organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(5-bromo-2-hy­dr­oxy­benzyl­­idene)-2,3-di­hydro-1H-indene-1,3-dione

aDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, bChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, cChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eDepartment of Chemistry, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 9 April 2015; accepted 15 April 2015; online 22 April 2015)

The title mol­ecule, C16H9BrO3, deviates slightly from planarity. The benzene ring makes a dihedral angle of 1.02 (9)° with the plane defined by the five-membered ring of the indandione moiety. The latter exhibits a minute twist indicated by the dihedral angle of 0.47 (9)° between the planes of the five- and six-membered rings. An intra­molecular C—H⋯O hydrogen bond between the attached benzene ring with one of the indandione carbonyl O atoms stabilizes the mol­ecular conformation. In the crystal, the mol­ecules form dimers across centres of inversion via pairwise O—H⋯O hydrogen bonds. The dimers form stacks running parallel to [010] and inter­act through ππ inter­actions between the five-membered ring of one mol­ecule and the six-membered rings of the indandione moiety of an adjacent mol­ecule [centroid-to-centroid distance = 3.5454 (10) Å].

1. Related literature

Indan-1,3-dione and its analogues are synthons for building highly inter­esting compounds with a wide range of applications in both pharmaceutical and industrial chemistry (Kuhn & Rae, 1971[Kuhn, S. J. & Rae, I. D. (1971). Can. J. Chem. 49, 157-160.]; Junek & Sterk, 1968[Junek, H. & Sterk, H. (1968). Tetrahedron Lett. 9, 4309-4310.]; Kunz & Polansky, 1969[Kunz, F. J. & Polansky, O. (1969). Monatsh. Chem. 100, 95-105.]; Aldersley et al., 1983[Aldersley, F. M., Dean, F. M. & Nayyir-Mazhir, R. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 1753-1757.]). For chemical reactions and bio-activities of 3-substituted indan-1,3-diones, see: Hochrainer & Wessely (1966[Hochrainer, A. & Wessely, F. (1966). Monatsh. Chem. 97, 1-9.]); Zargar & Khan (2015[Zargar, N. U. D. & Khan, K. Z. (2015). J. Chem. Sci. Photon, 109, 274-278.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H9BrO3

  • Mr = 329.14

  • Monoclinic, P 21 /c

  • a = 13.8820 (4) Å

  • b = 3.8695 (1) Å

  • c = 24.0068 (5) Å

  • β = 102.483 (1)°

  • V = 1259.07 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.50 mm−1

  • T = 150 K

  • 0.22 × 0.07 × 0.04 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.67, Tmax = 0.84

  • 8943 measured reflections

  • 2510 independent reflections

  • 2386 reflections with I > 2σ(I)

  • Rint = 0.020

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.056

  • S = 1.09

  • 2510 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3 0.95 2.15 2.994 (2) 148
O1—H1⋯O2i 0.84 1.83 2.6641 (16) 173
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Related literature top

Indan-1,3-dione and its analogues are synthons for building highly interesting compounds with a wide range of applications in both pharmaceutical and industrial chemistry (Kuhn & Rae, 1971; Junek & Sterk, 1968; Kunz & Polansky, 1969; Aldersley et al., 1983). For chemical reactions and bio-activities of 3-substituted indan-1,3-diones, see: Hochrainer & Wessely (1966); Zargar & Khan (2015).

Experimental top

A mixture of 1 mmol (146 mg) of 1H-indene-1,3(2H)-dione and 1 mmol (201 mg) of 5-bromo-2-hydroxybenzaldehyde in 30 ml ethanol was refluxed for 30 min. The resulting solid product was collected under vacuum and re-crystallized from ethanol to afford yellow needles suitable for X-ray diffraction in 83% yield.

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give a distance O—H = 0.84 Å. All H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Structure description top

Indan-1,3-dione and its analogues are synthons for building highly interesting compounds with a wide range of applications in both pharmaceutical and industrial chemistry (Kuhn & Rae, 1971; Junek & Sterk, 1968; Kunz & Polansky, 1969; Aldersley et al., 1983). For chemical reactions and bio-activities of 3-substituted indan-1,3-diones, see: Hochrainer & Wessely (1966); Zargar & Khan (2015).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular C—H···O interaction is shown as a dotted line.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down [010]. Intermolecular O—H···O hydrogen bonds are shown as dotted lines.
2-(5-Bromo-2-hydroxybenzylidene)-2,3-dihydro-1H-indene-1,3-dione top
Crystal data top
C16H9BrO3F(000) = 656
Mr = 329.14Dx = 1.736 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 13.8820 (4) ÅCell parameters from 7789 reflections
b = 3.8695 (1) Åθ = 3.3–74.5°
c = 24.0068 (5) ŵ = 4.50 mm1
β = 102.483 (1)°T = 150 K
V = 1259.07 (6) Å3Needle, yellow
Z = 40.22 × 0.07 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2510 independent reflections
Radiation source: INCOATEC IµS micro–focus source2386 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.020
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 3.3°
ω scansh = 1617
Absorption correction: numerical
(SADABS; Bruker, 2014)
k = 44
Tmin = 0.67, Tmax = 0.84l = 2929
8943 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: mixed
wR(F2) = 0.056H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0301P)2 + 0.6412P]
where P = (Fo2 + 2Fc2)/3
2510 reflections(Δ/σ)max = 0.003
181 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H9BrO3V = 1259.07 (6) Å3
Mr = 329.14Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.8820 (4) ŵ = 4.50 mm1
b = 3.8695 (1) ÅT = 150 K
c = 24.0068 (5) Å0.22 × 0.07 × 0.04 mm
β = 102.483 (1)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
2510 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2014)
2386 reflections with I > 2σ(I)
Tmin = 0.67, Tmax = 0.84Rint = 0.020
8943 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.09Δρmax = 0.36 e Å3
2510 reflectionsΔρmin = 0.25 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while that attached to oxygen was placed in a location derived from a difference map and its coordinates adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.74761 (2)0.32460 (5)0.72665 (2)0.02597 (8)
O11.00458 (9)0.0525 (4)0.56417 (5)0.0324 (3)
H11.05610.16180.57890.039*
O20.82877 (9)0.4018 (4)0.39794 (5)0.0275 (3)
O30.63542 (9)0.6391 (4)0.53435 (5)0.0331 (3)
C10.85867 (12)0.2074 (4)0.57969 (6)0.0188 (3)
C20.94845 (11)0.0308 (4)0.60120 (6)0.0216 (3)
C30.97616 (11)0.0550 (4)0.65901 (6)0.0227 (3)
H31.03700.17020.67310.027*
C40.91553 (12)0.0270 (4)0.69553 (6)0.0215 (3)
H40.93390.03340.73480.026*
C50.82703 (12)0.1991 (4)0.67450 (6)0.0195 (3)
C60.79773 (12)0.2902 (4)0.61786 (6)0.0195 (3)
H60.73700.40790.60460.023*
C70.83772 (12)0.2944 (4)0.51956 (6)0.0196 (3)
H70.88830.22210.50110.024*
C80.76223 (11)0.4559 (4)0.48379 (6)0.0193 (3)
C90.76467 (11)0.4982 (4)0.42218 (6)0.0195 (3)
C100.67288 (11)0.6780 (4)0.39402 (7)0.0191 (3)
C110.64124 (13)0.7720 (4)0.33723 (7)0.0235 (3)
H110.68010.72530.31000.028*
C120.55046 (13)0.9372 (4)0.32177 (7)0.0262 (3)
H120.52681.00610.28330.031*
C130.49331 (12)1.0039 (5)0.36193 (7)0.0269 (3)
H130.43151.11720.35020.032*
C140.52519 (12)0.9075 (5)0.41869 (7)0.0243 (3)
H140.48620.95150.44590.029*
C150.61626 (12)0.7441 (4)0.43405 (7)0.0202 (3)
C160.66754 (12)0.6133 (4)0.49114 (7)0.0216 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03096 (11)0.02856 (12)0.02164 (10)0.00308 (7)0.01281 (7)0.00170 (6)
O10.0248 (6)0.0525 (8)0.0217 (5)0.0200 (6)0.0089 (4)0.0075 (6)
O20.0239 (6)0.0394 (7)0.0207 (5)0.0109 (5)0.0084 (4)0.0042 (5)
O30.0278 (6)0.0513 (8)0.0223 (6)0.0172 (6)0.0102 (5)0.0053 (5)
C10.0181 (7)0.0208 (8)0.0175 (7)0.0013 (6)0.0038 (6)0.0007 (6)
C20.0193 (7)0.0260 (8)0.0200 (7)0.0031 (7)0.0057 (6)0.0000 (6)
C30.0193 (7)0.0266 (8)0.0208 (7)0.0037 (7)0.0012 (6)0.0023 (6)
C40.0236 (7)0.0225 (8)0.0172 (6)0.0010 (7)0.0019 (6)0.0004 (6)
C50.0206 (7)0.0203 (8)0.0193 (7)0.0011 (6)0.0079 (6)0.0030 (6)
C60.0186 (7)0.0201 (8)0.0199 (7)0.0023 (6)0.0042 (6)0.0011 (6)
C70.0193 (7)0.0217 (8)0.0189 (7)0.0021 (6)0.0062 (6)0.0013 (6)
C80.0190 (7)0.0208 (7)0.0184 (7)0.0014 (6)0.0049 (5)0.0006 (6)
C90.0190 (7)0.0201 (7)0.0189 (7)0.0011 (6)0.0032 (5)0.0006 (6)
C100.0181 (7)0.0173 (7)0.0215 (7)0.0004 (6)0.0033 (6)0.0010 (5)
C110.0262 (8)0.0230 (8)0.0207 (7)0.0017 (7)0.0039 (6)0.0016 (6)
C120.0299 (8)0.0222 (8)0.0224 (7)0.0013 (7)0.0033 (6)0.0022 (6)
C130.0218 (8)0.0230 (8)0.0317 (8)0.0043 (7)0.0032 (6)0.0005 (7)
C140.0191 (7)0.0259 (8)0.0271 (8)0.0039 (7)0.0031 (6)0.0019 (7)
C150.0181 (7)0.0203 (7)0.0211 (7)0.0010 (6)0.0019 (6)0.0010 (6)
C160.0196 (7)0.0238 (8)0.0211 (7)0.0040 (6)0.0037 (6)0.0005 (6)
Geometric parameters (Å, º) top
Br1—C51.9014 (15)C7—H70.9500
O1—C21.3418 (19)C8—C161.493 (2)
O1—H10.8400C8—C91.4956 (19)
O2—C91.2221 (19)C9—C101.481 (2)
O3—C161.218 (2)C10—C111.387 (2)
C1—C61.412 (2)C10—C151.390 (2)
C1—C21.417 (2)C11—C121.390 (2)
C1—C71.449 (2)C11—H110.9500
C2—C31.398 (2)C12—C131.399 (3)
C3—C41.377 (2)C12—H120.9500
C3—H30.9500C13—C141.390 (2)
C4—C51.393 (2)C13—H130.9500
C4—H40.9500C14—C151.390 (2)
C5—C61.378 (2)C14—H140.9500
C6—H60.9500C15—C161.490 (2)
C7—C81.355 (2)
C2—O1—H1113.9O2—C9—C10124.70 (14)
C6—C1—C2118.43 (14)O2—C9—C8127.73 (14)
C6—C1—C7125.05 (14)C10—C9—C8107.57 (13)
C2—C1—C7116.51 (14)C11—C10—C15121.66 (15)
O1—C2—C3121.74 (14)C11—C10—C9129.07 (15)
O1—C2—C1117.73 (13)C15—C10—C9109.27 (13)
C3—C2—C1120.53 (14)C10—C11—C12117.32 (15)
C4—C3—C2120.16 (14)C10—C11—H11121.3
C4—C3—H3119.9C12—C11—H11121.3
C2—C3—H3119.9C11—C12—C13121.16 (15)
C3—C4—C5119.47 (14)C11—C12—H12119.4
C3—C4—H4120.3C13—C12—H12119.4
C5—C4—H4120.3C14—C13—C12121.23 (15)
C6—C5—C4121.94 (14)C14—C13—H13119.4
C6—C5—Br1119.65 (12)C12—C13—H13119.4
C4—C5—Br1118.37 (11)C13—C14—C15117.44 (15)
C5—C6—C1119.46 (14)C13—C14—H14121.3
C5—C6—H6120.3C15—C14—H14121.3
C1—C6—H6120.3C14—C15—C10121.19 (15)
C8—C7—C1134.39 (15)C14—C15—C16128.67 (15)
C8—C7—H7112.8C10—C15—C16110.15 (14)
C1—C7—H7112.8O3—C16—C15124.43 (15)
C7—C8—C16133.85 (14)O3—C16—C8128.87 (14)
C7—C8—C9119.83 (14)C15—C16—C8106.70 (13)
C16—C8—C9106.32 (13)
C6—C1—C2—O1178.65 (15)C8—C9—C10—C11179.35 (16)
C7—C1—C2—O12.4 (2)O2—C9—C10—C15179.00 (16)
C6—C1—C2—C30.7 (2)C8—C9—C10—C150.22 (18)
C7—C1—C2—C3178.19 (15)C15—C10—C11—C120.3 (2)
O1—C2—C3—C4178.38 (17)C9—C10—C11—C12179.34 (16)
C1—C2—C3—C41.0 (3)C10—C11—C12—C130.3 (3)
C2—C3—C4—C50.7 (3)C11—C12—C13—C140.0 (3)
C3—C4—C5—C60.1 (3)C12—C13—C14—C150.4 (3)
C3—C4—C5—Br1177.54 (13)C13—C14—C15—C100.4 (3)
C4—C5—C6—C10.1 (2)C13—C14—C15—C16179.70 (17)
Br1—C5—C6—C1177.74 (12)C11—C10—C15—C140.1 (3)
C2—C1—C6—C50.2 (2)C9—C10—C15—C14179.15 (15)
C7—C1—C6—C5178.61 (15)C11—C10—C15—C16179.48 (15)
C6—C1—C7—C81.5 (3)C9—C10—C15—C160.27 (19)
C2—C1—C7—C8179.65 (18)C14—C15—C16—O31.4 (3)
C1—C7—C8—C160.2 (3)C10—C15—C16—O3179.24 (17)
C1—C7—C8—C9179.21 (17)C14—C15—C16—C8179.14 (17)
C7—C8—C9—O20.1 (3)C10—C15—C16—C80.22 (19)
C16—C8—C9—O2179.12 (17)C7—C8—C16—O31.5 (3)
C7—C8—C9—C10179.33 (15)C9—C8—C16—O3179.35 (18)
C16—C8—C9—C100.08 (17)C7—C8—C16—C15179.02 (18)
O2—C9—C10—C110.1 (3)C9—C8—C16—C150.08 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O30.952.152.994 (2)148
O1—H1···O2i0.841.832.6641 (16)173
Symmetry code: (i) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O30.952.152.994 (2)148
O1—H1···O2i0.841.832.6641 (16)173
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAldersley, F. M., Dean, F. M. & Nayyir-Mazhir, R. (1983). J. Chem. Soc. Perkin Trans. 1, pp. 1753–1757.  CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHochrainer, A. & Wessely, F. (1966). Monatsh. Chem. 97, 1–9.  CrossRef CAS Google Scholar
First citationJunek, H. & Sterk, H. (1968). Tetrahedron Lett. 9, 4309–4310.  CrossRef Google Scholar
First citationKuhn, S. J. & Rae, I. D. (1971). Can. J. Chem. 49, 157–160.  CrossRef CAS Google Scholar
First citationKunz, F. J. & Polansky, O. (1969). Monatsh. Chem. 100, 95–105.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZargar, N. U. D. & Khan, K. Z. (2015). J. Chem. Sci. Photon, 109, 274–278.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds