research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-di­aqua­bis­­(4-cyano­benzoato-κO)bis­­(nicotinamide-κN1)cobalt(II)

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, cInternational Scientific Research Centre, Baku State University, 1148 Baku, Azerbaijan, and dScientific and Technological Application and Research Center, Aksaray University, 68100 Aksaray, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

Edited by M. Weil, Vienna University of Technology, Austria (Received 22 April 2015; accepted 27 April 2015; online 30 April 2015)

In the title complex, [Co(C8H4NO2)2(C6H6N2O)2(H2O)2], the CoII atom is located on an inversion centre and is coordinated by two 4-cyano­benzoate (CNB) anions, two nicotinamide (NA) ligands and two water mol­ecules. The four O atoms in the equatorial plane form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination sphere is completed by the two N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 22.11 (15)°, while the pyridine and benzene rings are oriented at a dihedral angle of 89.98 (5)°. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules, enclosing R22(8) and R44(8) ring motifs, forming layers parallel to (100). The layers are linked via C—H⋯O and C—H⋯N hydrogen bonds, resulting in a three-dimensional network. A weak C—H⋯π inter­action is also observed.

1. Chemical context

Nicotinamide (NA) is one form of niacin. A deficiency of this vitamin leads to loss of copper from the body, known as pellagra disease. Victims of pellagra show unusually high serum and urinary copper levels (Krishnamachari, 1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). The nicotinic acid derivative N,N-di­ethyl­nicotinamide (DENA) is an important respiratory stimulant (Bigoli et al., 1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). Trans­ition metal complexes with biochemical-relevant mol­ecules show inter­esting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982[Antolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.]). Some benzoic acid derivatives, such as 4-amino­benzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen & Chen, 2002[Chen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.]; Amiraslanov et al., 1979[Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.]; Hauptmann et al., 2000[Hauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.]).

[Scheme 1]

The structure–function–coordination relationships of the aryl­carboxyl­ate ion in ZnII complexes of benzoic acid derivatives change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand mol­ecule or solvent, and the pH and temperature of synthesis (Shnulin et al., 1981[Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.]; Nadzhafov et al., 1981[Nadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.]; Antsyshkina et al., 1980[Antsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.]; Adiwidjaja et al., 1978[Adiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079-3083.]). When pyridine and its derivatives are used instead of water mol­ecules, the structure is completely different (Catterick et al., 1974[Catterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.]). In this context, we synthesized the CoII-containing title compound, trans-di­aqua­bis­(4-cyano­benzoato-κO)bis­(nico­tinamide-κN1)cobalt(II), [Co(C8H4O2N)2(C6H6N2O)2(H2O)2], and report herein its crystal structure.

2. Structural commentary

In the mononuclear title complex, the CoII atom is located on an inversion centre and is coordinated by two 4-cyano­benzoate (CNB) anions, two nicotinamide (NA) ligands and two water mol­ecules, with all ligands coordinating in a monodentate manner (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Symmetry-related atoms are defined by symmetry code −x + 1, −y + 1, −z + 1.

The two symmetry-related carboxyl­ate O atoms (O2 and O2i) and the two symmetry-related water O atoms (O4 and O4i) form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination sphere is completed by the two symmetry-related N atoms (N2 and N2i) of the two NA ligands in the axial positions [symmetry code: (i) −x + 1, −y + 1, −z + 1] (Fig. 1[link]).

The very similar C1—O1 [1.254 (2) Å] and C1—O2 [1.256 (2) Å], bond lengths of the carboxyl­ate group indicate delocalized bonding arrangements, rather than localized single and double bonds. The Co—O bond lengths are 2.0835 (12) Å (for benzoate oxygen atoms) and 2.1350 (13) Å (for water oxygen atoms), and the Co—N bond length is 2.1390 (15) Å, close to standard values. The Co1 atom lies 0.3921 (1) Å above the planar (O1/O2/C1) carboxyl­ate group. The O—Co—O and O—Co—N bond angles deviate only slightly from ideal values, with average values of 90 (3)° and 90 (2)°, respectively.

The dihedral angle between the planar carboxyl­ate group (O1/O2/C1) and the adjacent benzene ring [A (C2–C7)] is 22.11 (15)°, while the benzene and pyridine [B (N2/C9–C13)] rings are oriented at a dihedral angle of 89.98 (5)°.

3. Supra­molecular features

In the crystal, N—H⋯Oc (c = carboxyl­ate), N—H⋯On (n = nicotinamide), O—Hw⋯Oc (w = water) and O—Hw⋯On hydrogen bonds (Table 1[link]) link the mol­ecules, enclosing R22(8) and R44(8) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), forming layers parallel to (100) (Fig. 2[link]). The layers are linked via C—Hcnb⋯Oc (cnb = cyano­benzoate) and C—Hn⋯Ncnb hydrogen bonds (Table 1[link]), resulting in a three-dimensional network. A weak C—H⋯π inter­action is also observed.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C13,N2 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H31⋯O3i 0.84 (3) 2.09 (3) 2.914 (3) 166 (3)
N3—H32⋯O1ii 0.87 (3) 2.13 (3) 2.910 (3) 148 (3)
O4—H41⋯O1iii 0.85 (3) 1.82 (3) 2.658 (2) 166 (3)
O4—H42⋯O3iv 0.80 (3) 2.11 (3) 2.877 (2) 161 (2)
C4—H4⋯O1v 0.93 2.38 3.302 (3) 173
C9—H9⋯N1vi 0.93 2.54 3.305 (5) 140
C6—H6⋯Cg2vii 0.93 2.76 3.691 (2) 176
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1; (v) x-1, y, z; (vi) x+1, y, z+1; (vii) x, y, z-1.
[Figure 2]
Figure 2
Part of the crystal structure viewed down [100], where the b axis is horizontal and the c axis is vertical. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds are shown as dashed lines. Non-bonding H atoms have been omitted for clarity.

4. Synthesis and crystallization

The title compound was prepared by the reaction of CoSO4·7H2O (1.41 g, 5 mmol) in H2O (50 ml) and nicotinamide (1.22 g, 50 mmol) in H2O (50 ml) with sodium 4-cyano­benzoate (1.69 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for several days, giving pink-coloured single crystals.

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2[link]. Atoms H31 and H32 (for NH2) and H41 and H42 (for H2O) were located in a difference Fourier map and were refined freely. The aromatic C-bound H atoms were positioned geometrically with C—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The highest electron density and the deepest hole were found 0.80 Å and 0.83 Å, respectively, from Co1.

Table 2
Experimental details

Crystal data
Chemical formula [Co(C8H4NO2)2(C6H6N2O)2(H2O)2]
Mr 631.46
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.6474 (3), 9.9266 (4), 10.2782 (4)
α, β, γ (°) 78.680 (2), 84.200 (3), 71.556 (2)
V3) 725.13 (5)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.65
Crystal size (mm) 0.43 × 0.29 × 0.16
 
Data collection
Diffractometer Bruker SMART BREEZE CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.797, 0.901
No. of measured, independent and observed [I > 2σ(I)] reflections 16533, 3639, 3419
Rint 0.036
(sin θ/λ)max−1) 0.672
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.119, 1.07
No. of reflections 3639
No. of parameters 212
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.94, −0.49
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

trans-Diaquabis(4-cyanobenzoato-κO)bis(nicotinamide-κN1)cobalt(II) top
Crystal data top
[Co(C8H4NO2)2(C6H6N2O)2(H2O)2]Z = 1
Mr = 631.46F(000) = 325
Triclinic, P1Dx = 1.446 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6474 (3) ÅCell parameters from 9898 reflections
b = 9.9266 (4) Åθ = 2.2–28.6°
c = 10.2782 (4) ŵ = 0.65 mm1
α = 78.680 (2)°T = 296 K
β = 84.200 (3)°Prism, translucent light pink
γ = 71.556 (2)°0.43 × 0.29 × 0.16 mm
V = 725.13 (5) Å3
Data collection top
Bruker SMART BREEZE CCD
diffractometer
3639 independent reflections
Radiation source: fine-focus sealed tube3419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 28.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1010
Tmin = 0.797, Tmax = 0.901k = 1213
16533 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.2871P]
where P = (Fo2 + 2Fc2)/3
3639 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02573 (12)
O10.6366 (2)0.34341 (18)0.23257 (16)0.0459 (4)
O20.38784 (18)0.47948 (14)0.33110 (13)0.0347 (3)
O30.0668 (2)0.16139 (15)0.50697 (18)0.0476 (4)
O40.22430 (19)0.57799 (15)0.57811 (16)0.0362 (3)
H410.250 (4)0.608 (3)0.644 (3)0.064 (9)*
H420.147 (4)0.643 (3)0.538 (2)0.038 (6)*
N10.0584 (5)0.1958 (4)0.1318 (4)0.1083 (13)
N20.4952 (2)0.28815 (16)0.59167 (15)0.0303 (3)
N30.1614 (3)0.0568 (2)0.6345 (2)0.0473 (5)
H310.080 (4)0.079 (3)0.602 (3)0.063 (9)*
H320.238 (4)0.121 (3)0.690 (3)0.054 (8)*
C10.4662 (2)0.40272 (19)0.24567 (17)0.0300 (3)
C20.3451 (2)0.37166 (19)0.15590 (17)0.0298 (3)
C30.1622 (3)0.3852 (2)0.19215 (19)0.0382 (4)
H30.10980.42400.26750.046*
C40.0562 (3)0.3414 (3)0.1171 (2)0.0457 (5)
H40.06610.34860.14300.055*
C50.1336 (3)0.2869 (3)0.0037 (2)0.0458 (5)
C60.3143 (4)0.2788 (3)0.0368 (2)0.0570 (7)
H60.36410.24600.11520.068*
C70.4203 (3)0.3198 (3)0.0398 (2)0.0470 (5)
H70.54240.31260.01370.056*
C80.0255 (4)0.2372 (4)0.0727 (3)0.0680 (8)
C90.6293 (2)0.1956 (2)0.66831 (19)0.0339 (4)
H90.72800.22520.68410.041*
C100.6261 (3)0.0585 (2)0.7244 (2)0.0428 (5)
H100.72100.00330.77720.051*
C110.4798 (3)0.0138 (2)0.7013 (2)0.0419 (4)
H110.47560.07860.73790.050*
C120.3394 (2)0.10851 (18)0.62286 (18)0.0307 (4)
C130.3539 (2)0.24444 (18)0.57084 (18)0.0304 (3)
H130.26010.30880.51850.037*
C140.1776 (3)0.07268 (19)0.5848 (2)0.0352 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02515 (17)0.02306 (18)0.03406 (19)0.01019 (12)0.00572 (12)0.00978 (12)
O10.0315 (7)0.0592 (9)0.0516 (8)0.0103 (6)0.0066 (6)0.0234 (7)
O20.0355 (6)0.0333 (6)0.0400 (7)0.0084 (5)0.0111 (5)0.0157 (5)
O30.0445 (8)0.0303 (7)0.0743 (11)0.0156 (6)0.0241 (7)0.0061 (7)
O40.0290 (6)0.0348 (7)0.0464 (8)0.0075 (5)0.0060 (6)0.0120 (6)
N10.104 (2)0.126 (3)0.121 (3)0.030 (2)0.052 (2)0.065 (2)
N20.0304 (7)0.0275 (7)0.0370 (7)0.0115 (6)0.0065 (6)0.0082 (6)
N30.0515 (11)0.0305 (8)0.0691 (13)0.0229 (8)0.0187 (9)0.0046 (8)
C10.0332 (8)0.0290 (8)0.0312 (8)0.0130 (7)0.0068 (6)0.0040 (6)
C20.0342 (8)0.0291 (8)0.0288 (8)0.0102 (7)0.0060 (6)0.0078 (6)
C30.0361 (9)0.0491 (11)0.0349 (9)0.0137 (8)0.0023 (7)0.0184 (8)
C40.0368 (10)0.0620 (14)0.0475 (11)0.0207 (9)0.0054 (8)0.0196 (10)
C50.0500 (11)0.0505 (12)0.0437 (11)0.0140 (9)0.0159 (9)0.0190 (9)
C70.0396 (10)0.0679 (15)0.0403 (10)0.0181 (10)0.0037 (8)0.0253 (10)
C60.0523 (13)0.0836 (18)0.0428 (11)0.0148 (12)0.0034 (9)0.0377 (12)
C80.0649 (16)0.0794 (19)0.0706 (17)0.0168 (14)0.0256 (13)0.0357 (15)
C90.0295 (8)0.0345 (9)0.0404 (9)0.0108 (7)0.0076 (7)0.0083 (7)
C100.0382 (10)0.0349 (10)0.0529 (12)0.0071 (8)0.0171 (8)0.0012 (8)
C110.0456 (11)0.0248 (8)0.0561 (12)0.0123 (8)0.0133 (9)0.0006 (8)
C120.0331 (8)0.0241 (8)0.0395 (9)0.0111 (6)0.0046 (7)0.0106 (7)
C130.0311 (8)0.0240 (7)0.0399 (9)0.0104 (6)0.0091 (7)0.0069 (7)
C140.0361 (9)0.0270 (8)0.0490 (10)0.0139 (7)0.0043 (7)0.0133 (7)
Geometric parameters (Å, º) top
Co1—O22.0835 (12)C2—C71.391 (3)
Co1—O2i2.0835 (12)C3—C41.387 (3)
Co1—O42.1350 (13)C3—H30.9300
Co1—O4i2.1350 (13)C4—C51.381 (3)
Co1—N22.1390 (15)C4—H40.9300
Co1—N2i2.1390 (15)C5—C61.384 (4)
O1—C11.254 (2)C5—C81.444 (3)
O2—C11.256 (2)C6—H60.9300
O3—C141.234 (2)C7—C61.380 (3)
O4—H410.85 (3)C7—H70.9300
O4—H420.80 (3)C9—C101.378 (3)
N1—C81.136 (4)C9—H90.9300
N2—C91.341 (2)C10—H100.9300
N2—C131.335 (2)C11—C101.383 (3)
N3—C141.326 (3)C11—H110.9300
N3—H310.84 (3)C12—C111.388 (3)
N3—H320.87 (3)C12—C131.385 (2)
C1—C21.506 (2)C12—C141.497 (2)
C2—C31.381 (3)C13—H130.9300
O2—Co1—O2i180.0C4—C3—H3119.7
O2—Co1—O487.59 (6)C3—C4—H4120.3
O2i—Co1—O492.41 (6)C5—C4—C3119.5 (2)
O2—Co1—O4i92.41 (6)C5—C4—H4120.3
O2i—Co1—O4i87.59 (6)C4—C5—C6120.46 (19)
O4—Co1—O4i180.000 (1)C4—C5—C8119.7 (2)
O2—Co1—N289.99 (6)C6—C5—C8119.8 (2)
O2i—Co1—N290.01 (5)C5—C6—H6120.1
O2—Co1—N2i90.01 (5)C7—C6—C5119.8 (2)
O2i—Co1—N2i89.99 (6)C7—C6—H6120.1
O4—Co1—N287.40 (6)C2—C7—H7119.9
O4i—Co1—N292.60 (6)C6—C7—C2120.3 (2)
O4—Co1—N2i92.60 (6)C6—C7—H7119.9
O4i—Co1—N2i87.40 (6)N1—C8—C5178.9 (4)
N2i—Co1—N2180.00 (4)N2—C9—C10122.33 (17)
C1—O2—Co1127.68 (11)N2—C9—H9118.8
Co1—O4—H4197 (2)C10—C9—H9118.8
Co1—O4—H42122.7 (18)C9—C10—C11119.16 (17)
H42—O4—H41107 (3)C9—C10—H10120.4
C9—N2—Co1123.03 (12)C11—C10—H10120.4
C13—N2—Co1118.91 (12)C10—C11—C12119.24 (18)
C13—N2—C9118.05 (16)C10—C11—H11120.4
C14—N3—H31116 (2)C12—C11—H11120.4
C14—N3—H32123.3 (19)C11—C12—C14124.94 (17)
H32—N3—H31120 (3)C13—C12—C11117.65 (16)
O1—C1—O2125.70 (17)C13—C12—C14117.35 (16)
O1—C1—C2116.72 (16)N2—C13—C12123.58 (16)
O2—C1—C2117.48 (15)N2—C13—H13118.2
C3—C2—C1120.48 (16)C12—C13—H13118.2
C3—C2—C7119.43 (17)O3—C14—N3122.08 (18)
C7—C2—C1119.95 (17)O3—C14—C12119.90 (17)
C2—C3—C4120.52 (18)N3—C14—C12118.00 (18)
C2—C3—H3119.7
O4—Co1—O2—C1159.74 (16)O2—C1—C2—C7163.80 (19)
O4i—Co1—O2—C120.26 (16)C1—C2—C3—C4172.77 (19)
N2—Co1—O2—C172.35 (16)C7—C2—C3—C42.9 (3)
N2i—Co1—O2—C1107.65 (16)C1—C2—C7—C6174.2 (2)
O2—Co1—N2—C9141.91 (15)C3—C2—C7—C61.6 (4)
O2i—Co1—N2—C938.09 (15)C2—C3—C4—C51.5 (4)
O2—Co1—N2—C1337.22 (14)C3—C4—C5—C61.4 (4)
O2i—Co1—N2—C13142.78 (14)C3—C4—C5—C8178.2 (2)
O4—Co1—N2—C9130.50 (15)C4—C5—C6—C72.8 (4)
O4i—Co1—N2—C949.50 (15)C8—C5—C6—C7176.8 (3)
O4—Co1—N2—C1350.36 (14)C2—C7—C6—C51.3 (4)
O4i—Co1—N2—C13129.64 (14)N2—C9—C10—C110.0 (3)
Co1—O2—C1—O113.7 (3)C12—C11—C10—C90.4 (3)
Co1—O2—C1—C2162.49 (12)C13—C12—C11—C100.2 (3)
Co1—N2—C9—C10178.63 (15)C14—C12—C11—C10177.2 (2)
C13—N2—C9—C100.5 (3)C11—C12—C13—N20.3 (3)
Co1—N2—C13—C12178.47 (14)C14—C12—C13—N2176.86 (17)
C9—N2—C13—C120.7 (3)C11—C12—C14—O3174.9 (2)
O1—C1—C2—C3156.08 (19)C11—C12—C14—N33.4 (3)
O1—C1—C2—C719.6 (3)C13—C12—C14—O32.1 (3)
O2—C1—C2—C320.5 (3)C13—C12—C14—N3179.63 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C13,N2 ring.
D—H···AD—HH···AD···AD—H···A
N3—H31···O3ii0.84 (3)2.09 (3)2.914 (3)166 (3)
N3—H32···O1iii0.87 (3)2.13 (3)2.910 (3)148 (3)
O4—H41···O1i0.85 (3)1.82 (3)2.658 (2)166 (3)
O4—H42···O3iv0.80 (3)2.11 (3)2.877 (2)161 (2)
C4—H4···O1v0.932.383.302 (3)173
C9—H9···N1vi0.932.543.305 (5)140
C6—H6···Cg2vii0.932.763.691 (2)176
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y, z+1; (iv) x, y+1, z+1; (v) x1, y, z; (vi) x+1, y, z+1; (vii) x, y, z1.
 

Acknowledgements

The authors acknowledge the Aksaray University, Science and Technology Application and Research Center, Aksaray, Turkey, for the use of the Bruker SMART BREEZE CCD diffractometer (purchased under grant No. 2010K120480 of the State Planning Organization).

References

First citationAdiwidjaja, G., Rossmanith, E. & Küppers, H. (1978). Acta Cryst. B34, 3079–3083.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAmiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. & Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075–1080.  CAS Google Scholar
First citationAntolini, L., Battaglia, L. P., Corradi, A. B., Marcotrigiano, G., Menabue, L., Pellacani, G. C. & Saladini, M. (1982). Inorg. Chem. 21, 1391–1395.  CSD CrossRef CAS Web of Science Google Scholar
First citationAntsyshkina, A. S., Chiragov, F. M. & Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098–1103.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCatterick, J., Hursthouse, M. B., New, D. B. & Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843–844.  Google Scholar
First citationChen, H. J. & Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHauptmann, R., Kondo, M. & Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169–172.  CAS Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNadzhafov, G. N., Shnulin, A. N. & Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124–128.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. & Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409–1416.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds