research communications
of bis(2-amino-5-chloropyridinium) tetrachloridocobaltate(II)
aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 Manar II Tunis, Tunisia
*Correspondence e-mail: habib.boughzala@ipein.rnu.tn
The title salt, (C5H6ClN2)2[CoCl4], was synthesized by slow evaporation of an aqueous solution at room temperature. The consists of two essentially planar (C5H6ClN2)+ cations [maximum deviations = 0.010 (3) and 0.014 (3) Å] that are nearly perpendicular to each other [dihedral angle = 84.12 (7)°]. They are bonded through N—H⋯Cl hydrogen bonds to distorted [CoCl4]2− tetrahedra, leading to the formation of undulating layers parallel to (100). The structure is isotypic with the Zn analogue [Kefi et. al (2011). Acta Cryst. E67, m355–m356.]
CCDC reference: 990478
1. Chemical context
Organic–inorganic hybrid compounds frequently exhibit self-organized structures and can combine organic and inorganic characteristics (Parent et al., 2007; Zheng et al., 2010; Chang et al., 2011). In particular, anionic cobalt halides associated with organic counter-cations have some interesting physical properties, such as luminescence, in which we are interested. In this communication, we report the synthesis and of the new organic–inorganic hybrid compound bis(2-amino-5-chloropyridinium) tetrachloridocobaltate(II), (C5H6ClN2)2[CoCl4].
2. Structural commentary
of the title compound consists of two 2-amino-5-chloropyridinium cations (cat1 consists of ring C1–C5/N2 and cat2 consists of ring C9–C10/N3) and one isolated [CoClThe organic cations are nearly planar exhibiting small maximum deviations of 0.010 (3) and 0.014 (3) Å for atoms N2 and C6, respectively. The two least-squares planes of the two cations are nearly perpendicular to each other [84.12 (7)°]. The bond angles C4—N2—C5 [123.6 (3)°] and C9—N3—C10 [123.3 (3)°] in the rings of cat1 and cat2, respectively, confirm the presence of pyridinium cations. Previous studies (Jin et al., 2001) showed that a pyridinium cation possesses an expanded C—N(H)—C angle in comparison with the parent pyridine (117°). This geometrical characteristic is in agreement with an imine–enamine resonance (Jin et al., 2005) and contributes to the structural stability.
In the [CoCl4]2− anion, the Co—Cl bond lengths range from 2.2645 (12) to 2.2934 (12) Å and the Cl—Co—Cl angles range from 104.84 (5) to 118.58 (5)°, revealing considerable distortions from the ideal tetrahedral geometry. These values are in agreement with those observed in similar compounds (Dhieb et al., 2014; Mghandef & Boughzala, 2014; Oh et al., 2011). The different Co—Cl bond lengths in the [CoCl4]2− anion are related to the number of hydrogen bonds accepted by the Cl atoms. The Co—Cl1 and Co—Cl4 bonds are longer than the Co—Cl2 and Co—Cl3 bonds because atoms Cl1 and Cl4 are each acceptors of two hydrogen bonds from cat2 and cat1, respectively.
3. Supramolecular features
Each CoCl4 tetrahedron is linked to four cations (two cat1 and two cat2) by hydrogen bonds (Fig. 2 and Table 1). Atom Cl1 is doubly linked to one cat2 cation by N3—HN3⋯Cl1 and N4—H4A⋯Cl1, and atom Cl2 establishes one hydrogen bond with a symmetry-related cat2 cation via N4—H4B⋯Cl2. Atom Cl3 is linked to cation cat1 by N1—H1B⋯Cl3 and atom Cl4 again shares two hydrogen bonds (N1—H1A⋯Cl4 and N2—HN2⋯Cl4) with a second symmetry-related cat1 cation. The hydrogen-bonding environments of the two cations are similar. Both are linked to two CoCl4 tetrahedra by three hydrogen bonds (Fig. 3)
The crystal packing can be described by an alternate stacking of cations and anions with a –cat1–[CoCl4]–cat2–[CoCl4]– sequence along [100], as shown in Fig. 4. Between antiparallel aligned cat2 cations, π–π interactions are also present [centroid-to-centroid separation = 3.900 (2) Å]. The stacked cations and anions are linked through N—H⋯Cl hydrogen bonds into zigzag layers parallel to (100) (Fig. 5).
4. Database survey
A systematic search procedure in the Cambridge Structural Database (Groom & Allen, 2014) indicates a total of 32 hits for the 2-amino-5-chloropyridinium cation with various counter-anions. For tetrahalogenidometalate anions, the following structures have been reported: (C5H6ClN2)2[ZnCl4]·H2O (Coomer et al., 2007); (C5H6ClN2)2[ZnCl4] (Kefi et al., 2011a); (C5H6ClN2)2[CdCl4]·H2O (Kefi et al., 2011b); (C5H6ClN2)2[CuCl4] (Parsons et al., 2006); (C5H6ClN2)2[CuBr4] (Woodward et al., 2002). The title compound is isotypic with the Zn analogue (C5H6ClN2)2[ZnCl4] (Kefi et al., 2011a).
5. Synthesis and crystallization
A mixture of cobalt(II) chloride and 2-amino-5-chloropyridine (molar ratio 1:1) was dissolved in an aqueous solution of hydrochloric acid with 5 ml of ethanol. The mixture was stirred and then kept at room temperature. Blue crystals of the title compound were obtained after two weeks.
6. Refinement
Crystal data, data collection and structure . H atoms were placed geometrically and included as riding contributions, with N—H = 0.86 Å and C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(N,C).
details are summarized in Table 2
|
Supporting information
CCDC reference: 990478
https://doi.org/10.1107/S2056989015007707/wm5146sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015007707/wm5146Isup2.hkl
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).(C5H6ClN2)2[CoCl4] | F(000) = 916 |
Mr = 459.87 | Dx = 1.735 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 13.519 (2) Å | θ = 10–15° |
b = 14.945 (3) Å | µ = 1.88 mm−1 |
c = 8.725 (2) Å | T = 298 K |
β = 92.858 (3)° | Prism, blue |
V = 1760.6 (6) Å3 | 0.5 × 0.3 × 0.2 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 2121 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.039 |
Graphite monochromator | θmax = 27.0°, θmin = 2.0° |
non–profiled ω/2τ scans | h = −17→17 |
Absorption correction: ψ scan (North et al., 1968) | k = −19→1 |
Tmin = 0.423, Tmax = 0.649 | l = −11→5 |
6241 measured reflections | 2 standard reflections every 120 min |
3707 independent reflections | intensity decay: 6% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters not refined |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0443P)2] where P = (Fo2 + 2Fc2)/3 |
3707 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.52 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co | 0.75262 (3) | 0.48488 (3) | 0.01742 (6) | 0.03927 (16) | |
Cl1 | 0.66040 (7) | 0.47789 (7) | −0.20888 (12) | 0.0475 (3) | |
Cl2 | 0.64020 (8) | 0.48540 (8) | 0.20135 (13) | 0.0580 (3) | |
Cl3 | 0.85951 (8) | 0.60044 (7) | 0.05556 (14) | 0.0580 (3) | |
Cl4 | 0.84305 (8) | 0.35504 (7) | 0.03059 (15) | 0.0690 (4) | |
Cl5 | 0.83772 (8) | 0.37281 (8) | 0.53616 (14) | 0.0646 (3) | |
Cl6 | 0.68358 (8) | 0.75291 (9) | 0.29194 (14) | 0.0672 (4) | |
N1 | 0.9792 (2) | 0.7278 (2) | 0.7188 (4) | 0.0616 (11) | |
H1A | 1.0247 | 0.7306 | 0.7912 | 0.074* | |
H1B | 0.9565 | 0.7762 | 0.6768 | 0.074* | |
N2 | 0.9798 (2) | 0.5740 (2) | 0.7372 (4) | 0.0430 (8) | |
HN2 | 1.0261 | 0.5790 | 0.8078 | 0.052* | |
N3 | 0.4647 (2) | 0.8197 (2) | 0.5514 (4) | 0.0444 (8) | |
HN3 | 0.4394 | 0.8686 | 0.5834 | 0.053* | |
N4 | 0.3491 (2) | 0.7428 (2) | 0.6902 (4) | 0.0557 (9) | |
H4A | 0.3264 | 0.7931 | 0.7210 | 0.067* | |
H4B | 0.3233 | 0.6935 | 0.7195 | 0.067* | |
C1 | 0.8770 (3) | 0.4802 (3) | 0.5868 (5) | 0.0427 (9) | |
C2 | 0.8694 (3) | 0.6385 (3) | 0.5537 (5) | 0.0498 (11) | |
H2 | 0.8425 | 0.6887 | 0.5045 | 0.060* | |
C3 | 0.8370 (3) | 0.5557 (3) | 0.5125 (5) | 0.0503 (11) | |
H3 | 0.7880 | 0.5492 | 0.4346 | 0.060* | |
C4 | 0.9472 (3) | 0.4907 (2) | 0.6989 (5) | 0.0458 (10) | |
H4 | 0.9736 | 0.4411 | 0.7504 | 0.055* | |
C5 | 0.9440 (3) | 0.6484 (2) | 0.6714 (5) | 0.0418 (9) | |
C6 | 0.5837 (3) | 0.7483 (3) | 0.4092 (4) | 0.0451 (10) | |
C7 | 0.5437 (3) | 0.6658 (3) | 0.4521 (5) | 0.0550 (11) | |
H7 | 0.5707 | 0.6129 | 0.4168 | 0.066* | |
C8 | 0.4669 (3) | 0.6625 (3) | 0.5436 (5) | 0.0536 (11) | |
H8 | 0.4413 | 0.6075 | 0.5720 | 0.064* | |
C9 | 0.4253 (3) | 0.7413 (3) | 0.5959 (4) | 0.0444 (10) | |
C10 | 0.5418 (3) | 0.8250 (3) | 0.4591 (4) | 0.0433 (9) | |
H10 | 0.5659 | 0.8804 | 0.4301 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co | 0.0394 (3) | 0.0288 (3) | 0.0492 (4) | −0.0023 (2) | −0.0018 (2) | −0.0013 (3) |
Cl1 | 0.0502 (5) | 0.0460 (6) | 0.0459 (6) | 0.0005 (5) | −0.0002 (4) | 0.0005 (5) |
Cl2 | 0.0679 (6) | 0.0542 (7) | 0.0534 (7) | −0.0144 (5) | 0.0158 (5) | −0.0045 (6) |
Cl3 | 0.0587 (6) | 0.0409 (6) | 0.0740 (8) | −0.0159 (5) | −0.0008 (5) | −0.0049 (6) |
Cl4 | 0.0673 (7) | 0.0336 (6) | 0.1025 (10) | 0.0110 (5) | −0.0328 (7) | −0.0098 (6) |
Cl5 | 0.0688 (7) | 0.0414 (6) | 0.0842 (9) | −0.0114 (5) | 0.0087 (6) | −0.0175 (6) |
Cl6 | 0.0545 (6) | 0.0911 (10) | 0.0556 (7) | 0.0035 (6) | −0.0007 (5) | 0.0019 (7) |
N1 | 0.072 (2) | 0.031 (2) | 0.079 (3) | −0.0005 (17) | −0.020 (2) | 0.0032 (19) |
N2 | 0.0468 (17) | 0.0315 (18) | 0.050 (2) | 0.0029 (14) | −0.0070 (15) | 0.0019 (16) |
N3 | 0.058 (2) | 0.0224 (16) | 0.052 (2) | 0.0068 (15) | −0.0028 (17) | −0.0015 (16) |
N4 | 0.060 (2) | 0.048 (2) | 0.058 (2) | −0.0021 (17) | −0.0021 (19) | 0.0081 (19) |
C1 | 0.046 (2) | 0.035 (2) | 0.048 (2) | −0.0022 (18) | 0.0102 (18) | −0.008 (2) |
C2 | 0.049 (2) | 0.041 (2) | 0.058 (3) | 0.0069 (19) | −0.009 (2) | 0.010 (2) |
C3 | 0.044 (2) | 0.050 (3) | 0.055 (3) | 0.0022 (19) | −0.0083 (19) | −0.002 (2) |
C4 | 0.054 (2) | 0.025 (2) | 0.058 (3) | 0.0077 (17) | 0.005 (2) | 0.003 (2) |
C5 | 0.044 (2) | 0.031 (2) | 0.051 (3) | 0.0023 (17) | 0.0027 (18) | 0.006 (2) |
C6 | 0.049 (2) | 0.048 (3) | 0.038 (2) | 0.0016 (19) | −0.0102 (18) | −0.001 (2) |
C7 | 0.082 (3) | 0.035 (2) | 0.048 (3) | 0.007 (2) | −0.002 (2) | −0.001 (2) |
C8 | 0.080 (3) | 0.032 (2) | 0.049 (3) | −0.006 (2) | 0.003 (2) | 0.005 (2) |
C9 | 0.050 (2) | 0.037 (2) | 0.045 (2) | −0.0010 (18) | −0.0099 (19) | 0.006 (2) |
C10 | 0.049 (2) | 0.037 (2) | 0.043 (2) | −0.0078 (18) | −0.0065 (19) | 0.0046 (19) |
Co—Cl2 | 2.2645 (12) | N4—H4A | 0.8600 |
Co—Cl3 | 2.2657 (11) | N4—H4B | 0.8600 |
Co—Cl1 | 2.2843 (12) | C1—C4 | 1.337 (5) |
Co—Cl4 | 2.2934 (12) | C1—C3 | 1.397 (6) |
Cl5—C1 | 1.741 (4) | C2—C3 | 1.355 (6) |
Cl6—C6 | 1.735 (4) | C2—C5 | 1.410 (5) |
N1—C5 | 1.337 (5) | C2—H2 | 0.9300 |
N1—H1A | 0.8600 | C3—H3 | 0.9300 |
N1—H1B | 0.8600 | C4—H4 | 0.9300 |
N2—C5 | 1.331 (4) | C6—C10 | 1.360 (5) |
N2—C4 | 1.357 (5) | C6—C7 | 1.405 (6) |
N2—HN2 | 0.8600 | C7—C8 | 1.342 (6) |
N3—C10 | 1.351 (5) | C7—H7 | 0.9300 |
N3—C9 | 1.352 (5) | C8—C9 | 1.392 (6) |
N3—HN3 | 0.8600 | C8—H8 | 0.9300 |
N4—C9 | 1.351 (5) | C10—H10 | 0.9300 |
Cl2—Co—Cl3 | 109.81 (5) | C2—C3—C1 | 120.1 (4) |
Cl2—Co—Cl1 | 104.84 (5) | C2—C3—H3 | 119.9 |
Cl3—Co—Cl1 | 118.58 (5) | C1—C3—H3 | 119.9 |
Cl2—Co—Cl4 | 110.02 (5) | C1—C4—N2 | 119.9 (4) |
Cl3—Co—Cl4 | 107.65 (5) | C1—C4—H4 | 120.1 |
Cl1—Co—Cl4 | 105.73 (4) | N2—C4—H4 | 120.1 |
C5—N1—H1A | 120.0 | N2—C5—N1 | 119.5 (3) |
C5—N1—H1B | 120.0 | N2—C5—C2 | 117.2 (3) |
H1A—N1—H1B | 120.0 | N1—C5—C2 | 123.3 (3) |
C5—N2—C4 | 123.6 (3) | C10—C6—C7 | 118.8 (4) |
C5—N2—HN2 | 118.2 | C10—C6—Cl6 | 120.2 (3) |
C4—N2—HN2 | 118.2 | C7—C6—Cl6 | 120.9 (3) |
C10—N3—C9 | 123.3 (3) | C8—C7—C6 | 120.7 (4) |
C10—N3—HN3 | 118.4 | C8—C7—H7 | 119.7 |
C9—N3—HN3 | 118.4 | C6—C7—H7 | 119.7 |
C9—N4—H4A | 120.0 | C7—C8—C9 | 120.1 (4) |
C9—N4—H4B | 120.0 | C7—C8—H8 | 120.0 |
H4A—N4—H4B | 120.0 | C9—C8—H8 | 120.0 |
C4—C1—C3 | 119.2 (4) | N4—C9—N3 | 118.9 (4) |
C4—C1—Cl5 | 119.4 (3) | N4—C9—C8 | 123.1 (4) |
C3—C1—Cl5 | 121.4 (3) | N3—C9—C8 | 117.9 (4) |
C3—C2—C5 | 119.9 (4) | N3—C10—C6 | 119.2 (4) |
C3—C2—H2 | 120.0 | N3—C10—H10 | 120.4 |
C5—C2—H2 | 120.0 | C6—C10—H10 | 120.4 |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl4i | 0.86 | 2.64 | 3.400 (4) | 148 |
N1—H1B···Cl3ii | 0.86 | 2.47 | 3.317 (3) | 169 |
N2—HN2···Cl4i | 0.86 | 2.42 | 3.238 (3) | 160 |
N3—HN3···Cl1iii | 0.86 | 2.42 | 3.251 (3) | 164 |
N4—H4A···Cl1iii | 0.86 | 2.77 | 3.519 (4) | 147 |
N4—H4B···Cl2iv | 0.86 | 2.80 | 3.541 (4) | 145 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, −y+1, −z+1. |
References
Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chang, J., Ho, W. Y., Sun, I. W., Chou, Y. K., Hsieh, H. H. & Wu, T. Y. (2011). Polyhedron, 30, 497–507. CSD CrossRef CAS Google Scholar
Coomer, F., Harrison, A. & Parsons, S. (2007). Private communication (deposition No. 660778). CCDC, Cambridge, England. Google Scholar
Dhieb, A. C., Janzen, D. E., Rzaigui, M. & Smirani Sta, W. (2014). Acta Cryst. E70, m139. CSD CrossRef IUCr Journals Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Jin, Z.-M., Pan, Y. J., Hu, M. L. & Liang, S. (2001). J. Chem. Crystallogr. 31, 1074–1542. Google Scholar
Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Kefi, R., Jeanneau, E., Lefebvre, F. & Ben Nasr, C. (2011a). Acta Cryst. E67, m355–m356. CSD CrossRef IUCr Journals Google Scholar
Kefi, R., Maher, E. G., Zeller, M., Lefebvre, F. & Ben Nasr, C. (2011b). Private communication (deposition No. 850225). CCDC, Cambridge, England. Google Scholar
Mghandef, M. & Boughzala, H. (2014). Acta Cryst. E70, m75. CSD CrossRef IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Oh, I.-H., Kim, D., Huh, Y.-D., Park, Y., Park, J. M. S. & Park, S.-H. (2011). Acta Cryst. E67, m522–m523. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Parent, A. R., Landee, C. P. & Turnbull, M. M. (2007). Inorg. Chim. Acta, 360, 1943–1953. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Jagaln, V. B., Harrison, A., Davidson, J. & Johnstone, R. (2006). Private communication (deposition No. 610403). CCDC, Cambridge, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woodward, F. M., Albrecht, A. S., Wynn, C. M., Landee, C. P. & Turnbull, M. M. (2002). Phys. Rev. B Condens. Matter, 65, 144412. CrossRef Google Scholar
Zheng, Y., Han, S., Zhou, D. D., Liu, X. P., Zhou, J. R., Yang, L. M., Ni, C. L. & Hu, X. L. (2010). Nano Met. Chem. 40, 772–778. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.