organic compounds
of febuxostat–acetic acid (1/1)
aChemistry Department, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: tangguping@zju.edu.cn
The 16H16N2O3S·CH3COOH, contains a febuxostat molecule and an acetic acid molecule. In the febuxostat molecule, the thiazole ring is nearly coplanar with the benzene ring [dihedral angle = 3.24 (2)°]. In the crystal, the febuxostat and acetic acid molecules are linked by O—H⋯O, O—H⋯N hydrogen bonds and weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along the b-axis direction. π–π stacking is observed between nearly parallel thiazole and benzene rings of adjacent molecules; the centroid-to-centroid distances are 3.8064 (17) and 3.9296 (17) Å.
of the title compound [systematic name: 2-(3-cyano-4-isobutyloxyphenyl)-4-methylthiazole-5-carboxylic acid–acetic acid (1/1)], CKeywords: crystal structure; febuxostat; acetic acid; co-crystal; hydrogen bonding; π–π stacking.
CCDC reference: 1055245
1. Related literature
For general apllications of febuxostat in medicine, see: Pascual et al. (2009); Kataoka et al. (2015); Gray & Walters-Smith (2011). For the synthesis, stability and bioavailabitily of febuxostat, see: Hiramatsu et al. (2000); Maddileti et al. (2013). For the crystal structures of febuxostat pyridine solvate and febuxostat methanol solvate, see: Zhu et al. (2009); Jiang et al. (2011).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1055245
https://doi.org/10.1107/S2056989015005708/xu5836sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015005708/xu5836Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015005708/xu5836Isup3.cml
The crude product supplied by Zhejiang Huadong Pharmaceutical Co., Ltd, was recrystallized from the acetic acid solution giving colourless crystals suitable for X-ray diffraction.
All H atoms were placed in calculated positions with O—H = 0.82 Å and C—H = 0.93–0.98 Å and included in the
in riding model, with Uiso(H)= 1.2Ueq or 1.5Ueq(carrier atom).Febuxostat, an inhibitor of xanthine oxidase, was granted marketing authorization by the European Commission for the treatment of chronic hyperuricaemia in May 2008 (Pascual et al., 2009). Gout is one of the oldest meta-bolic diseases described, frequently categorized as a type of inflammatory arthritis, however, febuxostat is efficacious as a second-line therapy in lowering serum uric acid levels in patients with gout (Gray & Walters-Smith, 2011). According to a recent report, febuxostat has the potential usefulness for reducing cell death-induced inflammation (Kataoka et al., 2015). For the important role of febuxotat, many papers and patents have been reported on the synthesis,
stability and bioavailabitily of this drug (Hiramatsu et al., 2000). For the of febuxostat form Q, febuxostat pyridine solvate and methanol solvate has been reported. In the present study, we report the of febuxostat acetic acid solvate. The consists of one febuxostat molecule and one acetic molecule (Fig. 1), which is linked by intramolecular hydrogen bond O4—H4···N1. The benzene and thiazole rings of the febuxostat molecule are alomost coplanar with the dihedral angle of 3.24 (2)°, which is comparable with that of found (Jiang et al., 2011). The carbonyl group is twist slightly to the connected benzene ring plane, as indicated by torsion angles O2—C3—C4—S1 and O1—C3—C4—C2 of 7.2 (3)° and 10.4 (4)°, respectively, which is different to that of febuxostat methanol solvate and febuxostat pyridine solvate. The cyano group is not coplanar to the benzene ring as indicated by torsion angle C7—C8—C12—N2 and C9—C8—C12—N2. Conformation of the febuxostat molecule in the structure of title compound is different silghtly to that of febuxostat methanol solvate and febuxostat pyridine solvate. In the acetic acid molecule is linked to the febuxostat via intermolecular hydrogen bond O1—H1···O5 i [symmetric code: (i)x,y + 1,z] hydrogen bond and intramolecular hydrogen bond O4—H4···N1 (Table 1). In this way, an infinite molecule chain is formed stretching along the the b axis.For general apllications of febuxostat in medicine, see: Pascual et al. (2009); Kataoka et al. (2015); Gray & Walters-Smith (2011). For the synthesis,
stability and bioavailabitily of febuxostat, see: Hiramatsu et al. (2000); Maddileti et al. (2013). For the crystal structures of febuxostat pyridine solvate and febuxostat methanol solvate, see: Zhu et al. (2009); Jiang et al. (2011).Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. Molecular structure of the title compound (I) showing atom-labelling scheme. | |
Fig. 2. Part of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. |
C16H16N2O3S·C2H4O2 | Z = 2 |
Mr = 376.42 | F(000) = 396 |
Triclinic, P1 | Dx = 1.356 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.684 (2) Å | Cell parameters from 2789 reflections |
b = 10.580 (3) Å | θ = 3.2–27.4° |
c = 12.059 (3) Å | µ = 0.21 mm−1 |
α = 84.897 (5)° | T = 296 K |
β = 84.674 (4)° | Chunk, colorless |
γ = 71.081 (5)° | 0.51 × 0.30 × 0.24 mm |
V = 921.6 (4) Å3 |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 3397 independent reflections |
Radiation source: rolling anode | 2749 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
Detector resolution: 10.00 pixels mm-1 | θmax = 25.5°, θmin = 3.2° |
ω scans | h = −8→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −12→12 |
Tmin = 0.890, Tmax = 0.952 | l = −14→14 |
7415 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0641P)2 + 0.4268P] where P = (Fo2 + 2Fc2)/3 |
3397 reflections | (Δ/σ)max < 0.001 |
241 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C16H16N2O3S·C2H4O2 | γ = 71.081 (5)° |
Mr = 376.42 | V = 921.6 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.684 (2) Å | Mo Kα radiation |
b = 10.580 (3) Å | µ = 0.21 mm−1 |
c = 12.059 (3) Å | T = 296 K |
α = 84.897 (5)° | 0.51 × 0.30 × 0.24 mm |
β = 84.674 (4)° |
Rigaku R-AXIS RAPID/ZJUG diffractometer | 3397 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2749 reflections with I > 2σ(I) |
Tmin = 0.890, Tmax = 0.952 | Rint = 0.026 |
7415 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.25 e Å−3 |
3397 reflections | Δρmin = −0.26 e Å−3 |
241 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.72628 (8) | 0.73569 (5) | 0.50085 (4) | 0.03662 (17) | |
O1 | 0.5945 (3) | 1.02293 (15) | 0.26948 (14) | 0.0507 (4) | |
H1 | 0.5889 | 1.1016 | 0.2705 | 0.076* | |
O2 | 0.7074 (3) | 1.00765 (16) | 0.43526 (15) | 0.0584 (5) | |
O3 | 0.8936 (2) | 0.12754 (14) | 0.74240 (13) | 0.0435 (4) | |
O4 | 0.5922 (3) | 0.46989 (15) | 0.17802 (14) | 0.0538 (5) | |
H4 | 0.6221 | 0.4821 | 0.2387 | 0.081* | |
O5 | 0.5837 (3) | 0.28003 (15) | 0.26573 (13) | 0.0511 (4) | |
N1 | 0.6762 (2) | 0.60007 (15) | 0.34796 (13) | 0.0305 (4) | |
N2 | 0.9313 (4) | 0.3647 (3) | 0.90533 (19) | 0.0707 (7) | |
C3 | 0.6693 (3) | 0.81547 (19) | 0.37300 (17) | 0.0324 (5) | |
C2 | 0.6483 (3) | 0.72860 (18) | 0.30167 (17) | 0.0304 (4) | |
C1 | 0.7188 (3) | 0.59016 (18) | 0.45268 (16) | 0.0291 (4) | |
C4 | 0.6599 (3) | 0.9576 (2) | 0.36255 (18) | 0.0364 (5) | |
C5 | 0.6022 (3) | 0.7595 (2) | 0.18262 (18) | 0.0416 (5) | |
H5A | 0.4835 | 0.7508 | 0.1747 | 0.062* | |
H5B | 0.6938 | 0.6981 | 0.1365 | 0.062* | |
H5C | 0.5997 | 0.8493 | 0.1601 | 0.062* | |
C6 | 0.7591 (3) | 0.46731 (19) | 0.52647 (16) | 0.0299 (4) | |
C11 | 0.7480 (3) | 0.3481 (2) | 0.49263 (17) | 0.0333 (5) | |
H11 | 0.7106 | 0.3464 | 0.4218 | 0.040* | |
C10 | 0.7910 (3) | 0.2323 (2) | 0.56132 (18) | 0.0361 (5) | |
H10 | 0.7836 | 0.1537 | 0.5363 | 0.043* | |
C9 | 0.8457 (3) | 0.2333 (2) | 0.66802 (17) | 0.0332 (5) | |
C8 | 0.8528 (3) | 0.3538 (2) | 0.70422 (17) | 0.0332 (5) | |
C7 | 0.8122 (3) | 0.4681 (2) | 0.63359 (17) | 0.0337 (5) | |
H7 | 0.8205 | 0.5468 | 0.6580 | 0.040* | |
C13 | 0.8752 (3) | 0.0017 (2) | 0.71520 (19) | 0.0412 (5) | |
H13A | 0.9542 | −0.0312 | 0.6495 | 0.049* | |
H13B | 0.7487 | 0.0139 | 0.7003 | 0.049* | |
C14 | 0.9314 (3) | −0.0965 (2) | 0.8147 (2) | 0.0450 (6) | |
H14 | 1.0592 | −0.1062 | 0.8277 | 0.054* | |
C15 | 0.8132 (4) | −0.0512 (3) | 0.9196 (2) | 0.0650 (8) | |
H15A | 0.8197 | 0.0342 | 0.9362 | 0.098* | |
H15B | 0.8569 | −0.1154 | 0.9804 | 0.098* | |
H15C | 0.6878 | −0.0434 | 0.9091 | 0.098* | |
C16 | 0.9239 (4) | −0.2326 (2) | 0.7854 (3) | 0.0605 (7) | |
H16A | 0.8005 | −0.2242 | 0.7692 | 0.091* | |
H16B | 0.9601 | −0.2966 | 0.8474 | 0.091* | |
H16C | 1.0064 | −0.2622 | 0.7212 | 0.091* | |
C12 | 0.8996 (3) | 0.3588 (2) | 0.81619 (19) | 0.0440 (5) | |
C17 | 0.5719 (3) | 0.3514 (2) | 0.18152 (18) | 0.0371 (5) | |
C18 | 0.5320 (5) | 0.3165 (3) | 0.0724 (2) | 0.0676 (8) | |
H18A | 0.5375 | 0.2243 | 0.0769 | 0.101* | |
H18B | 0.6217 | 0.3305 | 0.0159 | 0.101* | |
H18C | 0.4111 | 0.3722 | 0.0538 | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0516 (3) | 0.0284 (3) | 0.0330 (3) | −0.0157 (2) | −0.0089 (2) | −0.0002 (2) |
O1 | 0.0769 (12) | 0.0284 (8) | 0.0533 (10) | −0.0232 (8) | −0.0232 (9) | 0.0079 (7) |
O2 | 0.0934 (14) | 0.0360 (9) | 0.0574 (11) | −0.0312 (9) | −0.0266 (10) | −0.0004 (8) |
O3 | 0.0615 (10) | 0.0317 (8) | 0.0401 (9) | −0.0190 (7) | −0.0145 (7) | 0.0104 (6) |
O4 | 0.0965 (14) | 0.0329 (8) | 0.0406 (9) | −0.0315 (9) | −0.0159 (9) | 0.0059 (7) |
O5 | 0.0845 (13) | 0.0324 (8) | 0.0425 (9) | −0.0267 (8) | −0.0148 (8) | 0.0068 (7) |
N1 | 0.0390 (9) | 0.0238 (8) | 0.0294 (9) | −0.0111 (7) | −0.0063 (7) | 0.0025 (6) |
N2 | 0.0975 (19) | 0.0752 (16) | 0.0407 (13) | −0.0255 (15) | −0.0214 (12) | −0.0011 (11) |
C3 | 0.0372 (11) | 0.0281 (10) | 0.0332 (11) | −0.0122 (8) | −0.0059 (9) | 0.0028 (8) |
C2 | 0.0341 (10) | 0.0246 (9) | 0.0332 (11) | −0.0110 (8) | −0.0032 (8) | 0.0018 (8) |
C1 | 0.0295 (10) | 0.0254 (9) | 0.0320 (10) | −0.0089 (8) | −0.0008 (8) | −0.0012 (8) |
C4 | 0.0422 (12) | 0.0291 (10) | 0.0406 (12) | −0.0153 (9) | −0.0052 (9) | 0.0013 (9) |
C5 | 0.0627 (14) | 0.0295 (10) | 0.0352 (12) | −0.0177 (10) | −0.0129 (10) | 0.0063 (9) |
C6 | 0.0314 (10) | 0.0274 (10) | 0.0302 (10) | −0.0090 (8) | −0.0017 (8) | 0.0008 (8) |
C11 | 0.0388 (11) | 0.0327 (10) | 0.0304 (10) | −0.0141 (9) | −0.0061 (9) | 0.0023 (8) |
C10 | 0.0462 (12) | 0.0292 (10) | 0.0364 (11) | −0.0161 (9) | −0.0074 (9) | 0.0009 (9) |
C9 | 0.0367 (11) | 0.0303 (10) | 0.0337 (11) | −0.0136 (9) | −0.0042 (9) | 0.0057 (8) |
C8 | 0.0375 (11) | 0.0329 (10) | 0.0286 (10) | −0.0104 (9) | −0.0039 (8) | 0.0009 (8) |
C7 | 0.0404 (11) | 0.0279 (10) | 0.0338 (11) | −0.0120 (9) | −0.0031 (9) | −0.0017 (8) |
C13 | 0.0506 (13) | 0.0313 (11) | 0.0437 (13) | −0.0173 (10) | −0.0039 (10) | 0.0049 (9) |
C14 | 0.0450 (12) | 0.0355 (11) | 0.0528 (14) | −0.0126 (10) | −0.0094 (11) | 0.0110 (10) |
C15 | 0.088 (2) | 0.0519 (15) | 0.0481 (15) | −0.0164 (15) | −0.0039 (14) | 0.0141 (12) |
C16 | 0.0697 (17) | 0.0333 (12) | 0.0743 (19) | −0.0146 (12) | −0.0043 (15) | 0.0111 (12) |
C12 | 0.0577 (14) | 0.0389 (12) | 0.0357 (13) | −0.0157 (11) | −0.0094 (10) | 0.0032 (9) |
C17 | 0.0473 (12) | 0.0272 (10) | 0.0388 (12) | −0.0148 (9) | −0.0030 (9) | −0.0010 (9) |
C18 | 0.119 (3) | 0.0564 (16) | 0.0429 (15) | −0.0473 (17) | −0.0126 (15) | −0.0017 (12) |
S1—C3 | 1.713 (2) | C11—H11 | 0.9300 |
S1—C1 | 1.713 (2) | C10—C9 | 1.392 (3) |
O1—C4 | 1.316 (3) | C10—H10 | 0.9300 |
O1—H1 | 0.8200 | C9—C8 | 1.403 (3) |
O2—C4 | 1.204 (3) | C8—C7 | 1.381 (3) |
O3—C9 | 1.344 (2) | C8—C12 | 1.439 (3) |
O3—C13 | 1.452 (3) | C7—H7 | 0.9300 |
O4—C17 | 1.309 (3) | C13—C14 | 1.512 (3) |
O4—H4 | 0.8200 | C13—H13A | 0.9700 |
O5—C17 | 1.203 (3) | C13—H13B | 0.9700 |
N1—C1 | 1.321 (3) | C14—C15 | 1.506 (4) |
N1—C2 | 1.380 (2) | C14—C16 | 1.533 (3) |
N2—C12 | 1.135 (3) | C14—H14 | 0.9800 |
C3—C2 | 1.369 (3) | C15—H15A | 0.9600 |
C3—C4 | 1.477 (3) | C15—H15B | 0.9600 |
C2—C5 | 1.493 (3) | C15—H15C | 0.9600 |
C1—C6 | 1.470 (3) | C16—H16A | 0.9600 |
C5—H5A | 0.9600 | C16—H16B | 0.9600 |
C5—H5B | 0.9600 | C16—H16C | 0.9600 |
C5—H5C | 0.9600 | C17—C18 | 1.482 (3) |
C6—C11 | 1.389 (3) | C18—H18A | 0.9600 |
C6—C7 | 1.392 (3) | C18—H18B | 0.9600 |
C11—C10 | 1.380 (3) | C18—H18C | 0.9600 |
C3—S1—C1 | 89.55 (10) | C8—C7—C6 | 120.94 (19) |
C4—O1—H1 | 109.5 | C8—C7—H7 | 119.5 |
C9—O3—C13 | 118.74 (17) | C6—C7—H7 | 119.5 |
C17—O4—H4 | 109.5 | O3—C13—C14 | 107.20 (18) |
C1—N1—C2 | 110.89 (16) | O3—C13—H13A | 110.3 |
C2—C3—C4 | 134.5 (2) | C14—C13—H13A | 110.3 |
C2—C3—S1 | 110.65 (15) | O3—C13—H13B | 110.3 |
C4—C3—S1 | 114.82 (15) | C14—C13—H13B | 110.3 |
C3—C2—N1 | 114.23 (18) | H13A—C13—H13B | 108.5 |
C3—C2—C5 | 126.75 (18) | C15—C14—C13 | 112.9 (2) |
N1—C2—C5 | 119.01 (17) | C15—C14—C16 | 110.9 (2) |
N1—C1—C6 | 125.29 (17) | C13—C14—C16 | 108.2 (2) |
N1—C1—S1 | 114.68 (14) | C15—C14—H14 | 108.2 |
C6—C1—S1 | 120.03 (15) | C13—C14—H14 | 108.2 |
O2—C4—O1 | 123.93 (19) | C16—C14—H14 | 108.2 |
O2—C4—C3 | 121.4 (2) | C14—C15—H15A | 109.5 |
O1—C4—C3 | 114.69 (18) | C14—C15—H15B | 109.5 |
C2—C5—H5A | 109.5 | H15A—C15—H15B | 109.5 |
C2—C5—H5B | 109.5 | C14—C15—H15C | 109.5 |
H5A—C5—H5B | 109.5 | H15A—C15—H15C | 109.5 |
C2—C5—H5C | 109.5 | H15B—C15—H15C | 109.5 |
H5A—C5—H5C | 109.5 | C14—C16—H16A | 109.5 |
H5B—C5—H5C | 109.5 | C14—C16—H16B | 109.5 |
C11—C6—C7 | 118.10 (18) | H16A—C16—H16B | 109.5 |
C11—C6—C1 | 122.16 (18) | C14—C16—H16C | 109.5 |
C7—C6—C1 | 119.74 (18) | H16A—C16—H16C | 109.5 |
C10—C11—C6 | 121.79 (19) | H16B—C16—H16C | 109.5 |
C10—C11—H11 | 119.1 | N2—C12—C8 | 178.0 (3) |
C6—C11—H11 | 119.1 | O5—C17—O4 | 122.5 (2) |
C11—C10—C9 | 119.94 (19) | O5—C17—C18 | 124.4 (2) |
C11—C10—H10 | 120.0 | O4—C17—C18 | 113.11 (19) |
C9—C10—H10 | 120.0 | C17—C18—H18A | 109.5 |
O3—C9—C10 | 125.95 (18) | C17—C18—H18B | 109.5 |
O3—C9—C8 | 115.24 (18) | H18A—C18—H18B | 109.5 |
C10—C9—C8 | 118.81 (18) | C17—C18—H18C | 109.5 |
C7—C8—C9 | 120.38 (19) | H18A—C18—H18C | 109.5 |
C7—C8—C12 | 119.81 (19) | H18B—C18—H18C | 109.5 |
C9—C8—C12 | 119.80 (18) | ||
C1—S1—C3—C2 | −0.09 (16) | S1—C1—C6—C7 | −3.2 (3) |
C1—S1—C3—C4 | −178.19 (16) | C7—C6—C11—C10 | −1.1 (3) |
C4—C3—C2—N1 | 177.9 (2) | C1—C6—C11—C10 | 178.15 (18) |
S1—C3—C2—N1 | 0.3 (2) | C6—C11—C10—C9 | 0.6 (3) |
C4—C3—C2—C5 | −1.3 (4) | C13—O3—C9—C10 | −5.0 (3) |
S1—C3—C2—C5 | −178.87 (18) | C13—O3—C9—C8 | 174.90 (18) |
C1—N1—C2—C3 | −0.4 (2) | C11—C10—C9—O3 | −179.0 (2) |
C1—N1—C2—C5 | 178.84 (18) | C11—C10—C9—C8 | 1.1 (3) |
C2—N1—C1—C6 | −179.40 (18) | O3—C9—C8—C7 | 177.91 (18) |
C2—N1—C1—S1 | 0.3 (2) | C10—C9—C8—C7 | −2.2 (3) |
C3—S1—C1—N1 | −0.13 (16) | O3—C9—C8—C12 | −3.1 (3) |
C3—S1—C1—C6 | 179.60 (16) | C10—C9—C8—C12 | 176.8 (2) |
C2—C3—C4—O2 | −170.3 (2) | C9—C8—C7—C6 | 1.6 (3) |
S1—C3—C4—O2 | 7.2 (3) | C12—C8—C7—C6 | −177.3 (2) |
C2—C3—C4—O1 | 10.4 (4) | C11—C6—C7—C8 | 0.0 (3) |
S1—C3—C4—O1 | −172.07 (16) | C1—C6—C7—C8 | −179.29 (18) |
N1—C1—C6—C11 | −2.8 (3) | C9—O3—C13—C14 | −177.85 (18) |
S1—C1—C6—C11 | 177.53 (15) | O3—C13—C14—C15 | 60.1 (3) |
N1—C1—C6—C7 | 176.48 (19) | O3—C13—C14—C16 | −176.75 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O5i | 0.82 | 1.87 | 2.691 (2) | 177 |
O4—H4···N1 | 0.82 | 2.05 | 2.800 (3) | 152 |
C10—H10···O2ii | 0.93 | 2.30 | 3.192 (3) | 162 |
C11—H11···O5 | 0.93 | 2.45 | 3.344 (3) | 161 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O5i | 0.82 | 1.87 | 2.691 (2) | 177 |
O4—H4···N1 | 0.82 | 2.05 | 2.800 (3) | 152 |
C10—H10···O2ii | 0.93 | 2.30 | 3.192 (3) | 162 |
C11—H11···O5 | 0.93 | 2.45 | 3.344 (3) | 161 |
Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z. |
Acknowledgements
The project was supported by the Analysis and Measurement Foundation of Zhejiang Province, China (2014 C37055).
References
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gray, C. L. & Walters-Smith, N. E. (2011). Am. J. Health Syst. Pharm. 68, 389–398. Web of Science CrossRef CAS PubMed Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hiramatsu, T., Matsumoto, K. & Watanabe, K. (2000). China Patent CN1275126. Google Scholar
Jiang, Q.-Y., Qian, J.-J., Gu, J.-M., Tang, G.-P. & Hu, X.-R. (2011). Acta Cryst. E67, o1232. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kataoka, H., Yang, K. & Rock, K. L. (2015). Eur. J. Pharmacol. 746, 174–179. CrossRef CAS PubMed Google Scholar
Maddileti, D., Jayabun, S. K. & Nangia, A. (2013). Cryst. Growth Des. 13, 3188–3196. Web of Science CSD CrossRef CAS Google Scholar
Pascual, E., Sivera, F., Yasothan, U. & Kirkpatrick, P. (2009). Nat. Rev. Drug Discov. 8, 191–192. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Rigaku Americas, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, X., Wang, Y. & Lu, T. (2009). Acta Cryst. E65, o2603. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Febuxostat, an inhibitor of xanthine oxidase, was granted marketing authorization by the European Commission for the treatment of chronic hyperuricaemia in May 2008 (Pascual et al., 2009). Gout is one of the oldest meta-bolic diseases described, frequently categorized as a type of inflammatory arthritis, however, febuxostat is efficacious as a second-line therapy in lowering serum uric acid levels in patients with gout (Gray & Walters-Smith, 2011). According to a recent report, febuxostat has the potential usefulness for reducing cell death-induced inflammation (Kataoka et al., 2015). For the important role of febuxotat, many papers and patents have been reported on the synthesis, polymorphism, stability and bioavailabitily of this drug (Hiramatsu et al., 2000). For the crystal structure of febuxostat form Q, febuxostat pyridine solvate and methanol solvate has been reported. In the present study, we report the crystal structure of febuxostat acetic acid solvate. The asymmetric unit consists of one febuxostat molecule and one acetic molecule (Fig. 1), which is linked by intramolecular hydrogen bond O4—H4···N1. The benzene and thiazole rings of the febuxostat molecule are alomost coplanar with the dihedral angle of 3.24 (2)°, which is comparable with that of found (Jiang et al., 2011). The carbonyl group is twist slightly to the connected benzene ring plane, as indicated by torsion angles O2—C3—C4—S1 and O1—C3—C4—C2 of 7.2 (3)° and 10.4 (4)°, respectively, which is different to that of febuxostat methanol solvate and febuxostat pyridine solvate. The cyano group is not coplanar to the benzene ring as indicated by torsion angle C7—C8—C12—N2 and C9—C8—C12—N2. Conformation of the febuxostat molecule in the structure of title compound is different silghtly to that of febuxostat methanol solvate and febuxostat pyridine solvate. In the crystal structure, acetic acid molecule is linked to the febuxostat via intermolecular hydrogen bond O1—H1···O5 i [symmetric code: (i)x,y + 1,z] hydrogen bond and intramolecular hydrogen bond O4—H4···N1 (Table 1). In this way, an infinite molecule chain is formed stretching along the the b axis.