organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[(Z)-2-phenyl­hydrazin-1-yl­­idene]naphthalen-2(1H)-one

aUnité de recherche de Chimie de l'Environnement et Moléculaire Structurale, Faculté du Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria
*Correspondence e-mail: king.ali@hotmail.fr

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 30 March 2015; accepted 4 April 2015; online 9 April 2015)

In the title compound, C16H12N2O, the dihedral angle between the planes of the benzene ring and naphthalenone ring system is 1.89 (8)°; an intra­molecular N—H⋯O hydrogen bond occurs between the imino group and the carbonyl group. In the crystal, mol­ecules are linked by weak C—H⋯π inter­actions into supra­molecular chains propagating along the [01-1] direction.

1. Related literature

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004[Lee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902-2905.]); Oueslati et al. (2004[Oueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575-1578.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H12N2O

  • Mr = 248.28

  • Monoclinic, C 2/c

  • a = 28.109 (5) Å

  • b = 6.039 (5) Å

  • c = 15.181 (5) Å

  • β = 103.243 (5)°

  • V = 2508 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.09 × 0.04 × 0.01 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • 4481 measured reflections

  • 2450 independent reflections

  • 1469 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.169

  • S = 1.05

  • 2450 reflections

  • 176 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg3 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.906 (17) 1.81 (2) 2.550 (3) 137 (2)
C4—H4⋯Cg3i 0.93 2.76 3.568 (4) 145
C12—H12⋯Cg1ii 0.93 2.83 3.612 (4) 142
Symmetry codes: (i) [x, -y+2, z-{\script{1\over 2}}]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The azo dyes are by far the most important class, accounting for over 50% of all commercial dyes, and having been studied more than other class (Lee et al., 2004; Oueslati et al., 2004). Azo dyes contain at least one azo group (–N=N–) but can contain two (diazo), three(triazo), or, more rarely, four (tetrakisazo) or more (polyazo) azo groups. The azo group is attached to two groups, of which at least one, but more usually both are aromatic. They exist in the Trans form in which the band angle is 120°, the nitrogen atoms are sp2 hybridized. Almost without exception, azo dyes are made by diazotization of primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-richnucleophile. We report here in the crystal structure of the title compound, obtained through the diazotization of aniline followed by a coupling reaction with2-naphthol.

The molecular structure of (I) and the atom-numbering scheme are shown in Figure 1. Two aromatic rings A (C1—C6) and B (C7—C16) show a little deviation from planarity with a dihedral angle of 1.56°. Intramolecular hydrogen bonds are formed between the phenol hydroxyl groups and the nearest N atom in the aminobenze groups (Table 1).

Related literature top

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004).

Experimental top

Treatment of aniline (0.02 mol) in 6 ml of 12M HCl and NaNO2 (0.0214 mol) in 8 ml of H2O for 30 min. To the obtained solution, was added dropwise a solution of naphthalen-2-ol, and the resulting brown precipitates were filtrated and washed with water, and dried in a desiccator for several days. Single crystals were obtained by slow evaporation from a pentane solution.

Refinement top

The imino-H atom was located in a difference Fourier map and refined freely with Uiso(H) = 1.2Ueq(N). Other H atoms were placed in geometrically idealized positions and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

The azo dyes are by far the most important class, accounting for over 50% of all commercial dyes, and having been studied more than other class (Lee et al., 2004; Oueslati et al., 2004). Azo dyes contain at least one azo group (–N=N–) but can contain two (diazo), three(triazo), or, more rarely, four (tetrakisazo) or more (polyazo) azo groups. The azo group is attached to two groups, of which at least one, but more usually both are aromatic. They exist in the Trans form in which the band angle is 120°, the nitrogen atoms are sp2 hybridized. Almost without exception, azo dyes are made by diazotization of primary aromatic amine followed by coupling of the resultant diazonium salt with an electron-richnucleophile. We report here in the crystal structure of the title compound, obtained through the diazotization of aniline followed by a coupling reaction with2-naphthol.

The molecular structure of (I) and the atom-numbering scheme are shown in Figure 1. Two aromatic rings A (C1—C6) and B (C7—C16) show a little deviation from planarity with a dihedral angle of 1.56°. Intramolecular hydrogen bonds are formed between the phenol hydroxyl groups and the nearest N atom in the aminobenze groups (Table 1).

For general background to azo compounds and their use in dyes, pigments and advanced materials, see: Lee et al. (2004); Oueslati et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) top
Crystal data top
C16H12N2OZ = 8
Mr = 248.28F(000) = 1040
Monoclinic, C2/cDx = 1.315 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 28.109 (5) ŵ = 0.08 mm1
b = 6.039 (5) ÅT = 293 K
c = 15.181 (5) ÅNeedle, red
β = 103.243 (5)°0.09 × 0.04 × 0.01 mm
V = 2508 (2) Å3
Data collection top
Bruker APEXII
diffractometer
Rint = 0.034
Horizonally mounted graphite crystal monochromatorθmax = 26.0°, θmin = 2.8°
CCD rotation images, thick slices scansh = 3334
4481 measured reflectionsk = 77
2450 independent reflectionsl = 1818
1469 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.092P)2]
where P = (Fo2 + 2Fc2)/3
2450 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.20 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H12N2OV = 2508 (2) Å3
Mr = 248.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.109 (5) ŵ = 0.08 mm1
b = 6.039 (5) ÅT = 293 K
c = 15.181 (5) Å0.09 × 0.04 × 0.01 mm
β = 103.243 (5)°
Data collection top
Bruker APEXII
diffractometer
1469 reflections with I > 2σ(I)
4481 measured reflectionsRint = 0.034
2450 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
2450 reflectionsΔρmin = 0.20 e Å3
176 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73024 (5)0.6381 (3)0.09280 (11)0.0762 (6)
N10.65766 (7)0.8669 (3)0.00890 (12)0.0551 (6)
N20.62773 (6)0.7373 (2)0.03831 (10)0.0496 (5)
C10.63841 (7)1.0493 (3)0.04642 (12)0.0507 (6)
C20.58893 (8)1.0917 (3)0.07177 (13)0.0581 (7)
C30.57264 (9)1.2751 (3)0.12414 (14)0.0647 (8)
C40.60525 (10)1.4165 (3)0.15058 (14)0.0668 (9)
C50.65432 (10)1.3745 (3)0.12602 (15)0.0708 (9)
C60.67128 (8)1.1886 (3)0.07340 (14)0.0627 (8)
C70.64663 (7)0.5645 (3)0.09114 (12)0.0474 (6)
C80.69840 (7)0.5157 (3)0.11735 (13)0.0571 (7)
C90.71329 (8)0.3216 (3)0.17167 (14)0.0663 (8)
C100.68014 (8)0.1878 (3)0.19510 (14)0.0629 (8)
C120.59514 (8)0.0806 (3)0.19309 (14)0.0618 (8)
C130.54622 (8)0.1209 (3)0.16897 (15)0.0667 (8)
C140.52907 (8)0.3124 (3)0.12094 (14)0.0642 (8)
C150.56100 (7)0.4592 (3)0.09687 (13)0.0560 (7)
C160.61175 (7)0.4199 (3)0.11928 (12)0.0465 (6)
C170.62863 (7)0.2274 (3)0.16940 (12)0.0511 (6)
H10.6900 (5)0.835 (4)0.022 (2)0.127 (11)*
H20.566800.997500.053700.0700*
H30.539301.303700.141800.0780*
H40.593901.540800.185200.0800*
H50.676301.469400.144300.0850*
H60.704601.158900.056600.0750*
H90.746400.288400.190800.0800*
H100.691200.063100.229800.0750*
H120.606500.046400.225800.0740*
H130.524300.021000.184500.0800*
H140.495700.340800.105100.0770*
H150.549000.586900.065200.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0554 (9)0.0765 (10)0.0933 (12)0.0043 (7)0.0103 (8)0.0133 (8)
N10.0601 (11)0.0475 (9)0.0584 (11)0.0026 (8)0.0153 (9)0.0031 (7)
N20.0601 (10)0.0441 (8)0.0455 (9)0.0048 (7)0.0139 (8)0.0013 (7)
C10.0666 (13)0.0414 (9)0.0457 (11)0.0035 (9)0.0160 (9)0.0021 (8)
C20.0695 (14)0.0496 (11)0.0568 (13)0.0017 (9)0.0180 (11)0.0021 (9)
C30.0791 (15)0.0538 (11)0.0594 (13)0.0129 (11)0.0119 (12)0.0008 (10)
C40.0995 (19)0.0508 (11)0.0515 (13)0.0121 (12)0.0201 (12)0.0054 (9)
C50.1042 (19)0.0529 (11)0.0638 (14)0.0047 (12)0.0371 (13)0.0041 (10)
C60.0723 (14)0.0594 (12)0.0607 (13)0.0004 (10)0.0244 (11)0.0013 (10)
C70.0555 (11)0.0441 (9)0.0411 (10)0.0051 (8)0.0080 (9)0.0020 (8)
C80.0557 (13)0.0568 (11)0.0553 (12)0.0009 (10)0.0057 (10)0.0013 (9)
C90.0566 (13)0.0693 (13)0.0664 (14)0.0093 (11)0.0003 (11)0.0102 (11)
C100.0722 (15)0.0562 (12)0.0566 (12)0.0164 (10)0.0069 (11)0.0111 (10)
C120.0806 (16)0.0512 (11)0.0556 (12)0.0085 (10)0.0198 (11)0.0076 (9)
C130.0737 (15)0.0608 (12)0.0719 (15)0.0033 (11)0.0297 (12)0.0048 (11)
C140.0583 (13)0.0662 (13)0.0704 (14)0.0050 (10)0.0195 (11)0.0013 (11)
C150.0603 (13)0.0524 (10)0.0565 (12)0.0098 (9)0.0161 (10)0.0056 (9)
C160.0568 (12)0.0436 (9)0.0394 (9)0.0064 (8)0.0117 (8)0.0039 (8)
C170.0627 (13)0.0468 (10)0.0438 (10)0.0060 (9)0.0123 (9)0.0011 (8)
Geometric parameters (Å, º) top
O1—C81.280 (3)C12—C131.361 (3)
N1—N21.301 (3)C13—C141.393 (3)
N1—C11.415 (3)C14—C151.369 (3)
N2—C71.349 (3)C15—C161.409 (3)
N1—H10.906 (17)C16—C171.411 (3)
C1—C21.379 (3)C2—H20.9300
C1—C61.379 (3)C3—H30.9300
C2—C31.379 (3)C4—H40.9300
C3—C41.378 (4)C5—H50.9300
C4—C51.368 (4)C6—H60.9300
C5—C61.397 (3)C9—H90.9300
C7—C81.448 (3)C10—H100.9300
C7—C161.449 (3)C12—H120.9300
C8—C91.439 (3)C13—H130.9300
C9—C101.342 (3)C14—H140.9300
C10—C171.431 (3)C15—H150.9300
C12—C171.399 (3)
O1···N12.550 (3)C4···H12iv2.9200
O1···N22.873 (3)C5···H12iv3.0700
O1···H11.81 (2)C8···H12.39 (3)
O1···H6i2.7100C12···H4vi2.9400
N1···O12.550 (3)C13···H4vi3.0800
N1···C10ii3.366 (4)C14···H3v3.0700
N2···O12.873 (3)C17···H4vi2.9600
N2···C4iii3.398 (4)H1···O11.81 (2)
N2···C12ii3.412 (4)H1···C82.39 (3)
N2···H22.5000H1···H62.3800
N2···H152.5100H2···N22.5000
C1···C16ii3.572 (4)H3···C14v3.0700
C1···C17ii3.519 (4)H3···H14v2.4800
C2···C16ii3.450 (4)H4···C12vii2.9400
C4···N2ii3.398 (4)H4···C13vii3.0800
C5···C7ii3.544 (4)H4···C17vii2.9600
C6···C8ii3.443 (4)H6···H12.3800
C6···C7ii3.559 (4)H6···O1i2.7100
C7···C5iii3.544 (4)H9···H10viii2.5100
C7···C6iii3.559 (4)H10···H122.4600
C8···C6iii3.443 (4)H10···H9ix2.5100
C10···N1iii3.366 (4)H12···H102.4600
C12···N2iii3.412 (4)H12···C3x3.0000
C16···C1iii3.572 (4)H12···C4x2.9200
C16···C2iii3.450 (4)H12···C5x3.0700
C17···C1iii3.519 (4)H14···C3v3.0700
C3···H12iv3.0000H14···H3v2.4800
C3···H14v3.0700H15···N22.5100
N2—N1—C1118.85 (18)C7—C16—C15122.93 (17)
N1—N2—C7118.17 (17)C12—C17—C16119.86 (18)
N2—N1—H1119.5 (16)C10—C17—C12121.51 (17)
C1—N1—H1121.6 (16)C10—C17—C16118.63 (17)
N1—C1—C2122.28 (18)C1—C2—H2120.00
N1—C1—C6117.38 (18)C3—C2—H2120.00
C2—C1—C6120.34 (18)C2—C3—H3120.00
C1—C2—C3119.4 (2)C4—C3—H3120.00
C2—C3—C4120.7 (2)C3—C4—H4120.00
C3—C4—C5120.15 (19)C5—C4—H4120.00
C4—C5—C6119.7 (2)C4—C5—H5120.00
C1—C6—C5119.7 (2)C6—C5—H5120.00
C8—C7—C16120.11 (16)C1—C6—H6120.00
N2—C7—C8123.70 (17)C5—C6—H6120.00
N2—C7—C16116.15 (17)C8—C9—H9120.00
C7—C8—C9117.72 (18)C10—C9—H9120.00
O1—C8—C9120.41 (19)C9—C10—H10118.00
O1—C8—C7121.87 (17)C17—C10—H10118.00
C8—C9—C10120.9 (2)C13—C12—H12120.00
C9—C10—C17123.23 (18)C17—C12—H12119.00
C13—C12—C17121.02 (18)C12—C13—H13120.00
C12—C13—C14119.8 (2)C14—C13—H13120.00
C13—C14—C15120.5 (2)C13—C14—H14120.00
C14—C15—C16121.05 (18)C15—C14—H14120.00
C7—C16—C17119.28 (18)C14—C15—H15119.00
C15—C16—C17117.77 (17)C16—C15—H15119.00
C1—N1—N2—C7179.84 (16)C8—C7—C16—C15179.34 (17)
N2—N1—C1—C21.4 (3)C8—C7—C16—C172.4 (3)
N2—N1—C1—C6177.41 (17)O1—C8—C9—C10177.61 (19)
N1—N2—C7—C80.3 (3)C7—C8—C9—C101.7 (3)
N1—N2—C7—C16177.64 (16)C8—C9—C10—C170.6 (3)
N1—C1—C2—C3178.57 (18)C9—C10—C17—C12178.22 (19)
C6—C1—C2—C30.2 (3)C9—C10—C17—C162.0 (3)
N1—C1—C6—C5178.28 (18)C17—C12—C13—C140.8 (3)
C2—C1—C6—C50.5 (3)C13—C12—C17—C10179.41 (19)
C1—C2—C3—C40.5 (3)C13—C12—C17—C160.4 (3)
C2—C3—C4—C50.9 (3)C12—C13—C14—C150.8 (3)
C3—C4—C5—C60.5 (3)C13—C14—C15—C160.5 (3)
C4—C5—C6—C10.2 (3)C14—C15—C16—C7176.67 (18)
N2—C7—C8—O11.2 (3)C14—C15—C16—C171.7 (3)
N2—C7—C8—C9178.06 (17)C7—C16—C17—C103.4 (3)
C16—C7—C8—O1179.10 (18)C7—C16—C17—C12176.80 (17)
C16—C7—C8—C90.2 (3)C15—C16—C17—C10178.21 (17)
N2—C7—C16—C152.6 (3)C15—C16—C17—C121.6 (3)
N2—C7—C16—C17175.67 (16)
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x, y+1, z; (iii) x, y1, z; (iv) x, y+1, z1/2; (v) x+1, y+2, z; (vi) x, y+2, z+1/2; (vii) x, y+2, z1/2; (viii) x+3/2, y+1/2, z+1/2; (ix) x+3/2, y1/2, z+1/2; (x) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.906 (17)1.81 (2)2.550 (3)137 (2)
C4—H4···Cg3vii0.932.763.568 (4)145
C12—H12···Cg1x0.932.833.612 (4)142
Symmetry codes: (vii) x, y+2, z1/2; (x) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.906 (17)1.81 (2)2.550 (3)137 (2)
C4—H4···Cg3i0.932.763.568 (4)145
C12—H12···Cg1ii0.932.833.612 (4)142
Symmetry codes: (i) x, y+2, z1/2; (ii) x, y+1, z+1/2.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLee, S. H., Kim, J. Y., Ko, J., Lee, J. Y. & Kim, J. S. (2004). J. Org. Chem. 69, 2902–2905.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOueslati, F., Dumazet-Bonnamour, I. & Lamartine, R. (2004). New J. Chem. 28, 1575–1578.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds