research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [bis­­(2,6-diiso­propyl­phen­yl) phosphato-κO]tris­­(methanol-κO)lithium methanol monosolvate

aA.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prospect 29, 119991 Moscow, Russian Federation, and bMoscow City Pedagogical University, 2nd Selskokhozyaistvenny proezd 4, 129226, Moscow, Russian Federation
*Correspondence e-mail: mminyaev@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 March 2015; accepted 18 March 2015; online 2 April 2015)

Crystals of the title compound, [Li{OOP(O-2,6-iPr2C6H3)2}(CH3OH)3]·CH3OH or [Li(C24H34O4P)(CH3OH)3]·CH3OH, have been formed in the reaction between HOOP(O-2,6-iPr2C6H3)2 and LiOH in methanol. The title compound is of inter­est as it represents the first reported crystal structure of the family of lithium phosphate diesters. The {Li(CH3OH)3[O2P(O-iPr2C6H3)2]} unit displays the Li atom in a slightly distorted tetra­hedral coordination environment and exhibits one intra­molecular O—H⋯O hydrogen bond between a coordinating methanol mol­ecule and the terminal non-coordinating O atom of the phosphate group. The unit is connected with two non-coordinating methanol mol­ecules through two inter­molecular O—H⋯O hydrogen bonds, and with a neighbouring unit through two other O—H⋯O inter­actions. These inter­molecular hydrogen bonds lead to the formation of infinite chains along [100]. There are no significant inter­actions between the chains.

1. Chemical context

Alkali metal phosphate diesters are of inter­est not only because of their fundamental biological importance (see, for example: Gerus & Lis, 2013[Gerus, A. & Lis, T. (2013). Acta Cryst. E69, m464-m465.], and references therein), but also because they are direct synthetic precursors of organophos­phate d- and f-metal complexes, which may find applications in various catalytic reactions. For example, rare-earth tris-(diaryl phosphate) complexes may be successfully used in polymerization reactions of 1,4-dienes (Nifant'ev et al., 2013[Nifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223-1230.], 2014[Nifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219-227.]).

[Scheme 1]

Crystals of the title compound, [Li(CH3OH)3{OOP(O-2,6-iPr2C6H3)2}]·CH3OH, have been obtained from the reaction between HOOP(O-2,6-iPr2C6H3)2 and LiOH in methanol followed by cooling the reaction mixture. Bis(2,6-diiso­propyl­phen­yl)phospho­ric acid (for its synthesis, see: Blonski et al., 1982[Blonski, C., Gasc, M.-B., Klaebe, A., Perie, J.-J., Roques, R., Declercq, J. P. & Germain, G. (1982). J. Chem. Soc. Perkin Trans. 2, pp. 7-13.]; Kosolapoff et al., 1968[Kosolapoff, G. M., Arpke, Ch. K., Lamb, R. W. & Reich, H. (1968). J. Chem. Soc. C, pp. 815-818.]) was prepared from phosphoryl trichloride and 2,6-diiso­propyl­phenol.

2. Structural commentary

In the crystal structure of the title solvate, [Li(CH3OH)3{OOP(O-2,6-iPr2C6H3)2}]·CH3OH, the {Li(CH3OH)3[OOP(O-2,6-iPr2C6H3)2]} unit contains the Li+ cation coordinated by three methanol mol­ecules through the O5, O6 and O7 oxygen atoms (Fig. 1[link]). One of the coordinating methanol mol­ecules has its methyl group disordered over two positions [occupancy ratio 0.75 (2):0.25 (2)]. The coordination sphere of Li+ is completed by the O2 oxygen atom of the diaryl phosphate group, [OOP(O-2,6-iPr2C6H3)2]. This configuration is stabilized by an intra­molecular hydrogen bond O5—H26⋯O1 (Fig.1, Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H26⋯O1 0.79 (2) 2.00 (2) 2.7482 (11) 158.2 (19)
O6—H28⋯O8i 0.85 (2) 1.86 (2) 2.7013 (14) 174 (2)
O7—H30⋯O2ii 0.83 (2) 1.89 (2) 2.7152 (11) 170.7 (19)
O8—H32⋯O1 0.82 (2) 1.88 (2) 2.6929 (12) 171.8 (19)
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+1, -y+2, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the {Li(CH3OH)3[OOP(O-2,6-iPr2C6H3)2]} unit. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. All but hy­droxy hydrogen atoms are omitted for clarity. The intra­molecular hydrogen bond is shown by a dashed line. The minor component of disorder in one of the methanol mol­ecules, C29B, is shown with a solid open line.

The phospho­rus and lithium atoms are in approximately tetra­hedral environments with the corresponding bond angles ranging from 99.06 (4)–115.86 (4)° for the phosphate group and 101.32 (9)–118.40 (11) ° for the [LiO4] unit. The Li—O bond lengths range from 1.915 (2) Å to 1.945 (2) Å (Table 2[link]). The P—O bonds can be grouped into two sets. The P1—O1 (P=O) and P1—O2 (P—O—Li) bonds have similar lengths and are ≃ 0.1 Å shorter than the P1—O3 and P1—O4 (P—O—Cipso) bonds (Table 2[link]), i.e. regular single P—O bonds. Since the O3—C1 and O4—C13 (O—Cipso) bond lengths also correspond to single bonds, there is no charge redistribution between the PO4 core and the two aryl fragments. These observations could best be rationalized by three major resonance forms of the anion (Fig. 2[link]).

Table 2
Selected bond lengths (Å)

P1—O1 1.4934 (7) Li1—O5 1.932 (2)
P1—O2 1.4965 (7) Li1—O6 1.915 (2)
P1—O3 1.5993 (7) Li1—O7 1.931 (2)
P1—O4 1.6003 (7) O3—C1 1.4035 (11)
Li1—O2 1.945 (2) O4—C13 1.4040 (11)
[Figure 2]
Figure 2
Plausible resonance forms of the [OOP(O-2,6-iPr2C6H3)2] anion.

3. Supra­molecular features

All vibrational absorption bands (e.g. C—H, C—C, CCH, O—H etc.) in the IR spectrum of the solid are fully consistent with the formula with only one exception. Regardless of the O—H absorption bands at 3636, 3576 cm−1, the usual methanol C—O absorption bands at 1025–1030 cm−1 are missing. A possible explanation is that the methanol mol­ecules are coordinating to lithium and form a hydrogen-bonding network. Consequently, the C—O stretching frequency may be shifted to lower wavenumbers and can be camouflaged by the phosphate absorption band at 912 cm−1. This explanation would correspond to the structure data as determined by X-ray diffraction in the current study.

The {[Li(CH3OH)3][OOP(O-2,6-iPr2C6H3)2]} unit is involved in four inter­molecular hydrogen bonds (Table 1[link], Fig. 3[link]). Two symmetry-related O7—H30⋯O2 bonds connect two neighbouring units. O6—H28⋯O8 and O8—H32⋯O1 bonds link one unit and two non-coordinating methanol mol­ecules, which are further connected to another unit. These four inter­molecular hydrogen bonds result in an infinite chain extending along [100], connecting the {[Li(CH3OH)3][OOP(O-2,6-iPr2C6H3)2]} units and non-coordinating methanol mol­ecules. Neighbouring mol­ecules are related by inversion centers. Therefore, the orientations of the cations and anions switch in such a way as to allow the ions of neighbouring mol­ecules in the chains to be involved in additional inter­molecular Coulombic inter­actions (Fig. 3[link]).

[Figure 3]
Figure 3
One-dimensional framework of {[Li(CH3OH)3][OOP(O-2,6-iPr2C6H3)2]}(CH3OH). All inter­molecular and intra­molecular O—H⋯O hydrogen bonds are shown. All but hy­droxy hydrogen atoms are omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.

The packing of the title compound is shown in Fig. 4[link]. No significant hydrogen-bonding inter­actions are found between neighbouring chains. However, some short intra­chain contacts between methyl groups are present, probably due to crystal-packing effects.

[Figure 4]
Figure 4
Packing diagram parallel to (100). All H atoms are omitted and hydrogen bonds are not shown. Infinite chains of [{Li(CH3OH)3[OOP(O-2,6-iPr2C6H3)2]}2(CH3OH)2]n extend along [100].

4. Database survey

According to the Cambridge Structural Database (CSD version 5.35 with updates, Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), the number of (RO)2PO2M(solv)x structures (M is an alkali metal, solv is a solvent mol­ecule) is rather small. Structures containing additional transition metal atoms have been excluded from the search.

For related structures of potassium or sodium phosphate diesters, see: Kumara Swamy et al. (2001[Kumara Swamy, K. C., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642-12649.]), CSD refcode ADAKUL; Gerus & Lis (2013[Gerus, A. & Lis, T. (2013). Acta Cryst. E69, m464-m465.]), AGACIW; Kommana & Swamy (2003[Kommana, P. & Swamy, K. C. K. (2003). Indian J. Chem. Sect. A, 42, 1061-1063.]), BEDSOT; Hilken et al. (2014[Hilken, S., Kaletta, F., Heinsch, A., Neudörfl, J.-M. & Berkessel, A. (2014). Eur. J. Org. Chem. pp. 2231-2241.]), NIZFEJ; Kumara Swamy & Kumaraswamy (2001[Kumara Swamy, K. C. & Kumaraswamy, S. (2001). Acta Cryst. C57, 1147-1148.]), TIJCUK; Lugmair & Tilley (1998[Lugmair, C. G. & Tilley, T. D. (1998). Inorg. Chem. 37, 1821-1826.]), VADMES; Ślepokura (2008[Ślepokura, K. (2008). Carbohydr. Res. 343, 113-131.]), VIVRAU, VIVREY, VIVRIC. A mixed potassium and calcium phosphate diester has been described by Ślepokura (2008[Ślepokura, K. (2008). Carbohydr. Res. 343, 113-131.]), VIVRUO. All ten found crystal structures are sodium or potassium salts. No lithium compound phosphate diesters has been structurally characterized up to date. Therefore, crystal structures of alkali metal dialkyl and diaryl phosphates remain virtually unexplored.

5. Synthesis and crystallization

Synthesis of bis­(2,6-diiso­propyl­phen­yl) phospho­ric acid. Phosphoryl trichloride (12.6 ml, 21.0 g, 137 mmol, d = 1.67 g/ml) was added to a stirred solution of 2,6-diiso­propyl­phenol (52.60 g, 295 mmol) in benzene (60 ml). Et3N (44.0 ml, 32.0 g, 317 mmol, d = 0.728 g/ml, distilled over NaOH prior to use) was carefully added in small parts to the reaction mixture, while it was stirred vigorously. The reaction mixture consisted of a pale-yellow solution and an off-white precipitate of tri­ethyl­amine hydro­chloride. The mixture was heated under reflux for 2 days with occasional stirring. Then, water was added, and after stirring for 1 h, the organic and water layers were separated. The organic phase was evaporated under reduced pressure to produce a yellow oil. A mixture of acetone (85 ml) and water (25 ml, 1.39 mol) was added to the residue. The reaction mixture was then heated under reflux for five hours without stirring. All solvent was evaporated under reduced pressure from the mixture. The resulting precipitate was recrystallized from petroleum ether (70/100, ≃ 250 ml), filtered off, washed with cold (273 K) hexane and dried under dynamic vacuum. The yield of white crystals was 40.89 g (97.70 mmol, 71.3%). Melting point 432–433 K. 1H NMR (400 MHz, CDCl3): δ = 1.03 [24H, d, –CH(CH3)2], 3.34 [4H, septet, –CH(CH3)2], 7.02–7.14 (6H, m, HAr­yl), 11.08 [1H, br.s, P(O)OH]; 31P NMR (162 MHz, CDCl3): δ = −10.19.

Synthesis and crystallization of tris­(methanol)-lithium bis­(2,6-diiso­propyl­phen­yl) phosphate methanol solvate. Bis(2,6-diiso­propyl­phen­yl) phospho­ric acid (15.07 g, 36.0 mmol) was dissolved in methanol (50 ml). Lithium hydroxide (0.86 g, 36 mmol) was added in small parts to the mixture until pH = 7–8. The reaction mixture was filtered, and the resulting solution was placed into a freezer (258 K) for 3 days. The grown crystals were filtered off, washed with cold methanol (≃ 273 K). Several colorless needles were selected for X-ray structure determination analysis. The remaining crystals were dried under dynamic vacuum. Yield 7.72 g (14.0 mmol, 39%). 1H NMR (400 MHz, CDCl3): δ = 1.10 [24H, d, –CH(CH3)2, 3JHH = 6.85 Hz], 2.63 (4H, br.s, CH3OH), 3.25 (12H, s, CH3OH), 3.60 [4H, septet, –CH(CH3)2, 3JHH = 6.85 Hz], 7.03–7.09 (6H, m, HAr­yl). 31P NMR (162, MHz, CDCl3): δ = −10.23.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The positions of hy­droxy hydrogen atoms were found from a difference map. These atoms were refined with individual isotropic displacement parameters. All other hydrogen atoms were also found from the difference map but positioned geometrically (C—H distance = 0.95 Å for aromatic, 0.98 Å for methyl, 1.00 Å for –CHMe2 hydrogen atoms) and refined as riding atoms with relative isotropic displacement parameters [Uiso(H) = 1.2Ueq(C) for aromatic and –CHMe2, 1.5Ueq(C) for methyl hydrogen atoms]. One of the coordinating methanol mol­ecules showed disorder of its methyl group, with restrained occupancies of 0.75 (2):0.25 (2) for atoms C29A and C29B. A rotating group model was applied for all methyl groups. Reflection 0 0 1 was obstructed by the beam stop and was omitted from refinement.

Table 3
Experimental details

Crystal data
Chemical formula [Li(C24H34O4P)(CH4O)3]·CH4O
Mr 552.59
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 11.1853 (6), 11.5046 (6), 14.5237 (7)
α, β, γ (°) 90.855 (2), 102.859 (2), 118.683 (1)
V3) 1582.21 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.13
Crystal size (mm) 0.60 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.872, 0.986
No. of measured, independent and observed [I > 2σ(I)] reflections 22920, 10353, 8544
Rint 0.021
(sin θ/λ)max−1) 0.732
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.112, 1.02
No. of reflections 10353
No. of parameters 382
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.77, −0.53
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

[Bis(2,6-diisopropylphenyl) phosphato-κO]tris(methanol-κO)lithium methanol monosolvate top
Crystal data top
[Li(C24H34O4P)(CH4O)3]·CH4OZ = 2
Mr = 552.59F(000) = 600
Triclinic, P1Dx = 1.160 Mg m3
a = 11.1853 (6) ÅMo Kα radiation, λ = 0.710730 (9) Å
b = 11.5046 (6) ÅCell parameters from 9855 reflections
c = 14.5237 (7) Åθ = 2.3–31.3°
α = 90.855 (2)°µ = 0.13 mm1
β = 102.859 (2)°T = 123 K
γ = 118.683 (1)°Needle, colorless
V = 1582.21 (14) Å30.60 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10353 independent reflections
Radiation source: fine-focus sealed tube8544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 31.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1616
Tmin = 0.872, Tmax = 0.986k = 1616
22920 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0628P)2 + 0.329P]
where P = (Fo2 + 2Fc2)/3
10353 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.53 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.62300 (2)0.88864 (2)0.82666 (2)0.01132 (6)
Li10.7224 (2)1.0298 (2)1.03455 (14)0.0216 (4)
O10.71418 (7)0.82744 (7)0.85725 (5)0.01552 (14)
O20.64407 (7)0.99757 (7)0.89696 (5)0.01510 (13)
O30.63126 (7)0.93432 (7)0.72374 (5)0.01310 (13)
O40.45827 (7)0.78087 (7)0.80228 (5)0.01346 (13)
C10.75457 (9)0.99858 (9)0.69226 (6)0.01272 (16)
C20.82677 (10)1.13862 (9)0.70219 (7)0.01421 (17)
C30.94480 (11)1.19980 (10)0.66505 (7)0.01713 (18)
H3A0.99721.29470.67110.021*
C40.98609 (11)1.12365 (10)0.61952 (7)0.01835 (19)
H4A1.06701.16670.59540.022*
C50.90964 (11)0.98439 (10)0.60897 (7)0.01706 (18)
H5A0.93830.93360.57670.020*
C60.79173 (10)0.91821 (9)0.64503 (7)0.01379 (17)
C70.78093 (11)1.22290 (10)0.75072 (7)0.01677 (18)
H7A0.68761.16090.76280.020*
C80.76209 (14)1.32155 (12)0.68757 (9)0.0267 (2)
H8A0.69501.27240.62600.040*
H8B0.85331.38620.67720.040*
H8C0.72591.36910.71910.040*
C90.88650 (13)1.29710 (11)0.84741 (8)0.0234 (2)
H9A0.89161.23200.88850.035*
H9B0.85541.35070.87770.035*
H9C0.98001.35610.83770.035*
C100.70174 (10)0.76631 (10)0.62834 (7)0.01561 (17)
H10A0.65660.73900.68230.019*
C110.78739 (13)0.69543 (11)0.62659 (9)0.0243 (2)
H11A0.86290.72610.68580.036*
H11B0.82870.71630.57210.036*
H11C0.72530.59850.62070.036*
C120.58316 (12)0.72179 (11)0.53609 (8)0.0228 (2)
H12A0.52820.76650.53970.034*
H12B0.52120.62460.52810.034*
H12C0.62420.74590.48160.034*
C130.37172 (10)0.70309 (9)0.71375 (7)0.01358 (16)
C140.30293 (10)0.75513 (10)0.64912 (7)0.01566 (17)
C150.20879 (11)0.67082 (11)0.56457 (7)0.01988 (19)
H15A0.15990.70250.51930.024*
C160.18558 (11)0.54178 (11)0.54579 (8)0.0221 (2)
H16A0.12140.48620.48810.027*
C170.25624 (11)0.49414 (10)0.61134 (8)0.02018 (19)
H17A0.24010.40600.59770.024*
C180.35065 (10)0.57348 (10)0.69699 (7)0.01573 (17)
C190.32711 (11)0.89620 (10)0.66694 (7)0.01742 (18)
H19A0.39800.94060.72990.021*
C200.19082 (13)0.89471 (14)0.67174 (9)0.0277 (2)
H20A0.15600.84570.72320.042*
H20B0.11940.85060.61090.042*
H20C0.21000.98680.68420.042*
C210.38705 (12)0.97881 (12)0.58994 (8)0.0239 (2)
H21A0.47310.97790.58660.036*
H21B0.40931.07130.60610.036*
H21C0.31700.94000.52800.036*
C220.42568 (11)0.52122 (10)0.77067 (7)0.01739 (18)
H22A0.52110.59840.80250.021*
C230.44768 (15)0.41384 (12)0.72666 (9)0.0283 (2)
H23A0.49170.44610.67420.042*
H23B0.35630.33220.70220.042*
H23C0.50920.39440.77540.042*
C240.34634 (14)0.46943 (14)0.84766 (9)0.0294 (3)
H24A0.33860.54140.87790.044*
H24B0.39810.43960.89590.044*
H24C0.25160.39410.81850.044*
O50.81065 (10)0.91990 (11)1.04939 (6)0.0312 (2)
C250.92769 (13)0.92434 (13)1.11483 (9)0.0284 (2)
H25A0.90200.83461.13150.043*
H25B0.95520.98601.17260.043*
H25C1.00700.95541.08570.043*
O60.86571 (9)1.20747 (8)1.09305 (6)0.02504 (17)
C270.84869 (16)1.31713 (13)1.11945 (11)0.0339 (3)
H27A0.87251.38001.07290.051*
H27B0.91131.36281.18290.051*
H27C0.75051.28421.12070.051*
O70.56431 (9)0.94990 (8)1.09033 (6)0.02329 (17)
C29A0.5209 (6)0.8252 (4)1.1245 (4)0.0311 (8)0.75 (2)
H29A0.58120.78941.11360.047*0.75 (2)
H29B0.42250.76241.09050.047*0.75 (2)
H29C0.52900.83721.19290.047*0.75 (2)
C29B0.4900 (14)0.8055 (11)1.084 (2)0.044 (3)0.25 (2)
H29D0.41350.76711.02450.066*0.25 (2)
H29E0.45040.77941.13840.066*0.25 (2)
H29F0.55580.77231.08290.066*0.25 (2)
O80.85286 (11)0.68825 (11)0.87815 (8)0.0382 (2)
C310.78917 (14)0.59808 (13)0.93888 (10)0.0308 (3)
H31A0.70340.51920.90110.046*
H31B0.76460.64130.98430.046*
H31C0.85500.57060.97380.046*
H260.799 (2)0.8875 (19)0.9979 (15)0.045 (5)*
H280.953 (2)1.236 (2)1.0986 (14)0.051 (5)*
H300.507 (2)0.9752 (19)1.0954 (14)0.049 (5)*
H320.814 (2)0.7331 (19)0.8674 (14)0.047 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01157 (11)0.01212 (11)0.01118 (11)0.00666 (8)0.00276 (8)0.00173 (8)
Li10.0244 (9)0.0239 (9)0.0188 (8)0.0142 (8)0.0046 (7)0.0014 (7)
O10.0157 (3)0.0174 (3)0.0161 (3)0.0110 (3)0.0025 (3)0.0020 (3)
O20.0175 (3)0.0154 (3)0.0139 (3)0.0094 (3)0.0039 (2)0.0008 (2)
O30.0117 (3)0.0157 (3)0.0126 (3)0.0066 (2)0.0048 (2)0.0041 (2)
O40.0119 (3)0.0149 (3)0.0119 (3)0.0055 (2)0.0028 (2)0.0017 (2)
C10.0109 (4)0.0150 (4)0.0121 (4)0.0060 (3)0.0034 (3)0.0024 (3)
C20.0147 (4)0.0143 (4)0.0132 (4)0.0070 (3)0.0033 (3)0.0018 (3)
C30.0159 (4)0.0147 (4)0.0177 (4)0.0052 (3)0.0048 (3)0.0021 (3)
C40.0145 (4)0.0194 (5)0.0195 (5)0.0059 (4)0.0075 (3)0.0031 (4)
C50.0160 (4)0.0196 (4)0.0168 (4)0.0091 (4)0.0060 (3)0.0016 (3)
C60.0135 (4)0.0149 (4)0.0126 (4)0.0070 (3)0.0028 (3)0.0013 (3)
C70.0202 (4)0.0146 (4)0.0178 (4)0.0098 (4)0.0064 (4)0.0027 (3)
C80.0362 (6)0.0272 (6)0.0286 (6)0.0231 (5)0.0124 (5)0.0112 (4)
C90.0284 (5)0.0191 (5)0.0205 (5)0.0106 (4)0.0056 (4)0.0021 (4)
C100.0174 (4)0.0139 (4)0.0160 (4)0.0077 (4)0.0056 (3)0.0008 (3)
C110.0265 (5)0.0194 (5)0.0326 (6)0.0147 (4)0.0100 (4)0.0039 (4)
C120.0221 (5)0.0180 (5)0.0215 (5)0.0068 (4)0.0008 (4)0.0004 (4)
C130.0107 (4)0.0145 (4)0.0132 (4)0.0044 (3)0.0034 (3)0.0021 (3)
C140.0131 (4)0.0188 (4)0.0152 (4)0.0079 (4)0.0040 (3)0.0045 (3)
C150.0155 (4)0.0248 (5)0.0167 (4)0.0092 (4)0.0012 (3)0.0041 (4)
C160.0174 (5)0.0225 (5)0.0180 (5)0.0051 (4)0.0005 (4)0.0000 (4)
C170.0183 (4)0.0157 (4)0.0198 (5)0.0043 (4)0.0025 (4)0.0003 (4)
C180.0139 (4)0.0148 (4)0.0163 (4)0.0053 (3)0.0044 (3)0.0035 (3)
C190.0170 (4)0.0208 (5)0.0179 (4)0.0123 (4)0.0039 (3)0.0044 (4)
C200.0249 (5)0.0372 (6)0.0314 (6)0.0226 (5)0.0089 (5)0.0077 (5)
C210.0248 (5)0.0250 (5)0.0236 (5)0.0137 (4)0.0062 (4)0.0105 (4)
C220.0187 (4)0.0143 (4)0.0184 (4)0.0078 (4)0.0040 (4)0.0037 (3)
C230.0388 (7)0.0247 (5)0.0270 (6)0.0213 (5)0.0058 (5)0.0031 (4)
C240.0357 (6)0.0361 (6)0.0252 (6)0.0215 (6)0.0146 (5)0.0156 (5)
O50.0379 (5)0.0508 (6)0.0161 (4)0.0356 (5)0.0045 (3)0.0052 (4)
C250.0228 (5)0.0342 (6)0.0244 (5)0.0151 (5)0.0029 (4)0.0048 (5)
O60.0241 (4)0.0222 (4)0.0292 (4)0.0115 (3)0.0080 (3)0.0014 (3)
C270.0407 (7)0.0261 (6)0.0443 (8)0.0197 (6)0.0210 (6)0.0057 (5)
O70.0300 (4)0.0268 (4)0.0267 (4)0.0213 (4)0.0144 (3)0.0105 (3)
C29A0.0370 (16)0.0231 (11)0.0440 (17)0.0190 (11)0.0200 (14)0.0109 (11)
C29B0.034 (4)0.026 (4)0.080 (11)0.017 (3)0.025 (5)0.013 (5)
O80.0365 (5)0.0451 (6)0.0568 (7)0.0329 (5)0.0243 (5)0.0282 (5)
C310.0285 (6)0.0269 (6)0.0361 (7)0.0144 (5)0.0046 (5)0.0098 (5)
Geometric parameters (Å, º) top
P1—O11.4934 (7)C16—H16A0.9500
P1—O21.4965 (7)C17—C181.3971 (14)
P1—O31.5993 (7)C17—H17A0.9500
P1—O41.6003 (7)C18—C221.5214 (14)
Li1—O21.945 (2)C19—C201.5335 (15)
Li1—O51.932 (2)C19—C211.5352 (15)
Li1—O61.915 (2)C19—H19A1.0000
Li1—O71.931 (2)C20—H20A0.9800
O3—C11.4035 (11)C20—H20B0.9800
O4—C131.4040 (11)C20—H20C0.9800
C1—C21.4003 (13)C21—H21A0.9800
C1—C61.4053 (13)C21—H21B0.9800
C2—C31.4019 (13)C21—H21C0.9800
C2—C71.5224 (13)C22—C231.5276 (15)
C3—C41.3875 (14)C22—C241.5320 (15)
C3—H3A0.9500C22—H22A1.0000
C4—C51.3930 (14)C23—H23A0.9800
C4—H4A0.9500C23—H23B0.9800
C5—C61.3960 (13)C23—H23C0.9800
C5—H5A0.9500C24—H24A0.9800
C6—C101.5219 (13)C24—H24B0.9800
C7—C81.5325 (15)C24—H24C0.9800
C7—C91.5342 (15)O5—C251.4144 (14)
C7—H7A1.0000O5—H260.79 (2)
C8—H8A0.9800C25—H25A0.9800
C8—H8B0.9800C25—H25B0.9800
C8—H8C0.9800C25—H25C0.9800
C9—H9A0.9800O6—C271.4225 (14)
C9—H9B0.9800O6—H280.85 (2)
C9—H9C0.9800C27—H27A0.9800
C10—C111.5309 (14)C27—H27B0.9800
C10—C121.5339 (15)C27—H27C0.9800
C10—H10A1.0000O7—C29A1.415 (3)
C11—H11A0.9800O7—C29B1.447 (11)
C11—H11B0.9800O7—H300.83 (2)
C11—H11C0.9800C29A—H29A0.9800
C12—H12A0.9800C29A—H29B0.9800
C12—H12B0.9800C29A—H29C0.9800
C12—H12C0.9800C29B—H29D0.9800
C13—C181.4016 (14)C29B—H29E0.9800
C13—C141.4032 (13)C29B—H29F0.9800
C14—C151.4021 (14)O8—C311.3996 (16)
C14—C191.5196 (14)O8—H320.82 (2)
C15—C161.3901 (16)C31—H31A0.9800
C15—H15A0.9500C31—H31B0.9800
C16—C171.3885 (15)C31—H31C0.9800
O1—P1—O2115.86 (4)C18—C17—H17A119.4
O1—P1—O3110.98 (4)C17—C18—C13117.37 (9)
O2—P1—O3111.66 (4)C17—C18—C22121.75 (9)
O1—P1—O4112.44 (4)C13—C18—C22120.87 (9)
O2—P1—O4105.46 (4)C14—C19—C20111.38 (9)
O3—P1—O499.06 (4)C14—C19—C21111.12 (9)
O6—Li1—O7114.81 (10)C20—C19—C21110.04 (9)
O6—Li1—O5106.80 (10)C14—C19—H19A108.1
O7—Li1—O5107.49 (10)C20—C19—H19A108.1
O6—Li1—O2118.40 (11)C21—C19—H19A108.1
O7—Li1—O2106.73 (10)C19—C20—H20A109.5
O5—Li1—O2101.32 (9)C19—C20—H20B109.5
P1—O2—Li1128.08 (7)H20A—C20—H20B109.5
C1—O3—P1125.61 (6)C19—C20—H20C109.5
C13—O4—P1126.90 (6)H20A—C20—H20C109.5
C2—C1—O3118.35 (8)H20B—C20—H20C109.5
C2—C1—C6123.54 (9)C19—C21—H21A109.5
O3—C1—C6117.87 (8)C19—C21—H21B109.5
C1—C2—C3117.12 (9)H21A—C21—H21B109.5
C1—C2—C7122.36 (9)C19—C21—H21C109.5
C3—C2—C7120.52 (9)H21A—C21—H21C109.5
C4—C3—C2120.88 (9)H21B—C21—H21C109.5
C4—C3—H3A119.6C18—C22—C23113.01 (9)
C2—C3—H3A119.6C18—C22—C24110.50 (9)
C3—C4—C5120.38 (9)C23—C22—C24110.65 (9)
C3—C4—H4A119.8C18—C22—H22A107.5
C5—C4—H4A119.8C23—C22—H22A107.5
C4—C5—C6121.16 (9)C24—C22—H22A107.5
C4—C5—H5A119.4C22—C23—H23A109.5
C6—C5—H5A119.4C22—C23—H23B109.5
C5—C6—C1116.89 (9)H23A—C23—H23B109.5
C5—C6—C10121.63 (8)C22—C23—H23C109.5
C1—C6—C10121.37 (8)H23A—C23—H23C109.5
C2—C7—C8111.88 (8)H23B—C23—H23C109.5
C2—C7—C9110.51 (8)C22—C24—H24A109.5
C8—C7—C9110.68 (9)C22—C24—H24B109.5
C2—C7—H7A107.9H24A—C24—H24B109.5
C8—C7—H7A107.9C22—C24—H24C109.5
C9—C7—H7A107.9H24A—C24—H24C109.5
C7—C8—H8A109.5H24B—C24—H24C109.5
C7—C8—H8B109.5C25—O5—Li1135.51 (10)
H8A—C8—H8B109.5C25—O5—H26111.9 (14)
C7—C8—H8C109.5Li1—O5—H26106.6 (14)
H8A—C8—H8C109.5O5—C25—H25A109.5
H8B—C8—H8C109.5O5—C25—H25B109.5
C7—C9—H9A109.5H25A—C25—H25B109.5
C7—C9—H9B109.5O5—C25—H25C109.5
H9A—C9—H9B109.5H25A—C25—H25C109.5
C7—C9—H9C109.5H25B—C25—H25C109.5
H9A—C9—H9C109.5C27—O6—Li1128.27 (10)
H9B—C9—H9C109.5C27—O6—H28108.3 (14)
C6—C10—C11113.23 (8)Li1—O6—H28122.7 (13)
C6—C10—C12109.69 (8)O6—C27—H27A109.5
C11—C10—C12110.98 (9)O6—C27—H27B109.5
C6—C10—H10A107.6H27A—C27—H27B109.5
C11—C10—H10A107.6O6—C27—H27C109.5
C12—C10—H10A107.6H27A—C27—H27C109.5
C10—C11—H11A109.5H27B—C27—H27C109.5
C10—C11—H11B109.5C29A—O7—Li1122.16 (15)
H11A—C11—H11B109.5C29B—O7—Li1117.0 (7)
C10—C11—H11C109.5C29A—O7—H30108.0 (14)
H11A—C11—H11C109.5C29B—O7—H30106.9 (14)
H11B—C11—H11C109.5Li1—O7—H30129.6 (14)
C10—C12—H12A109.5O7—C29A—H29A109.5
C10—C12—H12B109.5O7—C29A—H29B109.5
H12A—C12—H12B109.5H29A—C29A—H29B109.5
C10—C12—H12C109.5O7—C29A—H29C109.5
H12A—C12—H12C109.5H29A—C29A—H29C109.5
H12B—C12—H12C109.5H29B—C29A—H29C109.5
C18—C13—C14123.15 (9)O7—C29B—H29D109.5
C18—C13—O4118.19 (8)O7—C29B—H29E109.5
C14—C13—O4118.51 (8)H29D—C29B—H29E109.5
C15—C14—C13117.02 (9)O7—C29B—H29F109.5
C15—C14—C19119.91 (9)H29D—C29B—H29F109.5
C13—C14—C19123.07 (9)H29E—C29B—H29F109.5
C16—C15—C14121.25 (10)C31—O8—H32108.1 (14)
C16—C15—H15A119.4O8—C31—H31A109.5
C14—C15—H15A119.4O8—C31—H31B109.5
C17—C16—C15120.01 (10)H31A—C31—H31B109.5
C17—C16—H16A120.0O8—C31—H31C109.5
C15—C16—H16A120.0H31A—C31—H31C109.5
C16—C17—C18121.20 (10)H31B—C31—H31C109.5
C16—C17—H17A119.4
O1—P1—O2—Li122.98 (11)C3—C2—C7—C970.95 (12)
O3—P1—O2—Li1151.34 (9)C5—C6—C10—C1134.55 (13)
O4—P1—O2—Li1102.06 (10)C1—C6—C10—C11149.58 (9)
O1—P1—O3—C142.03 (8)C5—C6—C10—C1290.02 (11)
O2—P1—O3—C188.89 (8)C1—C6—C10—C1285.85 (11)
O4—P1—O3—C1160.39 (7)P1—O4—C13—C1895.20 (10)
Li1—P1—O3—C168.81 (10)P1—O4—C13—C1489.13 (10)
O1—P1—O4—C1388.42 (8)C18—C13—C14—C150.30 (14)
O2—P1—O4—C13144.44 (7)O4—C13—C14—C15175.14 (8)
O3—P1—O4—C1328.84 (8)C18—C13—C14—C19179.32 (9)
Li1—P1—O4—C13175.22 (8)O4—C13—C14—C195.24 (14)
P1—O3—C1—C294.01 (10)C13—C14—C15—C160.31 (15)
P1—O3—C1—C691.40 (10)C19—C14—C15—C16179.32 (10)
O3—C1—C2—C3176.33 (8)C14—C15—C16—C170.00 (17)
C6—C1—C2—C32.06 (14)C15—C16—C17—C180.36 (17)
O3—C1—C2—C73.54 (13)C16—C17—C18—C130.38 (15)
C6—C1—C2—C7177.81 (9)C16—C17—C18—C22178.27 (10)
C1—C2—C3—C40.79 (14)C14—C13—C18—C170.04 (15)
C7—C2—C3—C4179.08 (9)O4—C13—C18—C17175.49 (8)
C2—C3—C4—C50.71 (16)C14—C13—C18—C22178.61 (9)
C3—C4—C5—C61.07 (16)O4—C13—C18—C223.16 (13)
C4—C5—C6—C10.11 (14)C15—C14—C19—C2062.20 (13)
C4—C5—C6—C10175.93 (9)C13—C14—C19—C20118.20 (11)
C2—C1—C6—C51.72 (14)C15—C14—C19—C2160.88 (12)
O3—C1—C6—C5176.02 (8)C13—C14—C19—C21118.73 (10)
C2—C1—C6—C10174.33 (9)C17—C18—C22—C2328.37 (14)
O3—C1—C6—C100.04 (13)C13—C18—C22—C23153.04 (10)
C1—C2—C7—C8127.00 (10)C17—C18—C22—C2496.23 (12)
C3—C2—C7—C852.86 (13)C13—C18—C22—C2482.36 (12)
C1—C2—C7—C9109.19 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H26···O10.79 (2)2.00 (2)2.7482 (11)158.2 (19)
O6—H28···O8i0.85 (2)1.86 (2)2.7013 (14)174 (2)
O7—H30···O2ii0.83 (2)1.89 (2)2.7152 (11)170.7 (19)
O8—H32···O10.82 (2)1.88 (2)2.6929 (12)171.8 (19)
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+1, y+2, z+2.
 

Acknowledgements

The authors are grateful to Ivan V. Anan'ev for assistance with the X-ray study.

References

First citationBlonski, C., Gasc, M.-B., Klaebe, A., Perie, J.-J., Roques, R., Declercq, J. P. & Germain, G. (1982). J. Chem. Soc. Perkin Trans. 2, pp. 7–13.  CSD CrossRef Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGerus, A. & Lis, T. (2013). Acta Cryst. E69, m464–m465.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationHilken, S., Kaletta, F., Heinsch, A., Neudörfl, J.-M. & Berkessel, A. (2014). Eur. J. Org. Chem. pp. 2231–2241.  CSD CrossRef Google Scholar
First citationKommana, P. & Swamy, K. C. K. (2003). Indian J. Chem. Sect. A, 42, 1061–1063.  Google Scholar
First citationKosolapoff, G. M., Arpke, Ch. K., Lamb, R. W. & Reich, H. (1968). J. Chem. Soc. C, pp. 815–818.  Google Scholar
First citationKumara Swamy, K. C. & Kumaraswamy, S. (2001). Acta Cryst. C57, 1147–1148.  CSD CrossRef IUCr Journals Google Scholar
First citationKumara Swamy, K. C., Kumaraswamy, S. & Kommana, P. (2001). J. Am. Chem. Soc. 123, 12642–12649.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLugmair, C. G. & Tilley, T. D. (1998). Inorg. Chem. 37, 1821–1826.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N., Kostitsyna, N. N., Yakovlev, V. A., Bondarenko, G. N. & Filatova, M. P. (2014). Appl. Catal. Gen. 478, 219–227.  CAS Google Scholar
First citationNifant'ev, I. E., Tavtorkin, A. N., Shlyahtin, A. V., Korchagina, S. A., Gavrilenko, I. F., Glebova, N. N. & Churakov, A. V. (2013). Dalton Trans. 42, 1223–1230.  Web of Science CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationŚlepokura, K. (2008). Carbohydr. Res. 343, 113–131.  Web of Science PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds