007 (18)0.02876 (19)0.0264 (2)0.00021 (12)0.00028 (17)0.0021 (2)
Cl10.0497 (9)0.0439 (7)0.0421 (8)0.0053 (6)0.0007 (7)0.0001 (7)
Cl20.0915 (15)0.0703 (11)0.0662 (14)0.0140 (11)0.0062 (12)0.0308 (11)
Cl30.0418 (8)0.0419 (7)0.0473 (8)0.0013 (6)0.0043 (7)0.0077 (7)
Cl40.0833 (14)0.0808 (13)0.0655 (14)0.0231 (11)0.0066 (13)0.0276 (12)
Cl50.0457 (8)0.0532 (9)0.0578 (12)0.0055 (7)0.0018 (8)0.0039 (8)
Cl60.0538 (10)0.0626 (11)0.0695 (14)0.0031 (8)0.0168 (10)0.0005 (10)
Cl70.0750 (12)0.0718 (11)0.0466 (10)0.0361 (9)0.0079 (10)0.0184 (9)
Cl80.0638 (11)0.0643 (9)0.0406 (9)0.0285 (8)0.0105 (8)0.0222 (8)
Cl90.0429 (7)0.0501 (7)0.0360 (7)0.0012 (7)0.0007 (7)0.0113 (7)
Cl100.0447 (8)0.0333 (7)0.0652 (12)0.0041 (5)0.0225 (8)0.0034 (7)
N10.044 (3)0.038 (3)0.035 (3)0.001 (2)0.007 (2)0.000 (2)
N20.039 (3)0.036 (2)0.038 (3)0.0019 (18)0.007 (2)0.003 (2)
N30.046 (3)0.033 (2)0.038 (3)0.0052 (18)0.004 (3)0.003 (2)
N40.089 (5)0.028 (2)0.088 (5)0.010 (3)0.049 (4)0.000 (3)
C10.034 (3)0.041 (3)0.062 (5)0.004 (2)0.004 (3)0.003 (3)
C20.045 (4)0.089 (6)0.043 (4)0.001 (3)0.003 (3)0.001 (4)
C30.057 (4)0.031 (2)0.057 (4)0.008 (2)0.021 (4)0.009 (3)
C40.053 (4)0.046 (3)0.044 (4)0.011 (3)0.002 (3)0.013 (3)
C50.055 (4)0.051 (3)0.047 (4)0.012 (3)0.000 (3)0.009 (3)
C60.057 (4)0.032 (3)0.051 (4)0.010 (3)0.014 (3)0.004 (3)
C70.110 (7)0.051 (3)0.026 (3)0.031 (4)0.009 (4)0.004 (3)
C80.133 (9)0.087 (6)0.054 (5)0.071 (6)0.028 (6)0.035 (5)
C90.052 (4)0.038 (3)0.052 (4)0.002 (3)0.008 (3)0.015 (3)
C100.047 (4)0.051 (4)0.046 (4)0.004 (3)0.017 (3)0.004 (3)
C110.056 (5)0.111 (7)0.075 (7)0.033 (5)0.011 (5)0.004 (5)
C120.103 (8)0.071 (5)0.148 (10)0.047 (5)0.079 (7)0.060 (6)
O0.055 (3)0.067 (3)0.069 (4)0.017 (2)0.010 (3)0.016 (3)
Geometric parameters (Å, º) top
Sb1—Cl22.5233 (18)C1—H1B0.9700
Sb1—Cl52.5695 (18)C2—H2A0.9700
Sb1—Cl12.6411 (17)C2—H2B0.9700
Sb1—Cl42.654 (2)C3—C41.507 (9)
Sb1—Cl62.768 (2)C3—H3A0.9700
Sb1—Cl32.8051 (17)C3—H3B0.9700
Sb2—Cl82.4277 (15)C4—H4A0.9700
Sb2—Cl72.4457 (17)C4—H4B0.9700
Sb2—Cl102.4532 (16)C5—C61.521 (9)
Sb2—Cl92.8233 (17)C5—H5A0.9700
Sb2—Cl23.073 (2)C5—H5B0.9700
Sb2—Cl4i2.9291 (19)C6—H6A0.9700
N1—C11.477 (9)C6—H6B0.9700
N1—C51.487 (8)C7—C81.480 (10)
N1—C41.510 (7)C7—H7A0.9700
N1—H10.9496C7—H7B0.9700
N2—C31.478 (7)C8—H8A0.9700
N2—C61.481 (7)C8—H8B0.9700
N2—C21.483 (9)C9—C101.509 (7)
N2—H20.8784C9—H9A0.9700
N3—C71.465 (8)C9—H9B0.9700
N3—C91.469 (8)C10—H10A0.9700
N3—C111.494 (9)C10—H10B0.9700
N3—H30.8858C11—C121.538 (11)
N4—C101.456 (8)C11—H11A0.9700
N4—C121.462 (12)C11—H11B0.9700
N4—C81.471 (11)C12—H12A0.9700
N4—H40.8565C12—H12B0.9700
C1—C21.508 (11)O—H13A0.84 (2)
C1—H1A0.9700O—H13B0.82 (2)
Cl2—Sb1—Cl587.02 (7)C1—C2—H2B110.0
Cl2—Sb1—Cl189.38 (7)H2A—C2—H2B108.4
Cl5—Sb1—Cl189.25 (6)N2—C3—C4109.8 (5)
Cl2—Sb1—Cl496.90 (9)N2—C3—H3A109.7
Cl5—Sb1—Cl488.98 (6)C4—C3—H3A109.7
Cl1—Sb1—Cl4173.38 (6)N2—C3—H3B109.7
Cl2—Sb1—Cl687.36 (7)C4—C3—H3B109.7
Cl5—Sb1—Cl6172.33 (7)H3A—C3—H3B108.2
Cl1—Sb1—Cl695.92 (6)C3—C4—N1108.1 (5)
Cl4—Sb1—Cl686.51 (6)C3—C4—H4A110.1
Cl2—Sb1—Cl3170.28 (7)N1—C4—H4A110.1
Cl5—Sb1—Cl386.05 (5)C3—C4—H4B110.1
Cl1—Sb1—Cl383.72 (5)N1—C4—H4B110.1
Cl4—Sb1—Cl389.79 (6)H4A—C4—H4B108.4
Cl6—Sb1—Cl3100.12 (5)N1—C5—C6109.3 (5)
Cl8—Sb2—Cl792.23 (8)N1—C5—H5A109.8
Cl8—Sb2—Cl1089.35 (6)C6—C5—H5A109.8
Cl7—Sb2—Cl1088.82 (7)N1—C5—H5B109.8
Cl8—Sb2—Cl984.83 (5)C6—C5—H5B109.8
Cl7—Sb2—Cl991.59 (6)H5A—C5—H5B108.3
Cl10—Sb2—Cl9174.17 (6)N2—C6—C5108.3 (5)
Cl4i—Sb2—Cl1087.62 (5)N2—C6—H6A110.0
Cl2—Sb2—Cl1086.49 (6)C5—C6—H6A110.0
Cl4i—Sb2—Cl991.63 (5)N2—C6—H6B110.0
Cl2—Sb2—Cl999.35 (5)C5—C6—H6B110.0
Cl8—Sb2—Cl4i84.24 (6)H6A—C6—H6B108.4
Cl4i—Sb2—Cl298.36 (5)N3—C7—C8109.9 (6)
Cl2—Sb2—Cl784.89 (6)N3—C7—H7A109.7
Cl2—Sb2—Cl8174.98 (6)C8—C7—H7A109.7
Cl4i—Sb2—Cl7175.00 (6)N3—C7—H7B109.7
C1—N1—C5108.7 (5)C8—C7—H7B109.7
C1—N1—C4109.6 (5)H7A—C7—H7B108.2
C5—N1—C4110.6 (5)N4—C8—C7109.3 (6)
C1—N1—H1109.3N4—C8—H8A109.8
C5—N1—H1109.3C7—C8—H8A109.8
C4—N1—H1109.3N4—C8—H8B109.8
C3—N2—C6110.4 (5)C7—C8—H8B109.8
C3—N2—C2110.4 (5)H8A—C8—H8B108.3
C6—N2—C2110.1 (5)N3—C9—C10109.3 (5)
C3—N2—H2108.6N3—C9—H9A109.8
C6—N2—H2108.6C10—C9—H9A109.8
C2—N2—H2108.6N3—C9—H9B109.8
C7—N3—C9109.1 (5)C10—C9—H9B109.8
C7—N3—C11111.4 (6)H9A—C9—H9B108.3
C9—N3—C11108.9 (6)N4—C10—C9108.7 (5)
C7—N3—H3109.1N4—C10—H10A109.9
C9—N3—H3109.1C9—C10—H10A109.9
C11—N3—H3109.1N4—C10—H10B109.9
C10—N4—C12110.1 (7)C9—C10—H10B109.9
C10—N4—C8111.6 (7)H10A—C10—H10B108.3
C12—N4—C8108.0 (8)N3—C11—C12106.5 (7)
C10—N4—H4109.0N3—C11—H11A110.4
C12—N4—H4109.0C12—C11—H11A110.4
C8—N4—H4109.0N3—C11—H11B110.4
N1—C1—C2110.0 (5)C12—C11—H11B110.4
N1—C1—H1A109.7H11A—C11—H11B108.6
C2—C1—H1A109.7N4—C12—C11109.8 (6)
N1—C1—H1B109.7N4—C12—H12A109.7
C2—C1—H1B109.7C11—C12—H12A109.7
H1A—C1—H1B108.2N4—C12—H12B109.7
N2—C2—C1108.3 (6)C11—C12—H12B109.7
N2—C2—H2A110.0H12A—C12—H12B108.2
C1—C2—H2A110.0H13A—O—H13B105 (4)
N2—C2—H2B110.0
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl6ii0.952.673.391 (6)134
N2—H2···Cl1iii0.882.783.378 (4)126
N2—H2···Cl3iii0.882.623.281 (6)133
N2—H2···Oiii0.882.463.040 (7)124
N3—H3···Cl8iv0.892.823.418 (7)126
N3—H3···Cl9iv0.892.383.132 (9)143
N4—H4···Cl3i0.872.663.303 (6)131
N4—H4···Oi0.872.303.026 (8)143
O—H13A···Cl50.842.433.185 (7)151
O—H13B···Cl9iv0.832.663.210 (5)126
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1, z+1/2; (iii) x+1, y+1, z1/2; (iv) x+3/2, y+1/2, z+1/2.
 

References

First citationBen Rhaiem, T., Boughzala, H. & Driss, A. (2013). Acta Cryst. E69, m330.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBujack, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237–2246.  Google Scholar
First citationBujack, M. & Angel, R. J. (2006). J. Phys. Chem. B, 110, 10322–10331.  PubMed Google Scholar
First citationBujack, M. & Zaleski, J. (2004). J. Solid State Chem. 177, 3202–3211.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLeblanc, N., Mercier, N., Allain, M., Toma, O., Auban-Senzier, P. & Pasquier, C. (2012). J. Solid State Chem. 195, 140–148.  CSD CrossRef CAS Google Scholar
First citationNimmo, J. K. & Lucas, B. W. (1976). Acta Cryst. B32, 348–353.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPiecha, A., Bialonska, A. & Jakubas, R. (2012). J. Mater. Chem. 22, 333–335.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds