organic compounds
H-indene-1,3-dione
of 2-(5-bromo-2-hydroxybenzylidene)-2,3-dihydro-1aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com
The title molecule, C16H9BrO3, deviates slightly from planarity. The benzene ring makes a dihedral angle of 1.02 (9)° with the plane defined by the five-membered ring of the indandione moiety. The latter exhibits a minute twist indicated by the dihedral angle of 0.47 (9)° between the planes of the five- and six-membered rings. An intramolecular C—H⋯O hydrogen bond between the attached benzene ring with one of the indandione carbonyl O atoms stabilizes the molecular conformation. In the crystal, the molecules form dimers across centres of inversion via pairwise O—H⋯O hydrogen bonds. The dimers form stacks running parallel to [010] and interact through π–π interactions between the five-membered ring of one molecule and the six-membered rings of the indandione moiety of an adjacent molecule [centroid-to-centroid distance = 3.5454 (10) Å].
CCDC reference: 1059869
1. Related literature
Indan-1,3-dione and its analogues are synthons for building highly interesting compounds with a wide range of applications in both pharmaceutical and industrial chemistry (Kuhn & Rae, 1971; Junek & Sterk, 1968; Kunz & Polansky, 1969; Aldersley et al., 1983). For chemical reactions and bio-activities of 3-substituted indan-1,3-diones, see: Hochrainer & Wessely (1966); Zargar & Khan (2015).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2014); cell SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
CCDC reference: 1059869
https://doi.org/10.1107/S2056989015007434/wm5145sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015007434/wm5145Isup2.hkl
A mixture of 1 mmol (146 mg) of 1H-indene-1,3(2H)-dione and 1 mmol (201 mg) of 5-bromo-2-hydroxybenzaldehyde in 30 ml ethanol was refluxed for 30 min. The resulting solid product was collected under vacuum and re-crystallized from ethanol to afford yellow needles suitable for X-ray diffraction in 83% yield.
H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give a distance O—H = 0.84 Å. All H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.
Indan-1,3-dione and its analogues are synthons for building highly interesting compounds with a wide range of applications in both pharmaceutical and industrial chemistry (Kuhn & Rae, 1971; Junek & Sterk, 1968; Kunz & Polansky, 1969; Aldersley et al., 1983). For chemical reactions and bio-activities of 3-substituted indan-1,3-diones, see: Hochrainer & Wessely (1966); Zargar & Khan (2015).
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C16H9BrO3 | F(000) = 656 |
Mr = 329.14 | Dx = 1.736 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 13.8820 (4) Å | Cell parameters from 7789 reflections |
b = 3.8695 (1) Å | θ = 3.3–74.5° |
c = 24.0068 (5) Å | µ = 4.50 mm−1 |
β = 102.483 (1)° | T = 150 K |
V = 1259.07 (6) Å3 | Needle, yellow |
Z = 4 | 0.22 × 0.07 × 0.04 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2510 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 2386 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.020 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 74.5°, θmin = 3.3° |
ω scans | h = −16→17 |
Absorption correction: numerical (SADABS; Bruker, 2014) | k = −4→4 |
Tmin = 0.67, Tmax = 0.84 | l = −29→29 |
8943 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.021 | Hydrogen site location: mixed |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0301P)2 + 0.6412P] where P = (Fo2 + 2Fc2)/3 |
2510 reflections | (Δ/σ)max = 0.003 |
181 parameters | Δρmax = 0.36 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
C16H9BrO3 | V = 1259.07 (6) Å3 |
Mr = 329.14 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 13.8820 (4) Å | µ = 4.50 mm−1 |
b = 3.8695 (1) Å | T = 150 K |
c = 24.0068 (5) Å | 0.22 × 0.07 × 0.04 mm |
β = 102.483 (1)° |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 2510 independent reflections |
Absorption correction: numerical (SADABS; Bruker, 2014) | 2386 reflections with I > 2σ(I) |
Tmin = 0.67, Tmax = 0.84 | Rint = 0.020 |
8943 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 0 restraints |
wR(F2) = 0.056 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.36 e Å−3 |
2510 reflections | Δρmin = −0.25 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.74761 (2) | 0.32460 (5) | 0.72665 (2) | 0.02597 (8) | |
O1 | 1.00458 (9) | −0.0525 (4) | 0.56417 (5) | 0.0324 (3) | |
H1 | 1.0561 | −0.1618 | 0.5789 | 0.039* | |
O2 | 0.82877 (9) | 0.4018 (4) | 0.39794 (5) | 0.0275 (3) | |
O3 | 0.63542 (9) | 0.6391 (4) | 0.53435 (5) | 0.0331 (3) | |
C1 | 0.85867 (12) | 0.2074 (4) | 0.57969 (6) | 0.0188 (3) | |
C2 | 0.94845 (11) | 0.0308 (4) | 0.60120 (6) | 0.0216 (3) | |
C3 | 0.97616 (11) | −0.0550 (4) | 0.65901 (6) | 0.0227 (3) | |
H3 | 1.0370 | −0.1702 | 0.6731 | 0.027* | |
C4 | 0.91553 (12) | 0.0270 (4) | 0.69553 (6) | 0.0215 (3) | |
H4 | 0.9339 | −0.0334 | 0.7348 | 0.026* | |
C5 | 0.82703 (12) | 0.1991 (4) | 0.67450 (6) | 0.0195 (3) | |
C6 | 0.79773 (12) | 0.2902 (4) | 0.61786 (6) | 0.0195 (3) | |
H6 | 0.7370 | 0.4079 | 0.6046 | 0.023* | |
C7 | 0.83772 (12) | 0.2944 (4) | 0.51956 (6) | 0.0196 (3) | |
H7 | 0.8883 | 0.2221 | 0.5011 | 0.024* | |
C8 | 0.76223 (11) | 0.4559 (4) | 0.48379 (6) | 0.0193 (3) | |
C9 | 0.76467 (11) | 0.4982 (4) | 0.42218 (6) | 0.0195 (3) | |
C10 | 0.67288 (11) | 0.6780 (4) | 0.39402 (7) | 0.0191 (3) | |
C11 | 0.64124 (13) | 0.7720 (4) | 0.33723 (7) | 0.0235 (3) | |
H11 | 0.6801 | 0.7253 | 0.3100 | 0.028* | |
C12 | 0.55046 (13) | 0.9372 (4) | 0.32177 (7) | 0.0262 (3) | |
H12 | 0.5268 | 1.0061 | 0.2833 | 0.031* | |
C13 | 0.49331 (12) | 1.0039 (5) | 0.36193 (7) | 0.0269 (3) | |
H13 | 0.4315 | 1.1172 | 0.3502 | 0.032* | |
C14 | 0.52519 (12) | 0.9075 (5) | 0.41869 (7) | 0.0243 (3) | |
H14 | 0.4862 | 0.9515 | 0.4459 | 0.029* | |
C15 | 0.61626 (12) | 0.7441 (4) | 0.43405 (7) | 0.0202 (3) | |
C16 | 0.66754 (12) | 0.6133 (4) | 0.49114 (7) | 0.0216 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03096 (11) | 0.02856 (12) | 0.02164 (10) | 0.00308 (7) | 0.01281 (7) | −0.00170 (6) |
O1 | 0.0248 (6) | 0.0525 (8) | 0.0217 (5) | 0.0200 (6) | 0.0089 (4) | 0.0075 (6) |
O2 | 0.0239 (6) | 0.0394 (7) | 0.0207 (5) | 0.0109 (5) | 0.0084 (4) | 0.0042 (5) |
O3 | 0.0278 (6) | 0.0513 (8) | 0.0223 (6) | 0.0172 (6) | 0.0102 (5) | 0.0053 (5) |
C1 | 0.0181 (7) | 0.0208 (8) | 0.0175 (7) | 0.0013 (6) | 0.0038 (6) | −0.0007 (6) |
C2 | 0.0193 (7) | 0.0260 (8) | 0.0200 (7) | 0.0031 (7) | 0.0057 (6) | 0.0000 (6) |
C3 | 0.0193 (7) | 0.0266 (8) | 0.0208 (7) | 0.0037 (7) | 0.0012 (6) | 0.0023 (6) |
C4 | 0.0236 (7) | 0.0225 (8) | 0.0172 (6) | −0.0010 (7) | 0.0019 (6) | 0.0004 (6) |
C5 | 0.0206 (7) | 0.0203 (8) | 0.0193 (7) | −0.0011 (6) | 0.0079 (6) | −0.0030 (6) |
C6 | 0.0186 (7) | 0.0201 (8) | 0.0199 (7) | 0.0023 (6) | 0.0042 (6) | −0.0011 (6) |
C7 | 0.0193 (7) | 0.0217 (8) | 0.0189 (7) | 0.0021 (6) | 0.0062 (6) | −0.0013 (6) |
C8 | 0.0190 (7) | 0.0208 (7) | 0.0184 (7) | 0.0014 (6) | 0.0049 (5) | −0.0006 (6) |
C9 | 0.0190 (7) | 0.0201 (7) | 0.0189 (7) | 0.0011 (6) | 0.0032 (5) | 0.0006 (6) |
C10 | 0.0181 (7) | 0.0173 (7) | 0.0215 (7) | −0.0004 (6) | 0.0033 (6) | −0.0010 (5) |
C11 | 0.0262 (8) | 0.0230 (8) | 0.0207 (7) | 0.0017 (7) | 0.0039 (6) | 0.0016 (6) |
C12 | 0.0299 (8) | 0.0222 (8) | 0.0224 (7) | 0.0013 (7) | −0.0033 (6) | 0.0022 (6) |
C13 | 0.0218 (8) | 0.0230 (8) | 0.0317 (8) | 0.0043 (7) | −0.0032 (6) | −0.0005 (7) |
C14 | 0.0191 (7) | 0.0259 (8) | 0.0271 (8) | 0.0039 (7) | 0.0031 (6) | −0.0019 (7) |
C15 | 0.0181 (7) | 0.0203 (7) | 0.0211 (7) | 0.0010 (6) | 0.0019 (6) | −0.0010 (6) |
C16 | 0.0196 (7) | 0.0238 (8) | 0.0211 (7) | 0.0040 (6) | 0.0037 (6) | 0.0005 (6) |
Br1—C5 | 1.9014 (15) | C7—H7 | 0.9500 |
O1—C2 | 1.3418 (19) | C8—C16 | 1.493 (2) |
O1—H1 | 0.8400 | C8—C9 | 1.4956 (19) |
O2—C9 | 1.2221 (19) | C9—C10 | 1.481 (2) |
O3—C16 | 1.218 (2) | C10—C11 | 1.387 (2) |
C1—C6 | 1.412 (2) | C10—C15 | 1.390 (2) |
C1—C2 | 1.417 (2) | C11—C12 | 1.390 (2) |
C1—C7 | 1.449 (2) | C11—H11 | 0.9500 |
C2—C3 | 1.398 (2) | C12—C13 | 1.399 (3) |
C3—C4 | 1.377 (2) | C12—H12 | 0.9500 |
C3—H3 | 0.9500 | C13—C14 | 1.390 (2) |
C4—C5 | 1.393 (2) | C13—H13 | 0.9500 |
C4—H4 | 0.9500 | C14—C15 | 1.390 (2) |
C5—C6 | 1.378 (2) | C14—H14 | 0.9500 |
C6—H6 | 0.9500 | C15—C16 | 1.490 (2) |
C7—C8 | 1.355 (2) | ||
C2—O1—H1 | 113.9 | O2—C9—C10 | 124.70 (14) |
C6—C1—C2 | 118.43 (14) | O2—C9—C8 | 127.73 (14) |
C6—C1—C7 | 125.05 (14) | C10—C9—C8 | 107.57 (13) |
C2—C1—C7 | 116.51 (14) | C11—C10—C15 | 121.66 (15) |
O1—C2—C3 | 121.74 (14) | C11—C10—C9 | 129.07 (15) |
O1—C2—C1 | 117.73 (13) | C15—C10—C9 | 109.27 (13) |
C3—C2—C1 | 120.53 (14) | C10—C11—C12 | 117.32 (15) |
C4—C3—C2 | 120.16 (14) | C10—C11—H11 | 121.3 |
C4—C3—H3 | 119.9 | C12—C11—H11 | 121.3 |
C2—C3—H3 | 119.9 | C11—C12—C13 | 121.16 (15) |
C3—C4—C5 | 119.47 (14) | C11—C12—H12 | 119.4 |
C3—C4—H4 | 120.3 | C13—C12—H12 | 119.4 |
C5—C4—H4 | 120.3 | C14—C13—C12 | 121.23 (15) |
C6—C5—C4 | 121.94 (14) | C14—C13—H13 | 119.4 |
C6—C5—Br1 | 119.65 (12) | C12—C13—H13 | 119.4 |
C4—C5—Br1 | 118.37 (11) | C13—C14—C15 | 117.44 (15) |
C5—C6—C1 | 119.46 (14) | C13—C14—H14 | 121.3 |
C5—C6—H6 | 120.3 | C15—C14—H14 | 121.3 |
C1—C6—H6 | 120.3 | C14—C15—C10 | 121.19 (15) |
C8—C7—C1 | 134.39 (15) | C14—C15—C16 | 128.67 (15) |
C8—C7—H7 | 112.8 | C10—C15—C16 | 110.15 (14) |
C1—C7—H7 | 112.8 | O3—C16—C15 | 124.43 (15) |
C7—C8—C16 | 133.85 (14) | O3—C16—C8 | 128.87 (14) |
C7—C8—C9 | 119.83 (14) | C15—C16—C8 | 106.70 (13) |
C16—C8—C9 | 106.32 (13) | ||
C6—C1—C2—O1 | 178.65 (15) | C8—C9—C10—C11 | −179.35 (16) |
C7—C1—C2—O1 | −2.4 (2) | O2—C9—C10—C15 | 179.00 (16) |
C6—C1—C2—C3 | −0.7 (2) | C8—C9—C10—C15 | −0.22 (18) |
C7—C1—C2—C3 | 178.19 (15) | C15—C10—C11—C12 | 0.3 (2) |
O1—C2—C3—C4 | −178.38 (17) | C9—C10—C11—C12 | 179.34 (16) |
C1—C2—C3—C4 | 1.0 (3) | C10—C11—C12—C13 | −0.3 (3) |
C2—C3—C4—C5 | −0.7 (3) | C11—C12—C13—C14 | 0.0 (3) |
C3—C4—C5—C6 | 0.1 (3) | C12—C13—C14—C15 | 0.4 (3) |
C3—C4—C5—Br1 | −177.54 (13) | C13—C14—C15—C10 | −0.4 (3) |
C4—C5—C6—C1 | 0.1 (2) | C13—C14—C15—C16 | −179.70 (17) |
Br1—C5—C6—C1 | 177.74 (12) | C11—C10—C15—C14 | 0.1 (3) |
C2—C1—C6—C5 | 0.2 (2) | C9—C10—C15—C14 | −179.15 (15) |
C7—C1—C6—C5 | −178.61 (15) | C11—C10—C15—C16 | 179.48 (15) |
C6—C1—C7—C8 | −1.5 (3) | C9—C10—C15—C16 | 0.27 (19) |
C2—C1—C7—C8 | 179.65 (18) | C14—C15—C16—O3 | −1.4 (3) |
C1—C7—C8—C16 | −0.2 (3) | C10—C15—C16—O3 | 179.24 (17) |
C1—C7—C8—C9 | −179.21 (17) | C14—C15—C16—C8 | 179.14 (17) |
C7—C8—C9—O2 | 0.1 (3) | C10—C15—C16—C8 | −0.22 (19) |
C16—C8—C9—O2 | −179.12 (17) | C7—C8—C16—O3 | 1.5 (3) |
C7—C8—C9—C10 | 179.33 (15) | C9—C8—C16—O3 | −179.35 (18) |
C16—C8—C9—C10 | 0.08 (17) | C7—C8—C16—C15 | −179.02 (18) |
O2—C9—C10—C11 | −0.1 (3) | C9—C8—C16—C15 | 0.08 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3 | 0.95 | 2.15 | 2.994 (2) | 148 |
O1—H1···O2i | 0.84 | 1.83 | 2.6641 (16) | 173 |
Symmetry code: (i) −x+2, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O3 | 0.95 | 2.15 | 2.994 (2) | 148 |
O1—H1···O2i | 0.84 | 1.83 | 2.6641 (16) | 173 |
Symmetry code: (i) −x+2, −y, −z+1. |
Acknowledgements
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Aldersley, F. M., Dean, F. M. & Nayyir-Mazhir, R. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 1753–1757. CrossRef Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Hochrainer, A. & Wessely, F. (1966). Monatsh. Chem. 97, 1–9. CrossRef CAS Google Scholar
Junek, H. & Sterk, H. (1968). Tetrahedron Lett. 9, 4309–4310. CrossRef Google Scholar
Kuhn, S. J. & Rae, I. D. (1971). Can. J. Chem. 49, 157–160. CrossRef CAS Google Scholar
Kunz, F. J. & Polansky, O. (1969). Monatsh. Chem. 100, 95–105. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zargar, N. U. D. & Khan, K. Z. (2015). J. Chem. Sci. Photon, 109, 274–278. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.