research communications
κO]tris(methanol-κO)lithium methanol monosolvate
of [bis(2,6-diisopropylphenyl) phosphato-aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prospect 29, 119991 Moscow, Russian Federation, and bMoscow City Pedagogical University, 2nd Selskokhozyaistvenny proezd 4, 129226, Moscow, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru
Crystals of the title compound, [Li{OOP(O-2,6-iPr2C6H3)2}(CH3OH)3]·CH3OH or [Li(C24H34O4P)(CH3OH)3]·CH3OH, have been formed in the reaction between HOOP(O-2,6-iPr2C6H3)2 and LiOH in methanol. The title compound is of interest as it represents the first reported of the family of lithium phosphate diesters. The {Li(CH3OH)3[O2P(O-iPr2C6H3)2]} unit displays the Li atom in a slightly distorted tetrahedral coordination environment and exhibits one intramolecular O—H⋯O hydrogen bond between a coordinating methanol molecule and the terminal non-coordinating O atom of the phosphate group. The unit is connected with two non-coordinating methanol molecules through two intermolecular O—H⋯O hydrogen bonds, and with a neighbouring unit through two other O—H⋯O interactions. These intermolecular hydrogen bonds lead to the formation of infinite chains along [100]. There are no significant interactions between the chains.
CCDC reference: 1054771
1. Chemical context
Alkali metal phosphate diesters are of interest not only because of their fundamental biological importance (see, for example: Gerus & Lis, 2013, and references therein), but also because they are direct synthetic precursors of organophosphate d- and f-metal complexes, which may find applications in various catalytic reactions. For example, rare-earth tris-(diaryl phosphate) complexes may be successfully used in polymerization reactions of 1,4-dienes (Nifant'ev et al., 2013, 2014).
Crystals of the title compound, [Li(CH3OH)3{OOP(O-2,6-iPr2C6H3)2}]·CH3OH, have been obtained from the reaction between HOOP(O-2,6-iPr2C6H3)2 and LiOH in methanol followed by cooling the reaction mixture. Bis(2,6-diisopropylphenyl)phosphoric acid (for its synthesis, see: Blonski et al., 1982; Kosolapoff et al., 1968) was prepared from phosphoryl trichloride and 2,6-diisopropylphenol.
2. Structural commentary
In the 3OH)3{OOP(O-2,6-iPr2C6H3)2}]·CH3OH, the {Li(CH3OH)3[OOP(O-2,6-iPr2C6H3)2]} unit contains the Li+ cation coordinated by three methanol molecules through the O5, O6 and O7 oxygen atoms (Fig. 1). One of the coordinating methanol molecules has its methyl group disordered over two positions [occupancy ratio 0.75 (2):0.25 (2)]. The coordination sphere of Li+ is completed by the O2 oxygen atom of the diaryl phosphate group, [OOP(O-2,6-iPr2C6H3)2]−. This configuration is stabilized by an intramolecular hydrogen bond O5—H26⋯O1 (Fig.1, Table 1).
of the title solvate, [Li(CHThe phosphorus and lithium atoms are in approximately tetrahedral environments with the corresponding bond angles ranging from 99.06 (4)–115.86 (4)° for the phosphate group and 101.32 (9)–118.40 (11) ° for the [LiO4] unit. The Li—O bond lengths range from 1.915 (2) Å to 1.945 (2) Å (Table 2). The P—O bonds can be grouped into two sets. The P1—O1 (P=O) and P1—O2 (P—O—Li) bonds have similar lengths and are ≃ 0.1 Å shorter than the P1—O3 and P1—O4 (P—O—Cipso) bonds (Table 2), i.e. regular single P—O bonds. Since the O3—C1 and O4—C13 (O—Cipso) bond lengths also correspond to single bonds, there is no charge redistribution between the PO4 core and the two aryl fragments. These observations could best be rationalized by three major resonance forms of the anion (Fig. 2).
|
3. Supramolecular features
All vibrational absorption bands (e.g. C—H, C—C, CCH, O—H etc.) in the IR spectrum of the solid are fully consistent with the formula with only one exception. Regardless of the O—H absorption bands at 3636, 3576 cm−1, the usual methanol C—O absorption bands at 1025–1030 cm−1 are missing. A possible explanation is that the methanol molecules are coordinating to lithium and form a hydrogen-bonding network. Consequently, the C—O stretching frequency may be shifted to lower wavenumbers and can be camouflaged by the phosphate absorption band at 912 cm−1. This explanation would correspond to the structure data as determined by X-ray diffraction in the current study.
The {[Li(CH3OH)3][OOP(O-2,6-iPr2C6H3)2]} unit is involved in four intermolecular hydrogen bonds (Table 1, Fig. 3). Two symmetry-related O7—H30⋯O2 bonds connect two neighbouring units. O6—H28⋯O8 and O8—H32⋯O1 bonds link one unit and two non-coordinating methanol molecules, which are further connected to another unit. These four intermolecular hydrogen bonds result in an infinite chain extending along [100], connecting the {[Li(CH3OH)3][OOP(O-2,6-iPr2C6H3)2]} units and non-coordinating methanol molecules. Neighbouring molecules are related by inversion centers. Therefore, the orientations of the cations and anions switch in such a way as to allow the ions of neighbouring molecules in the chains to be involved in additional intermolecular Coulombic interactions (Fig. 3).
The packing of the title compound is shown in Fig. 4. No significant hydrogen-bonding interactions are found between neighbouring chains. However, some short intrachain contacts between methyl groups are present, probably due to crystal-packing effects.
4. Database survey
According to the Cambridge Structural Database (CSD version 5.35 with updates, Groom & Allen, 2014), the number of (RO)2PO2M(solv)x structures (M is an alkali metal, solv is a solvent molecule) is rather small. Structures containing additional transition metal atoms have been excluded from the search.
For related structures of potassium or sodium phosphate diesters, see: Kumara Swamy et al. (2001), CSD refcode ADAKUL; Gerus & Lis (2013), AGACIW; Kommana & Swamy (2003), BEDSOT; Hilken et al. (2014), NIZFEJ; Kumara Swamy & Kumaraswamy (2001), TIJCUK; Lugmair & Tilley (1998), VADMES; Ślepokura (2008), VIVRAU, VIVREY, VIVRIC. A mixed potassium and calcium phosphate diester has been described by Ślepokura (2008), VIVRUO. All ten found crystal structures are sodium or potassium salts. No lithium compound phosphate diesters has been structurally characterized up to date. Therefore, crystal structures of alkali metal dialkyl and diaryl phosphates remain virtually unexplored.
5. Synthesis and crystallization
Synthesis of bis(2,6-diisopropylphenyl) phosphoric acid. Phosphoryl trichloride (12.6 ml, 21.0 g, 137 mmol, d = 1.67 g/ml) was added to a stirred solution of 2,6-diisopropylphenol (52.60 g, 295 mmol) in benzene (60 ml). Et3N (44.0 ml, 32.0 g, 317 mmol, d = 0.728 g/ml, distilled over NaOH prior to use) was carefully added in small parts to the reaction mixture, while it was stirred vigorously. The reaction mixture consisted of a pale-yellow solution and an off-white precipitate of triethylamine hydrochloride. The mixture was heated under reflux for 2 days with occasional stirring. Then, water was added, and after stirring for 1 h, the organic and water layers were separated. The organic phase was evaporated under reduced pressure to produce a yellow oil. A mixture of acetone (85 ml) and water (25 ml, 1.39 mol) was added to the residue. The reaction mixture was then heated under reflux for five hours without stirring. All solvent was evaporated under reduced pressure from the mixture. The resulting precipitate was recrystallized from petroleum ether (70/100, ≃ 250 ml), filtered off, washed with cold (273 K) hexane and dried under dynamic vacuum. The yield of white crystals was 40.89 g (97.70 mmol, 71.3%). Melting point 432–433 K. 1H NMR (400 MHz, CDCl3): δ = 1.03 [24H, d, –CH(CH3)2], 3.34 [4H, septet, –CH(CH3)2], 7.02–7.14 (6H, m, HAryl), 11.08 [1H, br.s, P(O)OH]; 31P NMR (162 MHz, CDCl3): δ = −10.19.
Synthesis and crystallization of tris(methanol)-lithium bis(2,6-diisopropylphenyl) phosphate methanol solvate. Bis(2,6-diisopropylphenyl) phosphoric acid (15.07 g, 36.0 mmol) was dissolved in methanol (50 ml). Lithium hydroxide (0.86 g, 36 mmol) was added in small parts to the mixture until pH = 7–8. The reaction mixture was filtered, and the resulting solution was placed into a freezer (258 K) for 3 days. The grown crystals were filtered off, washed with cold methanol (≃ 273 K). Several colorless needles were selected for X-ray analysis. The remaining crystals were dried under dynamic vacuum. Yield 7.72 g (14.0 mmol, 39%). 1H NMR (400 MHz, CDCl3): δ = 1.10 [24H, d, –CH(CH3)2, 3JHH = 6.85 Hz], 2.63 (4H, br.s, CH3OH), 3.25 (12H, s, CH3OH), 3.60 [4H, septet, –CH(CH3)2, 3JHH = 6.85 Hz], 7.03–7.09 (6H, m, HAryl). 31P NMR (162, MHz, CDCl3): δ = −10.23.
6. Refinement
Crystal data, data collection and structure . The positions of hydroxy hydrogen atoms were found from a difference map. These atoms were refined with individual isotropic displacement parameters. All other hydrogen atoms were also found from the difference map but positioned geometrically (C—H distance = 0.95 Å for aromatic, 0.98 Å for methyl, 1.00 Å for –CHMe2 hydrogen atoms) and refined as riding atoms with relative isotropic displacement parameters [Uiso(H) = 1.2Ueq(C) for aromatic and –CHMe2, 1.5Ueq(C) for methyl hydrogen atoms]. One of the coordinating methanol molecules showed disorder of its methyl group, with restrained occupancies of 0.75 (2):0.25 (2) for atoms C29A and C29B. A rotating group model was applied for all methyl groups. Reflection 0 0 1 was obstructed by the beam stop and was omitted from refinement.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1054771
https://doi.org/10.1107/S2056989015005563/wm5137sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015005563/wm5137Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015005563/wm5137Isup3.cdx
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Li(C24H34O4P)(CH4O)3]·CH4O | Z = 2 |
Mr = 552.59 | F(000) = 600 |
Triclinic, P1 | Dx = 1.160 Mg m−3 |
a = 11.1853 (6) Å | Mo Kα radiation, λ = 0.710730 (9) Å |
b = 11.5046 (6) Å | Cell parameters from 9855 reflections |
c = 14.5237 (7) Å | θ = 2.3–31.3° |
α = 90.855 (2)° | µ = 0.13 mm−1 |
β = 102.859 (2)° | T = 123 K |
γ = 118.683 (1)° | Needle, colorless |
V = 1582.21 (14) Å3 | 0.60 × 0.20 × 0.10 mm |
Bruker APEXII CCD area-detector diffractometer | 10353 independent reflections |
Radiation source: fine-focus sealed tube | 8544 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 31.3°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −16→16 |
Tmin = 0.872, Tmax = 0.986 | k = −16→16 |
22920 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: mixed |
wR(F2) = 0.112 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0628P)2 + 0.329P] where P = (Fo2 + 2Fc2)/3 |
10353 reflections | (Δ/σ)max = 0.001 |
382 parameters | Δρmax = 0.77 e Å−3 |
0 restraints | Δρmin = −0.53 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
P1 | 0.62300 (2) | 0.88864 (2) | 0.82666 (2) | 0.01132 (6) | |
Li1 | 0.7224 (2) | 1.0298 (2) | 1.03455 (14) | 0.0216 (4) | |
O1 | 0.71418 (7) | 0.82744 (7) | 0.85725 (5) | 0.01552 (14) | |
O2 | 0.64407 (7) | 0.99757 (7) | 0.89696 (5) | 0.01510 (13) | |
O3 | 0.63126 (7) | 0.93432 (7) | 0.72374 (5) | 0.01310 (13) | |
O4 | 0.45827 (7) | 0.78087 (7) | 0.80228 (5) | 0.01346 (13) | |
C1 | 0.75457 (9) | 0.99858 (9) | 0.69226 (6) | 0.01272 (16) | |
C2 | 0.82677 (10) | 1.13862 (9) | 0.70219 (7) | 0.01421 (17) | |
C3 | 0.94480 (11) | 1.19980 (10) | 0.66505 (7) | 0.01713 (18) | |
H3A | 0.9972 | 1.2947 | 0.6711 | 0.021* | |
C4 | 0.98609 (11) | 1.12365 (10) | 0.61952 (7) | 0.01835 (19) | |
H4A | 1.0670 | 1.1667 | 0.5954 | 0.022* | |
C5 | 0.90964 (11) | 0.98439 (10) | 0.60897 (7) | 0.01706 (18) | |
H5A | 0.9383 | 0.9336 | 0.5767 | 0.020* | |
C6 | 0.79173 (10) | 0.91821 (9) | 0.64503 (7) | 0.01379 (17) | |
C7 | 0.78093 (11) | 1.22290 (10) | 0.75072 (7) | 0.01677 (18) | |
H7A | 0.6876 | 1.1609 | 0.7628 | 0.020* | |
C8 | 0.76209 (14) | 1.32155 (12) | 0.68757 (9) | 0.0267 (2) | |
H8A | 0.6950 | 1.2724 | 0.6260 | 0.040* | |
H8B | 0.8533 | 1.3862 | 0.6772 | 0.040* | |
H8C | 0.7259 | 1.3691 | 0.7191 | 0.040* | |
C9 | 0.88650 (13) | 1.29710 (11) | 0.84741 (8) | 0.0234 (2) | |
H9A | 0.8916 | 1.2320 | 0.8885 | 0.035* | |
H9B | 0.8554 | 1.3507 | 0.8777 | 0.035* | |
H9C | 0.9800 | 1.3561 | 0.8377 | 0.035* | |
C10 | 0.70174 (10) | 0.76631 (10) | 0.62834 (7) | 0.01561 (17) | |
H10A | 0.6566 | 0.7390 | 0.6823 | 0.019* | |
C11 | 0.78739 (13) | 0.69543 (11) | 0.62659 (9) | 0.0243 (2) | |
H11A | 0.8629 | 0.7261 | 0.6858 | 0.036* | |
H11B | 0.8287 | 0.7163 | 0.5721 | 0.036* | |
H11C | 0.7253 | 0.5985 | 0.6207 | 0.036* | |
C12 | 0.58316 (12) | 0.72179 (11) | 0.53609 (8) | 0.0228 (2) | |
H12A | 0.5282 | 0.7665 | 0.5397 | 0.034* | |
H12B | 0.5212 | 0.6246 | 0.5281 | 0.034* | |
H12C | 0.6242 | 0.7459 | 0.4816 | 0.034* | |
C13 | 0.37172 (10) | 0.70309 (9) | 0.71375 (7) | 0.01358 (16) | |
C14 | 0.30293 (10) | 0.75513 (10) | 0.64912 (7) | 0.01566 (17) | |
C15 | 0.20879 (11) | 0.67082 (11) | 0.56457 (7) | 0.01988 (19) | |
H15A | 0.1599 | 0.7025 | 0.5193 | 0.024* | |
C16 | 0.18558 (11) | 0.54178 (11) | 0.54579 (8) | 0.0221 (2) | |
H16A | 0.1214 | 0.4862 | 0.4881 | 0.027* | |
C17 | 0.25624 (11) | 0.49414 (10) | 0.61134 (8) | 0.02018 (19) | |
H17A | 0.2401 | 0.4060 | 0.5977 | 0.024* | |
C18 | 0.35065 (10) | 0.57348 (10) | 0.69699 (7) | 0.01573 (17) | |
C19 | 0.32711 (11) | 0.89620 (10) | 0.66694 (7) | 0.01742 (18) | |
H19A | 0.3980 | 0.9406 | 0.7299 | 0.021* | |
C20 | 0.19082 (13) | 0.89471 (14) | 0.67174 (9) | 0.0277 (2) | |
H20A | 0.1560 | 0.8457 | 0.7232 | 0.042* | |
H20B | 0.1194 | 0.8506 | 0.6109 | 0.042* | |
H20C | 0.2100 | 0.9868 | 0.6842 | 0.042* | |
C21 | 0.38705 (12) | 0.97881 (12) | 0.58994 (8) | 0.0239 (2) | |
H21A | 0.4731 | 0.9779 | 0.5866 | 0.036* | |
H21B | 0.4093 | 1.0713 | 0.6061 | 0.036* | |
H21C | 0.3170 | 0.9400 | 0.5280 | 0.036* | |
C22 | 0.42568 (11) | 0.52122 (10) | 0.77067 (7) | 0.01739 (18) | |
H22A | 0.5211 | 0.5984 | 0.8025 | 0.021* | |
C23 | 0.44768 (15) | 0.41384 (12) | 0.72666 (9) | 0.0283 (2) | |
H23A | 0.4917 | 0.4461 | 0.6742 | 0.042* | |
H23B | 0.3563 | 0.3322 | 0.7022 | 0.042* | |
H23C | 0.5092 | 0.3944 | 0.7754 | 0.042* | |
C24 | 0.34634 (14) | 0.46943 (14) | 0.84766 (9) | 0.0294 (3) | |
H24A | 0.3386 | 0.5414 | 0.8779 | 0.044* | |
H24B | 0.3981 | 0.4396 | 0.8959 | 0.044* | |
H24C | 0.2516 | 0.3941 | 0.8185 | 0.044* | |
O5 | 0.81065 (10) | 0.91990 (11) | 1.04939 (6) | 0.0312 (2) | |
C25 | 0.92769 (13) | 0.92434 (13) | 1.11483 (9) | 0.0284 (2) | |
H25A | 0.9020 | 0.8346 | 1.1315 | 0.043* | |
H25B | 0.9552 | 0.9860 | 1.1726 | 0.043* | |
H25C | 1.0070 | 0.9554 | 1.0857 | 0.043* | |
O6 | 0.86571 (9) | 1.20747 (8) | 1.09305 (6) | 0.02504 (17) | |
C27 | 0.84869 (16) | 1.31713 (13) | 1.11945 (11) | 0.0339 (3) | |
H27A | 0.8725 | 1.3800 | 1.0729 | 0.051* | |
H27B | 0.9113 | 1.3628 | 1.1829 | 0.051* | |
H27C | 0.7505 | 1.2842 | 1.1207 | 0.051* | |
O7 | 0.56431 (9) | 0.94990 (8) | 1.09033 (6) | 0.02329 (17) | |
C29A | 0.5209 (6) | 0.8252 (4) | 1.1245 (4) | 0.0311 (8) | 0.75 (2) |
H29A | 0.5812 | 0.7894 | 1.1136 | 0.047* | 0.75 (2) |
H29B | 0.4225 | 0.7624 | 1.0905 | 0.047* | 0.75 (2) |
H29C | 0.5290 | 0.8372 | 1.1929 | 0.047* | 0.75 (2) |
C29B | 0.4900 (14) | 0.8055 (11) | 1.084 (2) | 0.044 (3) | 0.25 (2) |
H29D | 0.4135 | 0.7671 | 1.0245 | 0.066* | 0.25 (2) |
H29E | 0.4504 | 0.7794 | 1.1384 | 0.066* | 0.25 (2) |
H29F | 0.5558 | 0.7723 | 1.0829 | 0.066* | 0.25 (2) |
O8 | 0.85286 (11) | 0.68825 (11) | 0.87815 (8) | 0.0382 (2) | |
C31 | 0.78917 (14) | 0.59808 (13) | 0.93888 (10) | 0.0308 (3) | |
H31A | 0.7034 | 0.5192 | 0.9011 | 0.046* | |
H31B | 0.7646 | 0.6413 | 0.9843 | 0.046* | |
H31C | 0.8550 | 0.5706 | 0.9738 | 0.046* | |
H26 | 0.799 (2) | 0.8875 (19) | 0.9979 (15) | 0.045 (5)* | |
H28 | 0.953 (2) | 1.236 (2) | 1.0986 (14) | 0.051 (5)* | |
H30 | 0.507 (2) | 0.9752 (19) | 1.0954 (14) | 0.049 (5)* | |
H32 | 0.814 (2) | 0.7331 (19) | 0.8674 (14) | 0.047 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.01157 (11) | 0.01212 (11) | 0.01118 (11) | 0.00666 (8) | 0.00276 (8) | 0.00173 (8) |
Li1 | 0.0244 (9) | 0.0239 (9) | 0.0188 (8) | 0.0142 (8) | 0.0046 (7) | 0.0014 (7) |
O1 | 0.0157 (3) | 0.0174 (3) | 0.0161 (3) | 0.0110 (3) | 0.0025 (3) | 0.0020 (3) |
O2 | 0.0175 (3) | 0.0154 (3) | 0.0139 (3) | 0.0094 (3) | 0.0039 (2) | 0.0008 (2) |
O3 | 0.0117 (3) | 0.0157 (3) | 0.0126 (3) | 0.0066 (2) | 0.0048 (2) | 0.0041 (2) |
O4 | 0.0119 (3) | 0.0149 (3) | 0.0119 (3) | 0.0055 (2) | 0.0028 (2) | 0.0017 (2) |
C1 | 0.0109 (4) | 0.0150 (4) | 0.0121 (4) | 0.0060 (3) | 0.0034 (3) | 0.0024 (3) |
C2 | 0.0147 (4) | 0.0143 (4) | 0.0132 (4) | 0.0070 (3) | 0.0033 (3) | 0.0018 (3) |
C3 | 0.0159 (4) | 0.0147 (4) | 0.0177 (4) | 0.0052 (3) | 0.0048 (3) | 0.0021 (3) |
C4 | 0.0145 (4) | 0.0194 (5) | 0.0195 (5) | 0.0059 (4) | 0.0075 (3) | 0.0031 (4) |
C5 | 0.0160 (4) | 0.0196 (4) | 0.0168 (4) | 0.0091 (4) | 0.0060 (3) | 0.0016 (3) |
C6 | 0.0135 (4) | 0.0149 (4) | 0.0126 (4) | 0.0070 (3) | 0.0028 (3) | 0.0013 (3) |
C7 | 0.0202 (4) | 0.0146 (4) | 0.0178 (4) | 0.0098 (4) | 0.0064 (4) | 0.0027 (3) |
C8 | 0.0362 (6) | 0.0272 (6) | 0.0286 (6) | 0.0231 (5) | 0.0124 (5) | 0.0112 (4) |
C9 | 0.0284 (5) | 0.0191 (5) | 0.0205 (5) | 0.0106 (4) | 0.0056 (4) | −0.0021 (4) |
C10 | 0.0174 (4) | 0.0139 (4) | 0.0160 (4) | 0.0077 (4) | 0.0056 (3) | 0.0008 (3) |
C11 | 0.0265 (5) | 0.0194 (5) | 0.0326 (6) | 0.0147 (4) | 0.0100 (4) | 0.0039 (4) |
C12 | 0.0221 (5) | 0.0180 (5) | 0.0215 (5) | 0.0068 (4) | 0.0008 (4) | −0.0004 (4) |
C13 | 0.0107 (4) | 0.0145 (4) | 0.0132 (4) | 0.0044 (3) | 0.0034 (3) | 0.0021 (3) |
C14 | 0.0131 (4) | 0.0188 (4) | 0.0152 (4) | 0.0079 (4) | 0.0040 (3) | 0.0045 (3) |
C15 | 0.0155 (4) | 0.0248 (5) | 0.0167 (4) | 0.0092 (4) | 0.0012 (3) | 0.0041 (4) |
C16 | 0.0174 (5) | 0.0225 (5) | 0.0180 (5) | 0.0051 (4) | 0.0005 (4) | 0.0000 (4) |
C17 | 0.0183 (4) | 0.0157 (4) | 0.0198 (5) | 0.0043 (4) | 0.0025 (4) | 0.0003 (4) |
C18 | 0.0139 (4) | 0.0148 (4) | 0.0163 (4) | 0.0053 (3) | 0.0044 (3) | 0.0035 (3) |
C19 | 0.0170 (4) | 0.0208 (5) | 0.0179 (4) | 0.0123 (4) | 0.0039 (3) | 0.0044 (4) |
C20 | 0.0249 (5) | 0.0372 (6) | 0.0314 (6) | 0.0226 (5) | 0.0089 (5) | 0.0077 (5) |
C21 | 0.0248 (5) | 0.0250 (5) | 0.0236 (5) | 0.0137 (4) | 0.0062 (4) | 0.0105 (4) |
C22 | 0.0187 (4) | 0.0143 (4) | 0.0184 (4) | 0.0078 (4) | 0.0040 (4) | 0.0037 (3) |
C23 | 0.0388 (7) | 0.0247 (5) | 0.0270 (6) | 0.0213 (5) | 0.0058 (5) | 0.0031 (4) |
C24 | 0.0357 (6) | 0.0361 (6) | 0.0252 (6) | 0.0215 (6) | 0.0146 (5) | 0.0156 (5) |
O5 | 0.0379 (5) | 0.0508 (6) | 0.0161 (4) | 0.0356 (5) | −0.0045 (3) | −0.0052 (4) |
C25 | 0.0228 (5) | 0.0342 (6) | 0.0244 (5) | 0.0151 (5) | −0.0029 (4) | 0.0048 (5) |
O6 | 0.0241 (4) | 0.0222 (4) | 0.0292 (4) | 0.0115 (3) | 0.0080 (3) | −0.0014 (3) |
C27 | 0.0407 (7) | 0.0261 (6) | 0.0443 (8) | 0.0197 (6) | 0.0210 (6) | 0.0057 (5) |
O7 | 0.0300 (4) | 0.0268 (4) | 0.0267 (4) | 0.0213 (4) | 0.0144 (3) | 0.0105 (3) |
C29A | 0.0370 (16) | 0.0231 (11) | 0.0440 (17) | 0.0190 (11) | 0.0200 (14) | 0.0109 (11) |
C29B | 0.034 (4) | 0.026 (4) | 0.080 (11) | 0.017 (3) | 0.025 (5) | 0.013 (5) |
O8 | 0.0365 (5) | 0.0451 (6) | 0.0568 (7) | 0.0329 (5) | 0.0243 (5) | 0.0282 (5) |
C31 | 0.0285 (6) | 0.0269 (6) | 0.0361 (7) | 0.0144 (5) | 0.0046 (5) | 0.0098 (5) |
P1—O1 | 1.4934 (7) | C16—H16A | 0.9500 |
P1—O2 | 1.4965 (7) | C17—C18 | 1.3971 (14) |
P1—O3 | 1.5993 (7) | C17—H17A | 0.9500 |
P1—O4 | 1.6003 (7) | C18—C22 | 1.5214 (14) |
Li1—O2 | 1.945 (2) | C19—C20 | 1.5335 (15) |
Li1—O5 | 1.932 (2) | C19—C21 | 1.5352 (15) |
Li1—O6 | 1.915 (2) | C19—H19A | 1.0000 |
Li1—O7 | 1.931 (2) | C20—H20A | 0.9800 |
O3—C1 | 1.4035 (11) | C20—H20B | 0.9800 |
O4—C13 | 1.4040 (11) | C20—H20C | 0.9800 |
C1—C2 | 1.4003 (13) | C21—H21A | 0.9800 |
C1—C6 | 1.4053 (13) | C21—H21B | 0.9800 |
C2—C3 | 1.4019 (13) | C21—H21C | 0.9800 |
C2—C7 | 1.5224 (13) | C22—C23 | 1.5276 (15) |
C3—C4 | 1.3875 (14) | C22—C24 | 1.5320 (15) |
C3—H3A | 0.9500 | C22—H22A | 1.0000 |
C4—C5 | 1.3930 (14) | C23—H23A | 0.9800 |
C4—H4A | 0.9500 | C23—H23B | 0.9800 |
C5—C6 | 1.3960 (13) | C23—H23C | 0.9800 |
C5—H5A | 0.9500 | C24—H24A | 0.9800 |
C6—C10 | 1.5219 (13) | C24—H24B | 0.9800 |
C7—C8 | 1.5325 (15) | C24—H24C | 0.9800 |
C7—C9 | 1.5342 (15) | O5—C25 | 1.4144 (14) |
C7—H7A | 1.0000 | O5—H26 | 0.79 (2) |
C8—H8A | 0.9800 | C25—H25A | 0.9800 |
C8—H8B | 0.9800 | C25—H25B | 0.9800 |
C8—H8C | 0.9800 | C25—H25C | 0.9800 |
C9—H9A | 0.9800 | O6—C27 | 1.4225 (14) |
C9—H9B | 0.9800 | O6—H28 | 0.85 (2) |
C9—H9C | 0.9800 | C27—H27A | 0.9800 |
C10—C11 | 1.5309 (14) | C27—H27B | 0.9800 |
C10—C12 | 1.5339 (15) | C27—H27C | 0.9800 |
C10—H10A | 1.0000 | O7—C29A | 1.415 (3) |
C11—H11A | 0.9800 | O7—C29B | 1.447 (11) |
C11—H11B | 0.9800 | O7—H30 | 0.83 (2) |
C11—H11C | 0.9800 | C29A—H29A | 0.9800 |
C12—H12A | 0.9800 | C29A—H29B | 0.9800 |
C12—H12B | 0.9800 | C29A—H29C | 0.9800 |
C12—H12C | 0.9800 | C29B—H29D | 0.9800 |
C13—C18 | 1.4016 (14) | C29B—H29E | 0.9800 |
C13—C14 | 1.4032 (13) | C29B—H29F | 0.9800 |
C14—C15 | 1.4021 (14) | O8—C31 | 1.3996 (16) |
C14—C19 | 1.5196 (14) | O8—H32 | 0.82 (2) |
C15—C16 | 1.3901 (16) | C31—H31A | 0.9800 |
C15—H15A | 0.9500 | C31—H31B | 0.9800 |
C16—C17 | 1.3885 (15) | C31—H31C | 0.9800 |
O1—P1—O2 | 115.86 (4) | C18—C17—H17A | 119.4 |
O1—P1—O3 | 110.98 (4) | C17—C18—C13 | 117.37 (9) |
O2—P1—O3 | 111.66 (4) | C17—C18—C22 | 121.75 (9) |
O1—P1—O4 | 112.44 (4) | C13—C18—C22 | 120.87 (9) |
O2—P1—O4 | 105.46 (4) | C14—C19—C20 | 111.38 (9) |
O3—P1—O4 | 99.06 (4) | C14—C19—C21 | 111.12 (9) |
O6—Li1—O7 | 114.81 (10) | C20—C19—C21 | 110.04 (9) |
O6—Li1—O5 | 106.80 (10) | C14—C19—H19A | 108.1 |
O7—Li1—O5 | 107.49 (10) | C20—C19—H19A | 108.1 |
O6—Li1—O2 | 118.40 (11) | C21—C19—H19A | 108.1 |
O7—Li1—O2 | 106.73 (10) | C19—C20—H20A | 109.5 |
O5—Li1—O2 | 101.32 (9) | C19—C20—H20B | 109.5 |
P1—O2—Li1 | 128.08 (7) | H20A—C20—H20B | 109.5 |
C1—O3—P1 | 125.61 (6) | C19—C20—H20C | 109.5 |
C13—O4—P1 | 126.90 (6) | H20A—C20—H20C | 109.5 |
C2—C1—O3 | 118.35 (8) | H20B—C20—H20C | 109.5 |
C2—C1—C6 | 123.54 (9) | C19—C21—H21A | 109.5 |
O3—C1—C6 | 117.87 (8) | C19—C21—H21B | 109.5 |
C1—C2—C3 | 117.12 (9) | H21A—C21—H21B | 109.5 |
C1—C2—C7 | 122.36 (9) | C19—C21—H21C | 109.5 |
C3—C2—C7 | 120.52 (9) | H21A—C21—H21C | 109.5 |
C4—C3—C2 | 120.88 (9) | H21B—C21—H21C | 109.5 |
C4—C3—H3A | 119.6 | C18—C22—C23 | 113.01 (9) |
C2—C3—H3A | 119.6 | C18—C22—C24 | 110.50 (9) |
C3—C4—C5 | 120.38 (9) | C23—C22—C24 | 110.65 (9) |
C3—C4—H4A | 119.8 | C18—C22—H22A | 107.5 |
C5—C4—H4A | 119.8 | C23—C22—H22A | 107.5 |
C4—C5—C6 | 121.16 (9) | C24—C22—H22A | 107.5 |
C4—C5—H5A | 119.4 | C22—C23—H23A | 109.5 |
C6—C5—H5A | 119.4 | C22—C23—H23B | 109.5 |
C5—C6—C1 | 116.89 (9) | H23A—C23—H23B | 109.5 |
C5—C6—C10 | 121.63 (8) | C22—C23—H23C | 109.5 |
C1—C6—C10 | 121.37 (8) | H23A—C23—H23C | 109.5 |
C2—C7—C8 | 111.88 (8) | H23B—C23—H23C | 109.5 |
C2—C7—C9 | 110.51 (8) | C22—C24—H24A | 109.5 |
C8—C7—C9 | 110.68 (9) | C22—C24—H24B | 109.5 |
C2—C7—H7A | 107.9 | H24A—C24—H24B | 109.5 |
C8—C7—H7A | 107.9 | C22—C24—H24C | 109.5 |
C9—C7—H7A | 107.9 | H24A—C24—H24C | 109.5 |
C7—C8—H8A | 109.5 | H24B—C24—H24C | 109.5 |
C7—C8—H8B | 109.5 | C25—O5—Li1 | 135.51 (10) |
H8A—C8—H8B | 109.5 | C25—O5—H26 | 111.9 (14) |
C7—C8—H8C | 109.5 | Li1—O5—H26 | 106.6 (14) |
H8A—C8—H8C | 109.5 | O5—C25—H25A | 109.5 |
H8B—C8—H8C | 109.5 | O5—C25—H25B | 109.5 |
C7—C9—H9A | 109.5 | H25A—C25—H25B | 109.5 |
C7—C9—H9B | 109.5 | O5—C25—H25C | 109.5 |
H9A—C9—H9B | 109.5 | H25A—C25—H25C | 109.5 |
C7—C9—H9C | 109.5 | H25B—C25—H25C | 109.5 |
H9A—C9—H9C | 109.5 | C27—O6—Li1 | 128.27 (10) |
H9B—C9—H9C | 109.5 | C27—O6—H28 | 108.3 (14) |
C6—C10—C11 | 113.23 (8) | Li1—O6—H28 | 122.7 (13) |
C6—C10—C12 | 109.69 (8) | O6—C27—H27A | 109.5 |
C11—C10—C12 | 110.98 (9) | O6—C27—H27B | 109.5 |
C6—C10—H10A | 107.6 | H27A—C27—H27B | 109.5 |
C11—C10—H10A | 107.6 | O6—C27—H27C | 109.5 |
C12—C10—H10A | 107.6 | H27A—C27—H27C | 109.5 |
C10—C11—H11A | 109.5 | H27B—C27—H27C | 109.5 |
C10—C11—H11B | 109.5 | C29A—O7—Li1 | 122.16 (15) |
H11A—C11—H11B | 109.5 | C29B—O7—Li1 | 117.0 (7) |
C10—C11—H11C | 109.5 | C29A—O7—H30 | 108.0 (14) |
H11A—C11—H11C | 109.5 | C29B—O7—H30 | 106.9 (14) |
H11B—C11—H11C | 109.5 | Li1—O7—H30 | 129.6 (14) |
C10—C12—H12A | 109.5 | O7—C29A—H29A | 109.5 |
C10—C12—H12B | 109.5 | O7—C29A—H29B | 109.5 |
H12A—C12—H12B | 109.5 | H29A—C29A—H29B | 109.5 |
C10—C12—H12C | 109.5 | O7—C29A—H29C | 109.5 |
H12A—C12—H12C | 109.5 | H29A—C29A—H29C | 109.5 |
H12B—C12—H12C | 109.5 | H29B—C29A—H29C | 109.5 |
C18—C13—C14 | 123.15 (9) | O7—C29B—H29D | 109.5 |
C18—C13—O4 | 118.19 (8) | O7—C29B—H29E | 109.5 |
C14—C13—O4 | 118.51 (8) | H29D—C29B—H29E | 109.5 |
C15—C14—C13 | 117.02 (9) | O7—C29B—H29F | 109.5 |
C15—C14—C19 | 119.91 (9) | H29D—C29B—H29F | 109.5 |
C13—C14—C19 | 123.07 (9) | H29E—C29B—H29F | 109.5 |
C16—C15—C14 | 121.25 (10) | C31—O8—H32 | 108.1 (14) |
C16—C15—H15A | 119.4 | O8—C31—H31A | 109.5 |
C14—C15—H15A | 119.4 | O8—C31—H31B | 109.5 |
C17—C16—C15 | 120.01 (10) | H31A—C31—H31B | 109.5 |
C17—C16—H16A | 120.0 | O8—C31—H31C | 109.5 |
C15—C16—H16A | 120.0 | H31A—C31—H31C | 109.5 |
C16—C17—C18 | 121.20 (10) | H31B—C31—H31C | 109.5 |
C16—C17—H17A | 119.4 | ||
O1—P1—O2—Li1 | −22.98 (11) | C3—C2—C7—C9 | −70.95 (12) |
O3—P1—O2—Li1 | −151.34 (9) | C5—C6—C10—C11 | 34.55 (13) |
O4—P1—O2—Li1 | 102.06 (10) | C1—C6—C10—C11 | −149.58 (9) |
O1—P1—O3—C1 | −42.03 (8) | C5—C6—C10—C12 | −90.02 (11) |
O2—P1—O3—C1 | 88.89 (8) | C1—C6—C10—C12 | 85.85 (11) |
O4—P1—O3—C1 | −160.39 (7) | P1—O4—C13—C18 | 95.20 (10) |
Li1—P1—O3—C1 | 68.81 (10) | P1—O4—C13—C14 | −89.13 (10) |
O1—P1—O4—C13 | −88.42 (8) | C18—C13—C14—C15 | 0.30 (14) |
O2—P1—O4—C13 | 144.44 (7) | O4—C13—C14—C15 | −175.14 (8) |
O3—P1—O4—C13 | 28.84 (8) | C18—C13—C14—C19 | −179.32 (9) |
Li1—P1—O4—C13 | 175.22 (8) | O4—C13—C14—C19 | 5.24 (14) |
P1—O3—C1—C2 | −94.01 (10) | C13—C14—C15—C16 | −0.31 (15) |
P1—O3—C1—C6 | 91.40 (10) | C19—C14—C15—C16 | 179.32 (10) |
O3—C1—C2—C3 | −176.33 (8) | C14—C15—C16—C17 | 0.00 (17) |
C6—C1—C2—C3 | −2.06 (14) | C15—C16—C17—C18 | 0.36 (17) |
O3—C1—C2—C7 | 3.54 (13) | C16—C17—C18—C13 | −0.38 (15) |
C6—C1—C2—C7 | 177.81 (9) | C16—C17—C18—C22 | 178.27 (10) |
C1—C2—C3—C4 | 0.79 (14) | C14—C13—C18—C17 | 0.04 (15) |
C7—C2—C3—C4 | −179.08 (9) | O4—C13—C18—C17 | 175.49 (8) |
C2—C3—C4—C5 | 0.71 (16) | C14—C13—C18—C22 | −178.61 (9) |
C3—C4—C5—C6 | −1.07 (16) | O4—C13—C18—C22 | −3.16 (13) |
C4—C5—C6—C1 | −0.11 (14) | C15—C14—C19—C20 | 62.20 (13) |
C4—C5—C6—C10 | 175.93 (9) | C13—C14—C19—C20 | −118.20 (11) |
C2—C1—C6—C5 | 1.72 (14) | C15—C14—C19—C21 | −60.88 (12) |
O3—C1—C6—C5 | 176.02 (8) | C13—C14—C19—C21 | 118.73 (10) |
C2—C1—C6—C10 | −174.33 (9) | C17—C18—C22—C23 | 28.37 (14) |
O3—C1—C6—C10 | −0.04 (13) | C13—C18—C22—C23 | −153.04 (10) |
C1—C2—C7—C8 | −127.00 (10) | C17—C18—C22—C24 | −96.23 (12) |
C3—C2—C7—C8 | 52.86 (13) | C13—C18—C22—C24 | 82.36 (12) |
C1—C2—C7—C9 | 109.19 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H26···O1 | 0.79 (2) | 2.00 (2) | 2.7482 (11) | 158.2 (19) |
O6—H28···O8i | 0.85 (2) | 1.86 (2) | 2.7013 (14) | 174 (2) |
O7—H30···O2ii | 0.83 (2) | 1.89 (2) | 2.7152 (11) | 170.7 (19) |
O8—H32···O1 | 0.82 (2) | 1.88 (2) | 2.6929 (12) | 171.8 (19) |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+2, −z+2. |
Acknowledgements
The authors are grateful to Ivan V. Anan'ev for assistance with the X-ray study.
References
Blonski, C., Gasc, M.-B., Klaebe, A., Perie, J.-J., Roques, R., Declercq, J. P. & Germain, G. (1982). J. Chem. Soc. Perkin Trans. 2, pp. 7–13. CSD CrossRef Google Scholar
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Gerus, A. & Lis, T. (2013). Acta Cryst. E69, m464–m465. CSD CrossRef CAS IUCr Journals Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Hilken, S., Kaletta, F., Heinsch, A., Neudörfl, J.-M. & Berkessel, A. (2014). Eur. J. Org. Chem. pp. 2231–2241. CSD CrossRef Google Scholar
Kommana, P. & Swamy, K. C. K. (2003). Indian J. Chem. Sect. A, 42, 1061–1063. Google Scholar
Kosolapoff, G. M., Arpke, Ch. K., Lamb, R. W. & Reich, H. (1968). J. Chem. Soc. C, pp. 815–818. Google Scholar
Kumara Swamy, K. C. & Kumaraswamy, S. (2001). Acta Cryst. C57, 1147–1148. CSD CrossRef IUCr Journals Google Scholar
Kumara Swamy, K. C., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642–12649. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lugmair, C. G. & Tilley, T. D. (1998). Inorg. Chem. 37, 1821–1826. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219–227. CAS Google Scholar
Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223–1230. Web of Science CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Ślepokura, K. (2008). Carbohydr. Res. 343, 113–131. Web of Science PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.