research communications
H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O′)stannate(IV)
of 2-methyl-1aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France, and cDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: dlibasse@gmail.com
The tin(IV) atom in the complex anion of the title salt, (C4H7N2)[Sn(C2O4)Cl3(H2O)], is in a distorted octahedral coordination environment defined by three chlorido ligands, an oxygen atom from a water molecule and two oxygen atoms from a chelating oxalate anion. The organic cation is linked through a bifurcated N—H⋯O hydrogen bond to the free oxygen atoms of the oxalate ligand of the complex [Sn(H2O)Cl3(C2O4)]− anion. Neighbouring stannate(IV) anions are linked through O—H⋯O hydrogen bonds involving the water molecule and the two non-coordinating oxalate oxygen atoms. In combination with additional N—H⋯Cl hydrogen bonds between cations and anions, a three-dimensional network is spanned.
Keywords: crystal structure; organotin(IV) complex; hydrogen bonds.
CCDC reference: 1056053
1. Chemical Context
With many applications found in catalysis (see, for example: Meneghetti & Meneghetti, 2015) or as a result of their biological activities (Sirajuddin et al., 2014), organotin(IV) complexes are still a widely studied class of compounds. For more than two decades, the Senegalese group has focused research on attempts to obtain new halo- and organotin(IV) compounds, especially compounds with oxalato ligands (Gueye et al., 2010, 2012, 2014; Sarr et al., 2015; Sow et al., 2012, 2013).
In this communication we report on the interaction between methyl-2-imidazolium hydrogenoxalate dihydrate and SnCl2·2H2O in methanolic solution, which yielded the title compound, (C4H7N2)[Sn(C2O4)Cl3(H2O)].
2. Structural commentary
The oxalate anion chelates the [SnCl3(H2O)]+ moiety and completes a distorted octahedral environment around the tin(IV) atom in the anion (Fig. 1). The Sn—Cl distances [2.359 (2)–2.378 (3) Å] and the Sn—O distances [2.097 (6) Å and 2.111 (6) Å] are similar to those reported for the same anion in ((H3C)4N)[Sn(H2O)Cl3(C2O4)] (Sow et al., 2013). The pairwise distribution of C—O bond lengths with two shorter [1.235 (12)/1.243 (12) Å for O3/O4] and two longer bonds [1.277 (11)/1.282 (12) Å for O1/O2] is attributed to additional bonding to the SnIV atom for the longer bonds. The water molecule is trans to one of the Cl atoms and the Sn—O5 bond linking the water molecule to the tin(IV) atom [2.124 (7) Å] is slightly longer than the Sn—O bonds involving the oxalate O atoms. The angles in the [Sn(H2O)Cl3(C2O4)]− anion and in the organic cation have typical values.
3. Supramolecular features
Each complex [Sn(H2O)Cl3(C2O4)]− anion is linked with two other anions through O—H⋯O hydrogen bonds between the water molecules as donor and non-coordinating oxalate O atoms as acceptor groups (Table 1). The cations are connected to the anions through a bifurcated N—H⋯O hydrogen bond. Additional N—H⋯Cl hydrogen bonding between cations and anions stabilizes this three-dimensional arrangement (Table 1, Fig. 2). Topological analysis according to TOPOS (Alexandrov et al., 2011) reveals a net with 3,5T1 topological type (Fig. 3).
4. Database Survey
A search of the Cambridge Structural Database (Version 5.36 with one update, Groom & Allen, 2014) returned about 50 different structures with bidentate oxalate anions linked to a SnIV atom, from which 23 have their oxalate anions acting as bridging ligands, while 20 have the same configuration as in the title compound with a pairwise distribution of C—O bond lengths. Four structures include both configurations, see, for example: Gueye et al. (2010) or Ng et al. (1992).
5. Synthesis and crystallization
Crystals of methyl-2-imidazolium hydrogenoxalate dihydrate (L) were obtained by mixing methyl-2-imidazole with oxalic acid in a 1:1 ratio in water and evaporation of the solvent at 333 K. On allowing (L) to react with SnCl2·2H2O in a 1:2 ratio in methanol, crystals of (C4H7N2)+[Sn(H2O)Cl3(C2O4)]− were obtained after slow solvent evaporation at room temperature.
6. Refinement
Crystal data, data collection and structure . H atoms of the water molecules were obtained from a difference map and were refined with an O—H distance of 0.87 Å and Uiso(H) = 1.5Ueq(O). The other H atoms were positioned geometrically (C—H = 0.95 for aromatic and 0.98 Å for methyl groups; N—H = 0.88 Å) and refined as riding with Uiso(H) = xUeq(C,N) with x = 1.5 for methyl and x = 1.2 for all other H atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1056053
https://doi.org/10.1107/S2056989015005988/wm5136sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015005988/wm5136Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).(C4H7N2)[Sn(C2O4)Cl3(H2O)] | Z = 2 |
Mr = 414.19 | F(000) = 400 |
Triclinic, P1 | Dx = 2.056 Mg m−3 |
a = 7.4757 (9) Å | Ga Kα radiation, λ = 1.34139 Å |
b = 8.0857 (10) Å | Cell parameters from 2537 reflections |
c = 11.2846 (14) Å | θ = 3.5–53.3° |
α = 80.856 (8)° | µ = 13.92 mm−1 |
β = 83.946 (9)° | T = 120 K |
γ = 86.587 (8)° | Block, clear light colourless |
V = 669.05 (14) Å3 | 0.05 × 0.04 × 0.04 mm |
Bruker Venture Metaljet diffractometer | 2520 independent reflections |
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source | 1604 reflections with I > 2σ(I) |
Helios MX Mirror Optics monochromator | Rint = 0.112 |
Detector resolution: 10.24 pixels mm-1 | θmax = 56.1°, θmin = 4.8° |
ω and φ scans | h = −8→9 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −9→9 |
Tmin = 0.133, Tmax = 0.255 | l = −12→13 |
5497 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.062 | H-atom parameters constrained |
wR(F2) = 0.150 | w = 1/[σ2(Fo2) + (0.0517P)2 + 1.7851P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
2520 reflections | Δρmax = 2.10 e Å−3 |
156 parameters | Δρmin = −1.23 e Å−3 |
0 restraints |
Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.29887 (9) | 0.93269 (8) | 0.27360 (5) | 0.0317 (2) | |
Cl2 | 0.0743 (4) | 1.0116 (3) | 0.1403 (2) | 0.0435 (6) | |
Cl3 | 0.3305 (4) | 0.6485 (3) | 0.2412 (2) | 0.0440 (6) | |
Cl1 | 0.5565 (3) | 1.0303 (3) | 0.1490 (2) | 0.0408 (6) | |
O1 | 0.4545 (9) | 0.8696 (8) | 0.4197 (5) | 0.0350 (16) | |
O5 | 0.2658 (9) | 1.1790 (8) | 0.3182 (6) | 0.0353 (16) | |
H5A | 0.3590 | 1.2042 | 0.3507 | 0.053* | |
H5B | 0.1714 | 1.1866 | 0.3693 | 0.053* | |
O3 | 0.0676 (9) | 0.7477 (9) | 0.6101 (6) | 0.0382 (16) | |
O2 | 0.0984 (9) | 0.8685 (8) | 0.4173 (5) | 0.0346 (15) | |
O4 | 0.4338 (9) | 0.7392 (9) | 0.6108 (6) | 0.0384 (17) | |
N1 | 0.2275 (12) | 0.5715 (10) | 0.8327 (7) | 0.042 (2) | |
H1 | 0.2288 | 0.6585 | 0.7749 | 0.050* | |
C1 | 0.3663 (13) | 0.8049 (12) | 0.5176 (9) | 0.035 (2) | |
C5 | 0.2088 (13) | 0.4176 (12) | 0.8164 (9) | 0.034 (2) | |
C2 | 0.1599 (14) | 0.8079 (13) | 0.5178 (9) | 0.038 (2) | |
N2 | 0.2132 (12) | 0.3254 (11) | 0.9248 (7) | 0.046 (2) | |
H2 | 0.2019 | 0.2162 | 0.9399 | 0.055* | |
C3 | 0.2380 (15) | 0.4238 (12) | 1.0101 (9) | 0.041 (3) | |
H3 | 0.2481 | 0.3874 | 1.0935 | 0.050* | |
C4 | 0.2450 (16) | 0.5808 (14) | 0.9517 (9) | 0.044 (3) | |
H4 | 0.2592 | 0.6791 | 0.9854 | 0.053* | |
C6 | 0.1870 (14) | 0.3569 (13) | 0.7014 (9) | 0.040 (2) | |
H6A | 0.0680 | 0.3939 | 0.6757 | 0.060* | |
H6B | 0.1982 | 0.2342 | 0.7134 | 0.060* | |
H6C | 0.2804 | 0.4026 | 0.6393 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0409 (4) | 0.0320 (4) | 0.0223 (4) | −0.0033 (3) | −0.0078 (2) | −0.0003 (3) |
Cl2 | 0.0552 (15) | 0.0464 (15) | 0.0291 (13) | −0.0117 (12) | −0.0202 (11) | 0.0076 (12) |
Cl3 | 0.0584 (15) | 0.0350 (14) | 0.0407 (14) | −0.0062 (12) | −0.0077 (12) | −0.0090 (12) |
Cl1 | 0.0482 (13) | 0.0417 (14) | 0.0302 (12) | −0.0063 (11) | 0.0016 (11) | −0.0003 (11) |
O1 | 0.049 (4) | 0.037 (4) | 0.020 (3) | −0.012 (3) | −0.010 (3) | 0.004 (3) |
O5 | 0.038 (4) | 0.039 (4) | 0.029 (4) | −0.006 (3) | −0.003 (3) | −0.005 (3) |
O3 | 0.037 (4) | 0.042 (4) | 0.029 (4) | 0.002 (3) | −0.001 (3) | 0.014 (3) |
O2 | 0.049 (4) | 0.034 (4) | 0.021 (3) | 0.005 (3) | −0.005 (3) | −0.004 (3) |
O4 | 0.041 (4) | 0.042 (4) | 0.031 (4) | −0.007 (3) | −0.020 (3) | 0.012 (3) |
N1 | 0.061 (6) | 0.029 (5) | 0.033 (5) | −0.013 (4) | −0.011 (4) | 0.010 (4) |
C1 | 0.046 (6) | 0.030 (5) | 0.033 (6) | −0.018 (5) | 0.005 (5) | −0.010 (5) |
C5 | 0.038 (5) | 0.033 (5) | 0.032 (5) | −0.003 (4) | −0.005 (4) | −0.003 (5) |
C2 | 0.048 (6) | 0.031 (6) | 0.037 (6) | 0.002 (5) | −0.012 (5) | −0.005 (5) |
N2 | 0.066 (6) | 0.032 (5) | 0.035 (5) | 0.000 (4) | 0.002 (4) | 0.003 (4) |
C3 | 0.072 (7) | 0.025 (5) | 0.026 (5) | 0.004 (5) | −0.012 (5) | 0.003 (5) |
C4 | 0.068 (7) | 0.035 (6) | 0.031 (6) | −0.011 (5) | −0.005 (5) | −0.007 (5) |
C6 | 0.049 (6) | 0.038 (6) | 0.035 (6) | 0.001 (5) | −0.012 (5) | −0.004 (5) |
Sn1—Cl2 | 2.364 (3) | N1—C5 | 1.304 (13) |
Sn1—Cl3 | 2.378 (3) | N1—C4 | 1.377 (12) |
Sn1—Cl1 | 2.359 (2) | C1—C2 | 1.542 (14) |
Sn1—O1 | 2.097 (6) | C5—N2 | 1.330 (12) |
Sn1—O5 | 2.124 (7) | C5—C6 | 1.486 (13) |
Sn1—O2 | 2.111 (6) | N2—H2 | 0.8800 |
O1—C1 | 1.277 (11) | N2—C3 | 1.375 (12) |
O5—H5A | 0.8700 | C3—H3 | 0.9500 |
O5—H5B | 0.8691 | C3—C4 | 1.336 (14) |
O3—C2 | 1.235 (12) | C4—H4 | 0.9500 |
O2—C2 | 1.282 (12) | C6—H6A | 0.9800 |
O4—C1 | 1.243 (12) | C6—H6B | 0.9800 |
N1—H1 | 0.8800 | C6—H6C | 0.9800 |
Cl2—Sn1—Cl3 | 95.47 (10) | O4—C1—O1 | 125.3 (9) |
Cl1—Sn1—Cl2 | 100.40 (9) | O4—C1—C2 | 118.3 (8) |
Cl1—Sn1—Cl3 | 97.56 (9) | N1—C5—N2 | 105.5 (8) |
O1—Sn1—Cl2 | 168.07 (19) | N1—C5—C6 | 127.6 (9) |
O1—Sn1—Cl3 | 88.82 (19) | N2—C5—C6 | 126.9 (9) |
O1—Sn1—Cl1 | 90.03 (18) | O3—C2—O2 | 125.0 (10) |
O1—Sn1—O5 | 87.8 (3) | O3—C2—C1 | 119.3 (9) |
O1—Sn1—O2 | 78.6 (3) | O2—C2—C1 | 115.6 (9) |
O5—Sn1—Cl2 | 87.18 (19) | C5—N2—H2 | 124.6 |
O5—Sn1—Cl3 | 175.21 (18) | C5—N2—C3 | 110.9 (8) |
O5—Sn1—Cl1 | 85.86 (18) | C3—N2—H2 | 124.6 |
O2—Sn1—Cl2 | 90.23 (19) | N2—C3—H3 | 127.0 |
O2—Sn1—Cl3 | 90.25 (19) | C4—C3—N2 | 106.0 (9) |
O2—Sn1—Cl1 | 166.09 (18) | C4—C3—H3 | 127.0 |
O2—Sn1—O5 | 85.7 (2) | N1—C4—H4 | 126.9 |
C1—O1—Sn1 | 114.2 (6) | C3—C4—N1 | 106.1 (10) |
Sn1—O5—H5A | 110.8 | C3—C4—H4 | 126.9 |
Sn1—O5—H5B | 110.3 | C5—C6—H6A | 109.5 |
H5A—O5—H5B | 108.2 | C5—C6—H6B | 109.5 |
C2—O2—Sn1 | 114.3 (6) | C5—C6—H6C | 109.5 |
C5—N1—H1 | 124.2 | H6A—C6—H6B | 109.5 |
C5—N1—C4 | 111.5 (9) | H6A—C6—H6C | 109.5 |
C4—N1—H1 | 124.2 | H6B—C6—H6C | 109.5 |
O1—C1—C2 | 116.5 (9) | ||
Sn1—O1—C1—O4 | 170.5 (8) | N1—C5—N2—C3 | −0.9 (12) |
Sn1—O1—C1—C2 | −8.7 (10) | C5—N1—C4—C3 | 0.6 (13) |
Sn1—O2—C2—O3 | −172.8 (8) | C5—N2—C3—C4 | 1.3 (13) |
Sn1—O2—C2—C1 | 4.3 (10) | N2—C3—C4—N1 | −1.1 (13) |
O1—C1—C2—O3 | −179.7 (8) | C4—N1—C5—N2 | 0.2 (12) |
O1—C1—C2—O2 | 3.0 (13) | C4—N1—C5—C6 | −179.8 (10) |
O4—C1—C2—O3 | 1.1 (14) | C6—C5—N2—C3 | 179.1 (10) |
O4—C1—C2—O2 | −176.2 (8) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5A···O4i | 0.87 | 1.76 | 2.618 (9) | 170 |
O5—H5B···O3ii | 0.87 | 1.83 | 2.602 (9) | 146 |
N1—H1···O3 | 0.88 | 2.32 | 3.010 (11) | 136 |
N1—H1···O4 | 0.88 | 2.31 | 2.974 (10) | 132 |
N2—H2···Cl2iii | 0.88 | 2.70 | 3.354 (8) | 132 |
N2—H2···Cl1iv | 0.88 | 2.84 | 3.435 (10) | 126 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+2, −z+1; (iii) x, y−1, z+1; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation, Université de Bourgogne and the Université de Montréal for financial support.
References
Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947–3958. Web of Science CrossRef CAS Google Scholar
Bruker (2014). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Gueye, N., Diop, L., Molloy, K. C. K. & Kociok-Köhn, G. (2010). Acta Cryst. E66, m1645–m1646. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854–m855. CSD CrossRef CAS IUCr Journals Google Scholar
Gueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49–m50. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Meneghetti, M. R. & Meneghetti, S. M. P. (2015). Catal. Sci. Technol. 5, 765–771. Web of Science CrossRef CAS Google Scholar
Ng, S. W., Kumar Das, V. G., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19–25. CSD CrossRef CAS Web of Science Google Scholar
Sarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 151–153. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sirajuddin, M., Ali, S., McKee, V., Zaib, S. & Iqbal, J. (2014). RSC Adv. 4, 57505–57521. Web of Science CSD CrossRef CAS Google Scholar
Sow, Y., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2012). Acta Cryst. E68, m1337. CSD CrossRef IUCr Journals Google Scholar
Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107. CSD CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.