research communications
trans-diaquabis(4-cyanobenzoato-κO)bis(nicotinamide-κN1)cobalt(II)
ofaDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and dScientific and Technological Application and Research Center, Aksaray University, 68100 Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr
In the title complex, [Co(C8H4NO2)2(C6H6N2O)2(H2O)2], the CoII atom is located on an inversion centre and is coordinated by two 4-cyanobenzoate (CNB) anions, two nicotinamide (NA) ligands and two water molecules. The four O atoms in the equatorial plane form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination sphere is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxylate group and the adjacent benzene ring is 22.11 (15)°, while the pyridine and benzene rings are oriented at a dihedral angle of 89.98 (5)°. In the crystal, intermolecular N—H⋯O and O—H⋯O hydrogen bonds link the molecules, enclosing R22(8) and R44(8) ring motifs, forming layers parallel to (100). The layers are linked via C—H⋯O and C—H⋯N hydrogen bonds, resulting in a three-dimensional network. A weak C—H⋯π interaction is also observed.
Keywords: crystal structure; cobalt(II); transition metal complexes of benzoic acid and nicotinamide derivatives.
CCDC reference: 1061935
1. Chemical context
Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974). The nicotinic acid derivative N,N-diethylnicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972). Transition metal complexes with biochemical-relevant molecules show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4-aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000).
The structure–function–coordination relationships of the arylcarboxylate ion in ZnII complexes of benzoic acid derivatives change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981; Nadzhafov et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974). In this context, we synthesized the CoII-containing title compound, trans-diaquabis(4-cyanobenzoato-κO)bis(nicotinamide-κN1)cobalt(II), [Co(C8H4O2N)2(C6H6N2O)2(H2O)2], and report herein its crystal structure.
2. Structural commentary
In the mononuclear title complex, the CoII atom is located on an inversion centre and is coordinated by two 4-cyanobenzoate (CNB) anions, two nicotinamide (NA) ligands and two water molecules, with all ligands coordinating in a monodentate manner (Fig. 1).
The two symmetry-related carboxylate O atoms (O2 and O2i) and the two symmetry-related water O atoms (O4 and O4i) form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination sphere is completed by the two symmetry-related N atoms (N2 and N2i) of the two NA ligands in the axial positions [symmetry code: (i) −x + 1, −y + 1, −z + 1] (Fig. 1).
The very similar C1—O1 [1.254 (2) Å] and C1—O2 [1.256 (2) Å], bond lengths of the carboxylate group indicate delocalized bonding arrangements, rather than localized single and double bonds. The Co—O bond lengths are 2.0835 (12) Å (for benzoate oxygen atoms) and 2.1350 (13) Å (for water oxygen atoms), and the Co—N bond length is 2.1390 (15) Å, close to standard values. The Co1 atom lies 0.3921 (1) Å above the planar (O1/O2/C1) carboxylate group. The O—Co—O and O—Co—N bond angles deviate only slightly from ideal values, with average values of 90 (3)° and 90 (2)°, respectively.
The dihedral angle between the planar carboxylate group (O1/O2/C1) and the adjacent benzene ring [A (C2–C7)] is 22.11 (15)°, while the benzene and pyridine [B (N2/C9–C13)] rings are oriented at a dihedral angle of 89.98 (5)°.
3. Supramolecular features
In the crystal, N—H⋯Oc (c = carboxylate), N—H⋯On (n = nicotinamide), O—Hw⋯Oc (w = water) and O—Hw⋯On hydrogen bonds (Table 1) link the molecules, enclosing R22(8) and R44(8) ring motifs (Bernstein et al., 1995), forming layers parallel to (100) (Fig. 2). The layers are linked via C—Hcnb⋯Oc (cnb = cyanobenzoate) and C—Hn⋯Ncnb hydrogen bonds (Table 1), resulting in a three-dimensional network. A weak C—H⋯π interaction is also observed.
4. Synthesis and crystallization
The title compound was prepared by the reaction of CoSO4·7H2O (1.41 g, 5 mmol) in H2O (50 ml) and nicotinamide (1.22 g, 50 mmol) in H2O (50 ml) with sodium 4-cyanobenzoate (1.69 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving pink-coloured single crystals.
5. Refinement
The experimental details including the crystal data, data collection and . Atoms H31 and H32 (for NH2) and H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The aromatic C-bound H atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest electron density and the deepest hole were found 0.80 Å and 0.83 Å, respectively, from Co1.
are summarized in Table 2
|
Supporting information
CCDC reference: 1061935
https://doi.org/10.1107/S2056989015008270/wm5151sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015008270/wm5151Isup2.hkl
Data collection: APEX2 (Bruker, 2012); cell
SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).[Co(C8H4NO2)2(C6H6N2O)2(H2O)2] | Z = 1 |
Mr = 631.46 | F(000) = 325 |
Triclinic, P1 | Dx = 1.446 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.6474 (3) Å | Cell parameters from 9898 reflections |
b = 9.9266 (4) Å | θ = 2.2–28.6° |
c = 10.2782 (4) Å | µ = 0.65 mm−1 |
α = 78.680 (2)° | T = 296 K |
β = 84.200 (3)° | Prism, translucent light pink |
γ = 71.556 (2)° | 0.43 × 0.29 × 0.16 mm |
V = 725.13 (5) Å3 |
Bruker SMART BREEZE CCD diffractometer | 3639 independent reflections |
Radiation source: fine-focus sealed tube | 3419 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
φ and ω scans | θmax = 28.6°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2012) | h = −10→10 |
Tmin = 0.797, Tmax = 0.901 | k = −12→13 |
16533 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0721P)2 + 0.2871P] where P = (Fo2 + 2Fc2)/3 |
3639 reflections | (Δ/σ)max < 0.001 |
212 parameters | Δρmax = 0.94 e Å−3 |
0 restraints | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.5000 | 0.5000 | 0.5000 | 0.02573 (12) | |
O1 | 0.6366 (2) | 0.34341 (18) | 0.23257 (16) | 0.0459 (4) | |
O2 | 0.38784 (18) | 0.47948 (14) | 0.33110 (13) | 0.0347 (3) | |
O3 | 0.0668 (2) | 0.16139 (15) | 0.50697 (18) | 0.0476 (4) | |
O4 | 0.22430 (19) | 0.57799 (15) | 0.57811 (16) | 0.0362 (3) | |
H41 | 0.250 (4) | 0.608 (3) | 0.644 (3) | 0.064 (9)* | |
H42 | 0.147 (4) | 0.643 (3) | 0.538 (2) | 0.038 (6)* | |
N1 | −0.0584 (5) | 0.1958 (4) | −0.1318 (4) | 0.1083 (13) | |
N2 | 0.4952 (2) | 0.28815 (16) | 0.59167 (15) | 0.0303 (3) | |
N3 | 0.1614 (3) | −0.0568 (2) | 0.6345 (2) | 0.0473 (5) | |
H31 | 0.080 (4) | −0.079 (3) | 0.602 (3) | 0.063 (9)* | |
H32 | 0.238 (4) | −0.121 (3) | 0.690 (3) | 0.054 (8)* | |
C1 | 0.4662 (2) | 0.40272 (19) | 0.24567 (17) | 0.0300 (3) | |
C2 | 0.3451 (2) | 0.37166 (19) | 0.15590 (17) | 0.0298 (3) | |
C3 | 0.1622 (3) | 0.3852 (2) | 0.19215 (19) | 0.0382 (4) | |
H3 | 0.1098 | 0.4240 | 0.2675 | 0.046* | |
C4 | 0.0562 (3) | 0.3414 (3) | 0.1171 (2) | 0.0457 (5) | |
H4 | −0.0661 | 0.3486 | 0.1430 | 0.055* | |
C5 | 0.1336 (3) | 0.2869 (3) | 0.0037 (2) | 0.0458 (5) | |
C6 | 0.3143 (4) | 0.2788 (3) | −0.0368 (2) | 0.0570 (7) | |
H6 | 0.3641 | 0.2460 | −0.1152 | 0.068* | |
C7 | 0.4203 (3) | 0.3198 (3) | 0.0398 (2) | 0.0470 (5) | |
H7 | 0.5424 | 0.3126 | 0.0137 | 0.056* | |
C8 | 0.0255 (4) | 0.2372 (4) | −0.0727 (3) | 0.0680 (8) | |
C9 | 0.6293 (2) | 0.1956 (2) | 0.66831 (19) | 0.0339 (4) | |
H9 | 0.7280 | 0.2252 | 0.6841 | 0.041* | |
C10 | 0.6261 (3) | 0.0585 (2) | 0.7244 (2) | 0.0428 (5) | |
H10 | 0.7210 | −0.0033 | 0.7772 | 0.051* | |
C11 | 0.4798 (3) | 0.0138 (2) | 0.7013 (2) | 0.0419 (4) | |
H11 | 0.4756 | −0.0786 | 0.7379 | 0.050* | |
C12 | 0.3394 (2) | 0.10851 (18) | 0.62286 (18) | 0.0307 (4) | |
C13 | 0.3539 (2) | 0.24444 (18) | 0.57084 (18) | 0.0304 (3) | |
H13 | 0.2601 | 0.3088 | 0.5185 | 0.037* | |
C14 | 0.1776 (3) | 0.07268 (19) | 0.5848 (2) | 0.0352 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.02515 (17) | 0.02306 (18) | 0.03406 (19) | −0.01019 (12) | −0.00572 (12) | −0.00978 (12) |
O1 | 0.0315 (7) | 0.0592 (9) | 0.0516 (8) | −0.0103 (6) | −0.0066 (6) | −0.0234 (7) |
O2 | 0.0355 (6) | 0.0333 (6) | 0.0400 (7) | −0.0084 (5) | −0.0111 (5) | −0.0157 (5) |
O3 | 0.0445 (8) | 0.0303 (7) | 0.0743 (11) | −0.0156 (6) | −0.0241 (7) | −0.0061 (7) |
O4 | 0.0290 (6) | 0.0348 (7) | 0.0464 (8) | −0.0075 (5) | −0.0060 (6) | −0.0120 (6) |
N1 | 0.104 (2) | 0.126 (3) | 0.121 (3) | −0.030 (2) | −0.052 (2) | −0.065 (2) |
N2 | 0.0304 (7) | 0.0275 (7) | 0.0370 (7) | −0.0115 (6) | −0.0065 (6) | −0.0082 (6) |
N3 | 0.0515 (11) | 0.0305 (8) | 0.0691 (13) | −0.0229 (8) | −0.0187 (9) | −0.0046 (8) |
C1 | 0.0332 (8) | 0.0290 (8) | 0.0312 (8) | −0.0130 (7) | −0.0068 (6) | −0.0040 (6) |
C2 | 0.0342 (8) | 0.0291 (8) | 0.0288 (8) | −0.0102 (7) | −0.0060 (6) | −0.0078 (6) |
C3 | 0.0361 (9) | 0.0491 (11) | 0.0349 (9) | −0.0137 (8) | −0.0023 (7) | −0.0184 (8) |
C4 | 0.0368 (10) | 0.0620 (14) | 0.0475 (11) | −0.0207 (9) | −0.0054 (8) | −0.0196 (10) |
C5 | 0.0500 (11) | 0.0505 (12) | 0.0437 (11) | −0.0140 (9) | −0.0159 (9) | −0.0190 (9) |
C7 | 0.0396 (10) | 0.0679 (15) | 0.0403 (10) | −0.0181 (10) | 0.0037 (8) | −0.0253 (10) |
C6 | 0.0523 (13) | 0.0836 (18) | 0.0428 (11) | −0.0148 (12) | −0.0034 (9) | −0.0377 (12) |
C8 | 0.0649 (16) | 0.0794 (19) | 0.0706 (17) | −0.0168 (14) | −0.0256 (13) | −0.0357 (15) |
C9 | 0.0295 (8) | 0.0345 (9) | 0.0404 (9) | −0.0108 (7) | −0.0076 (7) | −0.0083 (7) |
C10 | 0.0382 (10) | 0.0349 (10) | 0.0529 (12) | −0.0071 (8) | −0.0171 (8) | −0.0012 (8) |
C11 | 0.0456 (11) | 0.0248 (8) | 0.0561 (12) | −0.0123 (8) | −0.0133 (9) | −0.0006 (8) |
C12 | 0.0331 (8) | 0.0241 (8) | 0.0395 (9) | −0.0111 (6) | −0.0046 (7) | −0.0106 (7) |
C13 | 0.0311 (8) | 0.0240 (7) | 0.0399 (9) | −0.0104 (6) | −0.0091 (7) | −0.0069 (7) |
C14 | 0.0361 (9) | 0.0270 (8) | 0.0490 (10) | −0.0139 (7) | −0.0043 (7) | −0.0133 (7) |
Co1—O2 | 2.0835 (12) | C2—C7 | 1.391 (3) |
Co1—O2i | 2.0835 (12) | C3—C4 | 1.387 (3) |
Co1—O4 | 2.1350 (13) | C3—H3 | 0.9300 |
Co1—O4i | 2.1350 (13) | C4—C5 | 1.381 (3) |
Co1—N2 | 2.1390 (15) | C4—H4 | 0.9300 |
Co1—N2i | 2.1390 (15) | C5—C6 | 1.384 (4) |
O1—C1 | 1.254 (2) | C5—C8 | 1.444 (3) |
O2—C1 | 1.256 (2) | C6—H6 | 0.9300 |
O3—C14 | 1.234 (2) | C7—C6 | 1.380 (3) |
O4—H41 | 0.85 (3) | C7—H7 | 0.9300 |
O4—H42 | 0.80 (3) | C9—C10 | 1.378 (3) |
N1—C8 | 1.136 (4) | C9—H9 | 0.9300 |
N2—C9 | 1.341 (2) | C10—H10 | 0.9300 |
N2—C13 | 1.335 (2) | C11—C10 | 1.383 (3) |
N3—C14 | 1.326 (3) | C11—H11 | 0.9300 |
N3—H31 | 0.84 (3) | C12—C11 | 1.388 (3) |
N3—H32 | 0.87 (3) | C12—C13 | 1.385 (2) |
C1—C2 | 1.506 (2) | C12—C14 | 1.497 (2) |
C2—C3 | 1.381 (3) | C13—H13 | 0.9300 |
O2—Co1—O2i | 180.0 | C4—C3—H3 | 119.7 |
O2—Co1—O4 | 87.59 (6) | C3—C4—H4 | 120.3 |
O2i—Co1—O4 | 92.41 (6) | C5—C4—C3 | 119.5 (2) |
O2—Co1—O4i | 92.41 (6) | C5—C4—H4 | 120.3 |
O2i—Co1—O4i | 87.59 (6) | C4—C5—C6 | 120.46 (19) |
O4—Co1—O4i | 180.000 (1) | C4—C5—C8 | 119.7 (2) |
O2—Co1—N2 | 89.99 (6) | C6—C5—C8 | 119.8 (2) |
O2i—Co1—N2 | 90.01 (5) | C5—C6—H6 | 120.1 |
O2—Co1—N2i | 90.01 (5) | C7—C6—C5 | 119.8 (2) |
O2i—Co1—N2i | 89.99 (6) | C7—C6—H6 | 120.1 |
O4—Co1—N2 | 87.40 (6) | C2—C7—H7 | 119.9 |
O4i—Co1—N2 | 92.60 (6) | C6—C7—C2 | 120.3 (2) |
O4—Co1—N2i | 92.60 (6) | C6—C7—H7 | 119.9 |
O4i—Co1—N2i | 87.40 (6) | N1—C8—C5 | 178.9 (4) |
N2i—Co1—N2 | 180.00 (4) | N2—C9—C10 | 122.33 (17) |
C1—O2—Co1 | 127.68 (11) | N2—C9—H9 | 118.8 |
Co1—O4—H41 | 97 (2) | C10—C9—H9 | 118.8 |
Co1—O4—H42 | 122.7 (18) | C9—C10—C11 | 119.16 (17) |
H42—O4—H41 | 107 (3) | C9—C10—H10 | 120.4 |
C9—N2—Co1 | 123.03 (12) | C11—C10—H10 | 120.4 |
C13—N2—Co1 | 118.91 (12) | C10—C11—C12 | 119.24 (18) |
C13—N2—C9 | 118.05 (16) | C10—C11—H11 | 120.4 |
C14—N3—H31 | 116 (2) | C12—C11—H11 | 120.4 |
C14—N3—H32 | 123.3 (19) | C11—C12—C14 | 124.94 (17) |
H32—N3—H31 | 120 (3) | C13—C12—C11 | 117.65 (16) |
O1—C1—O2 | 125.70 (17) | C13—C12—C14 | 117.35 (16) |
O1—C1—C2 | 116.72 (16) | N2—C13—C12 | 123.58 (16) |
O2—C1—C2 | 117.48 (15) | N2—C13—H13 | 118.2 |
C3—C2—C1 | 120.48 (16) | C12—C13—H13 | 118.2 |
C3—C2—C7 | 119.43 (17) | O3—C14—N3 | 122.08 (18) |
C7—C2—C1 | 119.95 (17) | O3—C14—C12 | 119.90 (17) |
C2—C3—C4 | 120.52 (18) | N3—C14—C12 | 118.00 (18) |
C2—C3—H3 | 119.7 | ||
O4—Co1—O2—C1 | −159.74 (16) | O2—C1—C2—C7 | 163.80 (19) |
O4i—Co1—O2—C1 | 20.26 (16) | C1—C2—C3—C4 | −172.77 (19) |
N2—Co1—O2—C1 | −72.35 (16) | C7—C2—C3—C4 | 2.9 (3) |
N2i—Co1—O2—C1 | 107.65 (16) | C1—C2—C7—C6 | 174.2 (2) |
O2—Co1—N2—C9 | 141.91 (15) | C3—C2—C7—C6 | −1.6 (4) |
O2i—Co1—N2—C9 | −38.09 (15) | C2—C3—C4—C5 | −1.5 (4) |
O2—Co1—N2—C13 | −37.22 (14) | C3—C4—C5—C6 | −1.4 (4) |
O2i—Co1—N2—C13 | 142.78 (14) | C3—C4—C5—C8 | 178.2 (2) |
O4—Co1—N2—C9 | −130.50 (15) | C4—C5—C6—C7 | 2.8 (4) |
O4i—Co1—N2—C9 | 49.50 (15) | C8—C5—C6—C7 | −176.8 (3) |
O4—Co1—N2—C13 | 50.36 (14) | C2—C7—C6—C5 | −1.3 (4) |
O4i—Co1—N2—C13 | −129.64 (14) | N2—C9—C10—C11 | 0.0 (3) |
Co1—O2—C1—O1 | −13.7 (3) | C12—C11—C10—C9 | −0.4 (3) |
Co1—O2—C1—C2 | 162.49 (12) | C13—C12—C11—C10 | 0.2 (3) |
Co1—N2—C9—C10 | −178.63 (15) | C14—C12—C11—C10 | 177.2 (2) |
C13—N2—C9—C10 | 0.5 (3) | C11—C12—C13—N2 | 0.3 (3) |
Co1—N2—C13—C12 | 178.47 (14) | C14—C12—C13—N2 | −176.86 (17) |
C9—N2—C13—C12 | −0.7 (3) | C11—C12—C14—O3 | −174.9 (2) |
O1—C1—C2—C3 | 156.08 (19) | C11—C12—C14—N3 | 3.4 (3) |
O1—C1—C2—C7 | −19.6 (3) | C13—C12—C14—O3 | 2.1 (3) |
O2—C1—C2—C3 | −20.5 (3) | C13—C12—C14—N3 | −179.63 (19) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg2 is the centroid of the C9–C13,N2 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H31···O3ii | 0.84 (3) | 2.09 (3) | 2.914 (3) | 166 (3) |
N3—H32···O1iii | 0.87 (3) | 2.13 (3) | 2.910 (3) | 148 (3) |
O4—H41···O1i | 0.85 (3) | 1.82 (3) | 2.658 (2) | 166 (3) |
O4—H42···O3iv | 0.80 (3) | 2.11 (3) | 2.877 (2) | 161 (2) |
C4—H4···O1v | 0.93 | 2.38 | 3.302 (3) | 173 |
C9—H9···N1vi | 0.93 | 2.54 | 3.305 (5) | 140 |
C6—H6···Cg2vii | 0.93 | 2.76 | 3.691 (2) | 176 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) −x, −y+1, −z+1; (v) x−1, y, z; (vi) x+1, y, z+1; (vii) x, y, z−1. |
Acknowledgements
The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State Planning Organization).
References
Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080. CAS Google Scholar
Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395. CSD CrossRef CAS Web of Science Google Scholar
Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Catterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844. Google Scholar
Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172. CAS Google Scholar
Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111. CAS PubMed Web of Science Google Scholar
Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416. CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.