research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-methyl-1H-imidazol-3-ium aqua­tri­chlorido­(oxalato-κ2O,O′)stannate(IV)

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, bICMUB UMR 6302, Université de Bourgogne, Faculté des Sciences, 9 avenue Alain Savary, 21000 Dijon, France, and cDépartement de Chimie, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, Québec, H3C 3J7, Canada
*Correspondence e-mail: dlibasse@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 March 2015; accepted 24 March 2015; online 22 April 2015)

The tin(IV) atom in the complex anion of the title salt, (C4H7N2)[Sn(C2O4)Cl3(H2O)], is in a distorted octa­hedral coordination environment defined by three chlorido ligands, an oxygen atom from a water mol­ecule and two oxygen atoms from a chelating oxalate anion. The organic cation is linked through a bifurcated N—H⋯O hydrogen bond to the free oxygen atoms of the oxalate ligand of the complex [Sn(H2O)Cl3(C2O4)] anion. Neighbouring stannate(IV) anions are linked through O—H⋯O hydrogen bonds involving the water mol­ecule and the two non-coordinating oxalate oxygen atoms. In combination with additional N—H⋯Cl hydrogen bonds between cations and anions, a three-dimensional network is spanned.

1. Chemical Context

With many applications found in catalysis (see, for example: Meneghetti & Meneghetti, 2015[Meneghetti, M. R. & Meneghetti, S. M. P. (2015). Catal. Sci. Technol. 5, 765-771.]) or as a result of their biological activities (Sirajuddin et al., 2014[Sirajuddin, M., Ali, S., McKee, V., Zaib, S. & Iqbal, J. (2014). RSC Adv. 4, 57505-57521.]), organotin(IV) complexes are still a widely studied class of compounds. For more than two decades, the Senegalese group has focused research on attempts to obtain new halo- and organotin(IV) compounds, especially compounds with oxalato ligands (Gueye et al., 2010[Gueye, N., Diop, L., Molloy, K. C. K. & Kociok-Köhn, G. (2010). Acta Cryst. E66, m1645-m1646.], 2012[Gueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854-m855.], 2014[Gueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49-m50.]; Sarr et al., 2015[Sarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 151-153.]; Sow et al., 2012[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2012). Acta Cryst. E68, m1337.], 2013[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106-m107.]).

[Scheme 1]

In this communication we report on the inter­action between methyl-2-imidazolium hydrogenoxalate dihydrate and SnCl2·2H2O in methano­lic solution, which yielded the title compound, (C4H7N2)[Sn(C2O4)Cl3(H2O)].

2. Structural commentary

The oxalate anion chelates the [SnCl3(H2O)]+ moiety and completes a distorted octa­hedral environment around the tin(IV) atom in the anion (Fig. 1[link]). The Sn—Cl distances [2.359 (2)–2.378 (3) Å] and the Sn—O distances [2.097 (6) Å and 2.111 (6) Å] are similar to those reported for the same anion in ((H3C)4N)[Sn(H2O)Cl3(C2O4)] (Sow et al., 2013[Sow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106-m107.]). The pairwise distribution of C—O bond lengths with two shorter [1.235 (12)/1.243 (12) Å for O3/O4] and two longer bonds [1.277 (11)/1.282 (12) Å for O1/O2] is attributed to additional bonding to the SnIV atom for the longer bonds. The water mol­ecule is trans to one of the Cl atoms and the Sn—O5 bond linking the water mol­ecule to the tin(IV) atom [2.124 (7) Å] is slightly longer than the Sn—O bonds involving the oxalate O atoms. The angles in the [Sn(H2O)Cl3(C2O4)] anion and in the organic cation have typical values.

[Figure 1]
Figure 1
The mol­ecular components of the title compound, with atom labels and 50% displacement ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

3. Supra­molecular features

Each complex [Sn(H2O)Cl3(C2O4)] anion is linked with two other anions through O—H⋯O hydrogen bonds between the water mol­ecules as donor and non-coordinating oxalate O atoms as acceptor groups (Table 1[link]). The cations are connected to the anions through a bifurcated N—H⋯O hydrogen bond. Additional N—H⋯Cl hydrogen bonding between cations and anions stabilizes this three-dimensional arrangement (Table 1[link], Fig. 2[link]). Topological analysis according to TOPOS (Alexandrov et al., 2011[Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947-3958.]) reveals a net with 3,5T1 topological type (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O4i 0.87 1.76 2.618 (9) 170
O5—H5B⋯O3ii 0.87 1.83 2.602 (9) 146
N1—H1⋯O3 0.88 2.32 3.010 (11) 136
N1—H1⋯O4 0.88 2.31 2.974 (10) 132
N2—H2⋯Cl2iii 0.88 2.70 3.354 (8) 132
N2—H2⋯Cl1iv 0.88 2.84 3.435 (10) 126
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x, -y+2, -z+1; (iii) x, y-1, z+1; (iv) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
View approximately around the b axis showing a central complex anion acting as a hydrogen-bond donor toward two other anions and as a hydrogen-bond acceptor of three methyl-2-imidazolium cations.
[Figure 3]
Figure 3
The 3,5T1 topological network in the structure of the title compound. The purple nodes correspond to the SnIV atoms while the blue nodes are the centres of the organic cations.

4. Database Survey

A search of the Cambridge Structural Database (Version 5.36 with one update, Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) returned about 50 different structures with bidentate oxalate anions linked to a SnIV atom, from which 23 have their oxalate anions acting as bridging ligands, while 20 have the same configuration as in the title compound with a pairwise distribution of C—O bond lengths. Four structures include both configurations, see, for example: Gueye et al. (2010[Gueye, N., Diop, L., Molloy, K. C. K. & Kociok-Köhn, G. (2010). Acta Cryst. E66, m1645-m1646.]) or Ng et al. (1992[Ng, S. W., Kumar Das, V. G., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19-25.]).

5. Synthesis and crystallization

Crystals of methyl-2-imidazolium hydrogenoxalate dihydrate (L) were obtained by mixing methyl-2-imidazole with oxalic acid in a 1:1 ratio in water and evaporation of the solvent at 333 K. On allowing (L) to react with SnCl2·2H2O in a 1:2 ratio in methanol, crystals of (C4H7N2)+[Sn(H2O)Cl3(C2O4)] were obtained after slow solvent evaporation at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms of the water mol­ecules were obtained from a difference map and were refined with an O—H distance of 0.87 Å and Uiso(H) = 1.5Ueq(O). The other H atoms were positioned geometrically (C—H = 0.95 for aromatic and 0.98 Å for methyl groups; N—H = 0.88 Å) and refined as riding with Uiso(H) = xUeq(C,N) with x = 1.5 for methyl and x = 1.2 for all other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula (C4H7N2)[Sn(C2O4)Cl3(H2O)]
Mr 414.19
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 7.4757 (9), 8.0857 (10), 11.2846 (14)
α, β, γ (°) 80.856 (8), 83.946 (9), 86.587 (8)
V3) 669.05 (14)
Z 2
Radiation type Ga Kα, λ = 1.34139 Å
μ (mm−1) 13.92
Crystal size (mm) 0.05 × 0.04 × 0.04
 
Data collection
Diffractometer Bruker Venture Metaljet
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.133, 0.255
No. of measured, independent and observed [I > 2σ(I)] reflections 5497, 2520, 1604
Rint 0.112
(sin θ/λ)max−1) 0.619
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.150, 1.07
No. of reflections 2520
No. of parameters 156
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.10, −1.23
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

2-Methyl-1H-imidazol-3-ium aquatrichlorido(oxalato-κ2O,O')stannate(IV) top
Crystal data top
(C4H7N2)[Sn(C2O4)Cl3(H2O)]Z = 2
Mr = 414.19F(000) = 400
Triclinic, P1Dx = 2.056 Mg m3
a = 7.4757 (9) ÅGa Kα radiation, λ = 1.34139 Å
b = 8.0857 (10) ÅCell parameters from 2537 reflections
c = 11.2846 (14) Åθ = 3.5–53.3°
α = 80.856 (8)°µ = 13.92 mm1
β = 83.946 (9)°T = 120 K
γ = 86.587 (8)°Block, clear light colourless
V = 669.05 (14) Å30.05 × 0.04 × 0.04 mm
Data collection top
Bruker Venture Metaljet
diffractometer
2520 independent reflections
Radiation source: Metal Jet, Gallium Liquid Metal Jet Source1604 reflections with I > 2σ(I)
Helios MX Mirror Optics monochromatorRint = 0.112
Detector resolution: 10.24 pixels mm-1θmax = 56.1°, θmin = 4.8°
ω and φ scansh = 89
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 99
Tmin = 0.133, Tmax = 0.255l = 1213
5497 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0517P)2 + 1.7851P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2520 reflectionsΔρmax = 2.10 e Å3
156 parametersΔρmin = 1.23 e Å3
0 restraints
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Venture diffractometer equipped with a Photon 100 CMOS Detector, a Helios MX optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 1024 x 1024 pixel mode.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.29887 (9)0.93269 (8)0.27360 (5)0.0317 (2)
Cl20.0743 (4)1.0116 (3)0.1403 (2)0.0435 (6)
Cl30.3305 (4)0.6485 (3)0.2412 (2)0.0440 (6)
Cl10.5565 (3)1.0303 (3)0.1490 (2)0.0408 (6)
O10.4545 (9)0.8696 (8)0.4197 (5)0.0350 (16)
O50.2658 (9)1.1790 (8)0.3182 (6)0.0353 (16)
H5A0.35901.20420.35070.053*
H5B0.17141.18660.36930.053*
O30.0676 (9)0.7477 (9)0.6101 (6)0.0382 (16)
O20.0984 (9)0.8685 (8)0.4173 (5)0.0346 (15)
O40.4338 (9)0.7392 (9)0.6108 (6)0.0384 (17)
N10.2275 (12)0.5715 (10)0.8327 (7)0.042 (2)
H10.22880.65850.77490.050*
C10.3663 (13)0.8049 (12)0.5176 (9)0.035 (2)
C50.2088 (13)0.4176 (12)0.8164 (9)0.034 (2)
C20.1599 (14)0.8079 (13)0.5178 (9)0.038 (2)
N20.2132 (12)0.3254 (11)0.9248 (7)0.046 (2)
H20.20190.21620.93990.055*
C30.2380 (15)0.4238 (12)1.0101 (9)0.041 (3)
H30.24810.38741.09350.050*
C40.2450 (16)0.5808 (14)0.9517 (9)0.044 (3)
H40.25920.67910.98540.053*
C60.1870 (14)0.3569 (13)0.7014 (9)0.040 (2)
H6A0.06800.39390.67570.060*
H6B0.19820.23420.71340.060*
H6C0.28040.40260.63930.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0409 (4)0.0320 (4)0.0223 (4)0.0033 (3)0.0078 (2)0.0003 (3)
Cl20.0552 (15)0.0464 (15)0.0291 (13)0.0117 (12)0.0202 (11)0.0076 (12)
Cl30.0584 (15)0.0350 (14)0.0407 (14)0.0062 (12)0.0077 (12)0.0090 (12)
Cl10.0482 (13)0.0417 (14)0.0302 (12)0.0063 (11)0.0016 (11)0.0003 (11)
O10.049 (4)0.037 (4)0.020 (3)0.012 (3)0.010 (3)0.004 (3)
O50.038 (4)0.039 (4)0.029 (4)0.006 (3)0.003 (3)0.005 (3)
O30.037 (4)0.042 (4)0.029 (4)0.002 (3)0.001 (3)0.014 (3)
O20.049 (4)0.034 (4)0.021 (3)0.005 (3)0.005 (3)0.004 (3)
O40.041 (4)0.042 (4)0.031 (4)0.007 (3)0.020 (3)0.012 (3)
N10.061 (6)0.029 (5)0.033 (5)0.013 (4)0.011 (4)0.010 (4)
C10.046 (6)0.030 (5)0.033 (6)0.018 (5)0.005 (5)0.010 (5)
C50.038 (5)0.033 (5)0.032 (5)0.003 (4)0.005 (4)0.003 (5)
C20.048 (6)0.031 (6)0.037 (6)0.002 (5)0.012 (5)0.005 (5)
N20.066 (6)0.032 (5)0.035 (5)0.000 (4)0.002 (4)0.003 (4)
C30.072 (7)0.025 (5)0.026 (5)0.004 (5)0.012 (5)0.003 (5)
C40.068 (7)0.035 (6)0.031 (6)0.011 (5)0.005 (5)0.007 (5)
C60.049 (6)0.038 (6)0.035 (6)0.001 (5)0.012 (5)0.004 (5)
Geometric parameters (Å, º) top
Sn1—Cl22.364 (3)N1—C51.304 (13)
Sn1—Cl32.378 (3)N1—C41.377 (12)
Sn1—Cl12.359 (2)C1—C21.542 (14)
Sn1—O12.097 (6)C5—N21.330 (12)
Sn1—O52.124 (7)C5—C61.486 (13)
Sn1—O22.111 (6)N2—H20.8800
O1—C11.277 (11)N2—C31.375 (12)
O5—H5A0.8700C3—H30.9500
O5—H5B0.8691C3—C41.336 (14)
O3—C21.235 (12)C4—H40.9500
O2—C21.282 (12)C6—H6A0.9800
O4—C11.243 (12)C6—H6B0.9800
N1—H10.8800C6—H6C0.9800
Cl2—Sn1—Cl395.47 (10)O4—C1—O1125.3 (9)
Cl1—Sn1—Cl2100.40 (9)O4—C1—C2118.3 (8)
Cl1—Sn1—Cl397.56 (9)N1—C5—N2105.5 (8)
O1—Sn1—Cl2168.07 (19)N1—C5—C6127.6 (9)
O1—Sn1—Cl388.82 (19)N2—C5—C6126.9 (9)
O1—Sn1—Cl190.03 (18)O3—C2—O2125.0 (10)
O1—Sn1—O587.8 (3)O3—C2—C1119.3 (9)
O1—Sn1—O278.6 (3)O2—C2—C1115.6 (9)
O5—Sn1—Cl287.18 (19)C5—N2—H2124.6
O5—Sn1—Cl3175.21 (18)C5—N2—C3110.9 (8)
O5—Sn1—Cl185.86 (18)C3—N2—H2124.6
O2—Sn1—Cl290.23 (19)N2—C3—H3127.0
O2—Sn1—Cl390.25 (19)C4—C3—N2106.0 (9)
O2—Sn1—Cl1166.09 (18)C4—C3—H3127.0
O2—Sn1—O585.7 (2)N1—C4—H4126.9
C1—O1—Sn1114.2 (6)C3—C4—N1106.1 (10)
Sn1—O5—H5A110.8C3—C4—H4126.9
Sn1—O5—H5B110.3C5—C6—H6A109.5
H5A—O5—H5B108.2C5—C6—H6B109.5
C2—O2—Sn1114.3 (6)C5—C6—H6C109.5
C5—N1—H1124.2H6A—C6—H6B109.5
C5—N1—C4111.5 (9)H6A—C6—H6C109.5
C4—N1—H1124.2H6B—C6—H6C109.5
O1—C1—C2116.5 (9)
Sn1—O1—C1—O4170.5 (8)N1—C5—N2—C30.9 (12)
Sn1—O1—C1—C28.7 (10)C5—N1—C4—C30.6 (13)
Sn1—O2—C2—O3172.8 (8)C5—N2—C3—C41.3 (13)
Sn1—O2—C2—C14.3 (10)N2—C3—C4—N11.1 (13)
O1—C1—C2—O3179.7 (8)C4—N1—C5—N20.2 (12)
O1—C1—C2—O23.0 (13)C4—N1—C5—C6179.8 (10)
O4—C1—C2—O31.1 (14)C6—C5—N2—C3179.1 (10)
O4—C1—C2—O2176.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O4i0.871.762.618 (9)170
O5—H5B···O3ii0.871.832.602 (9)146
N1—H1···O30.882.323.010 (11)136
N1—H1···O40.882.312.974 (10)132
N2—H2···Cl2iii0.882.703.354 (8)132
N2—H2···Cl1iv0.882.843.435 (10)126
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z+1; (iii) x, y1, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Cheikh Anta Diop University of Dakar (Sénégal), the Canada Foundation for Innovation, Université de Bourgogne and the Université de Montréal for financial support.

References

First citationAlexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947–3958.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2014). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationGueye, N., Diop, L., Molloy, K. C. K. & Kociok-Köhn, G. (2010). Acta Cryst. E66, m1645–m1646.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGueye, N., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2012). Acta Cryst. E68, m854–m855.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGueye, N., Diop, L. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, m49–m50.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeneghetti, M. R. & Meneghetti, S. M. P. (2015). Catal. Sci. Technol. 5, 765–771.  Web of Science CrossRef CAS Google Scholar
First citationNg, S. W., Kumar Das, V. G., Gielen, M. & Tiekink, E. R. T. (1992). Appl. Organomet. Chem. 6, 19–25.  CSD CrossRef CAS Web of Science Google Scholar
First citationSarr, M., Diasse-Sarr, A., Diop, L., Plasseraud, L. & Cattey, H. (2015). Acta Cryst. E71, 151–153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSirajuddin, M., Ali, S., McKee, V., Zaib, S. & Iqbal, J. (2014). RSC Adv. 4, 57505–57521.  Web of Science CSD CrossRef CAS Google Scholar
First citationSow, Y., Diop, L., Molloy, K. C. & Kociok-Kohn, G. (2012). Acta Cryst. E68, m1337.  CSD CrossRef IUCr Journals Google Scholar
First citationSow, Y., Diop, L., Molloy, K. C. & Kociok-Köhn, G. (2013). Acta Cryst. E69, m106–m107.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds