organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-nitro-4-(tri­methyl­silylethyn­yl)naphthalene

aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China, and bResearch School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
*Correspondence e-mail: Graeme.Moxey@anu.edu.au

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 31 March 2015; accepted 10 April 2015; online 15 April 2015)

In the title compound, C15H15NO2Si, the dihedral angle between the nitro group and the mean plane of the naphthalene system is 22.04 (11)°. In the crystal, ππ inter­actions generate supra­molecular chains propagating along the a-axis direction; the centroid-to-centroid distances range from 3.5590 (12) to 3.8535 (12) Å.

1. Related literature

For the syntheses of aryl­alkynes by Sonogashira coupling, see: Takahashi et al. (1980[Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627-630.]). For desilylation of the related 1-nitro-4-(tri­methyl­silylethyn­yl)benzene and its use in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a[McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. & White, A. H. (1996a). J. Organomet. Chem. 523, 33-40.],b[McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Skelton, B. W. & White, A. H. (1996b). J. Organomet. Chem. 519, 229-235.], 2003[McDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402-1413.]); Garcia et al. (2002[Garcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107-2118.]). For related structures, see: Squadrito et al. (1990[Squadrito, G. L., Shane, B. S., Fronczek, F. R., Church, D. F. & Pryor, W. A. (1990). Chem. Res. Toxicol. 3, 231-235.]); Khan et al. (2004[Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Al-Battashi, F. R., Al-Saadi, S., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Raithby, P. R., Younus, M., Chawdhury, N., Kohler, A., Marseglia, E. A., Tedesco, E., Feeder, N. & Teat, S. J. (2004). Dalton Trans. pp. 2377-2385.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H15NO2Si

  • Mr = 269.37

  • Triclinic, [P \overline 1]

  • a = 6.9679 (9) Å

  • b = 9.2425 (12) Å

  • c = 11.799 (1) Å

  • α = 100.242 (9)°

  • β = 99.698 (9)°

  • γ = 107.127 (12)°

  • V = 694.62 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 150 K

  • 0.23 × 0.07 × 0.04 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2014[Agilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.986, Tmax = 0.996

  • 4695 measured reflections

  • 3112 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 1.07

  • 3112 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014[Agilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Synthesis and crystallization top

1-Iodo-4-nitro­naphthalene (1.196 g, 4.00 mmol) was added to tri­ethyl­amine (30 mL) and the mixture de­oxy­genated and charged with nitro­gen. PdCl2(PPh3)2 (12 mg, 0.016 mmol), CuI (6 mg, 0.03 mmol) and tri­methyl­silyl­acetyl­ene (0.7 mL, 5.00 mmol) were added and the reaction heated to 35 °C overnight. The solution was filtered through filter paper, washing with tri­ethyl­amine (10 mL), and the solvent was removed from the filtrate. The residue was then passed through a short pad of silica, eluting with 4:1 petrol:CH2Cl2. Reduction in volume of the eluate afforded the product as a yellow solid (1.034 g, 96%). Anal. Calc. for C15H15NO2Si: C, 66.88; H, 5.61; N, 5.20. Found: C, 66.67; H, 5.68; N, 5.28%. 1H NMR (δ, 400 MHz, CDCl3): 8.55 (d, JHH = 8.0 Hz, 1H, H8), 8.47 (d, JHH = 8.0 Hz, 1H, H5), 8.15 (d, JHH = 8.0 Hz, 1H, H11), 7.79 – 7.65 (m, 3H, H4, H9, H10), 0.36 (s, 9H, Me); 13C NMR (δ, 101 MHz, CDCl3): 146.3 (C6), 134.4 (C12), 129.8 (C9), 128.9 (C4), 128.2 (C11), 127.7 (C3), 127.1 (C10), 125.1 (C7), 123.5 (C8), 123.3 (C5), 105.1 (C2), 101.4 (C1), 0.1 (s, Me); IR (ATR, cm-1): 2956, 2156, 1507, 1323. Bright yellow crystals of the title compound were obtained by diffusion of methanol into a di­chloro­methane solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized below.

Related literature top

For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980). For desilylation of the related 1-nitro-4-(trimethylsilylethynyl)benzene and its use in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a,b, 2003); Garcia et al. (2002). For related structures, see: Squadrito et al. (1990); Khan et al. (2004).

Structure description top

For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980). For desilylation of the related 1-nitro-4-(trimethylsilylethynyl)benzene and its use in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a,b, 2003); Garcia et al. (2002). For related structures, see: Squadrito et al. (1990); Khan et al. (2004).

Synthesis and crystallization top

1-Iodo-4-nitro­naphthalene (1.196 g, 4.00 mmol) was added to tri­ethyl­amine (30 mL) and the mixture de­oxy­genated and charged with nitro­gen. PdCl2(PPh3)2 (12 mg, 0.016 mmol), CuI (6 mg, 0.03 mmol) and tri­methyl­silyl­acetyl­ene (0.7 mL, 5.00 mmol) were added and the reaction heated to 35 °C overnight. The solution was filtered through filter paper, washing with tri­ethyl­amine (10 mL), and the solvent was removed from the filtrate. The residue was then passed through a short pad of silica, eluting with 4:1 petrol:CH2Cl2. Reduction in volume of the eluate afforded the product as a yellow solid (1.034 g, 96%). Anal. Calc. for C15H15NO2Si: C, 66.88; H, 5.61; N, 5.20. Found: C, 66.67; H, 5.68; N, 5.28%. 1H NMR (δ, 400 MHz, CDCl3): 8.55 (d, JHH = 8.0 Hz, 1H, H8), 8.47 (d, JHH = 8.0 Hz, 1H, H5), 8.15 (d, JHH = 8.0 Hz, 1H, H11), 7.79 – 7.65 (m, 3H, H4, H9, H10), 0.36 (s, 9H, Me); 13C NMR (δ, 101 MHz, CDCl3): 146.3 (C6), 134.4 (C12), 129.8 (C9), 128.9 (C4), 128.2 (C11), 127.7 (C3), 127.1 (C10), 125.1 (C7), 123.5 (C8), 123.3 (C5), 105.1 (C2), 101.4 (C1), 0.1 (s, Me); IR (ATR, cm-1): 2956, 2156, 1507, 1323. Bright yellow crystals of the title compound were obtained by diffusion of methanol into a di­chloro­methane solution.

Refinement details top

Crystal data, data collection and structure refinement details are summarized below.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of 1-nitro-4-(trimethylsilylethynyl)naphthalene, with displacement ellipsoids set at the 40% probability level.
[Figure 2] Fig. 2. Atom numbering scheme of 1-nitro-4-(trimethylsilylethynyl)naphthalene for 1H and 13C NMR assignments.
1-Nitro-4-(trimethylsilylethynyl)naphthalene top
Crystal data top
C15H15NO2SiZ = 2
Mr = 269.37F(000) = 284
Triclinic, P1Dx = 1.288 Mg m3
a = 6.9679 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2425 (12) ÅCell parameters from 1967 reflections
c = 11.799 (1) Åθ = 2.6–28.3°
α = 100.242 (9)°µ = 0.17 mm1
β = 99.698 (9)°T = 150 K
γ = 107.127 (12)°Needle, yellow
V = 694.62 (15) Å30.23 × 0.07 × 0.04 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, EosS2)
diffractometer
3112 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2621 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.021
Detector resolution: 8.1297 pixels mm-1θmax = 29.2°, θmin = 1.8°
ω scansh = 69
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
k = 1112
Tmin = 0.986, Tmax = 0.996l = 1515
4695 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3469P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3112 reflectionsΔρmax = 0.36 e Å3
175 parametersΔρmin = 0.23 e Å3
0 restraints
Crystal data top
C15H15NO2Siγ = 107.127 (12)°
Mr = 269.37V = 694.62 (15) Å3
Triclinic, P1Z = 2
a = 6.9679 (9) ÅMo Kα radiation
b = 9.2425 (12) ŵ = 0.17 mm1
c = 11.799 (1) ÅT = 150 K
α = 100.242 (9)°0.23 × 0.07 × 0.04 mm
β = 99.698 (9)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, EosS2)
diffractometer
3112 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
2621 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.996Rint = 0.021
4695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
3112 reflectionsΔρmin = 0.23 e Å3
175 parameters
Special details top

Experimental. Absorption correction: CrysAlis Pro (Agilent Technologies, 2014) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2485 (3)0.6318 (2)0.44838 (15)0.0204 (4)
C20.1929 (2)0.4663 (2)0.41137 (15)0.0188 (4)
C30.1112 (3)0.3754 (2)0.29263 (16)0.0247 (4)
H30.08750.42390.23160.030*
C40.0675 (3)0.2178 (2)0.26757 (17)0.0293 (4)
H40.01470.16060.18930.035*
C50.1001 (3)0.1400 (2)0.35659 (18)0.0293 (4)
H50.06610.03210.33760.035*
C60.1819 (3)0.2230 (2)0.47120 (17)0.0234 (4)
H60.20480.17110.53010.028*
C70.2324 (2)0.3874 (2)0.50191 (15)0.0182 (4)
C80.3257 (3)0.4749 (2)0.62159 (15)0.0187 (4)
C90.3745 (3)0.6352 (2)0.65052 (15)0.0220 (4)
H90.43290.69120.72880.026*
C100.3369 (3)0.7131 (2)0.56329 (16)0.0225 (4)
H100.37200.82110.58320.027*
C110.3756 (3)0.3974 (2)0.71220 (15)0.0215 (4)
C120.4216 (3)0.3354 (2)0.78877 (16)0.0235 (4)
C130.4757 (3)0.0381 (2)0.83030 (17)0.0300 (4)
H13A0.35300.01420.76820.045*
H13B0.48230.02370.88730.045*
H13C0.59490.05230.79730.045*
C140.2518 (3)0.2089 (3)0.97894 (19)0.0361 (5)
H14A0.12340.16990.92030.054*
H14B0.26470.30831.02690.054*
H14C0.25470.13691.02810.054*
C150.7217 (3)0.3443 (2)1.00937 (18)0.0327 (5)
H15A0.75070.28601.06580.049*
H15B0.71610.44211.05010.049*
H15C0.82870.36330.96670.049*
N10.2165 (3)0.7285 (2)0.36481 (15)0.0275 (4)
O10.0903 (2)0.6698 (2)0.27072 (14)0.0437 (4)
O20.3213 (3)0.86743 (19)0.39546 (15)0.0532 (5)
Si10.47002 (8)0.23164 (6)0.90416 (4)0.02062 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0176 (8)0.0279 (10)0.0240 (9)0.0126 (7)0.0093 (7)0.0138 (7)
C20.0125 (7)0.0262 (9)0.0212 (8)0.0085 (7)0.0063 (7)0.0086 (7)
C30.0193 (9)0.0349 (11)0.0191 (9)0.0081 (8)0.0036 (7)0.0076 (8)
C40.0228 (9)0.0372 (12)0.0213 (9)0.0066 (8)0.0030 (8)0.0012 (8)
C50.0256 (10)0.0240 (10)0.0350 (11)0.0071 (8)0.0065 (8)0.0016 (8)
C60.0211 (9)0.0239 (10)0.0280 (9)0.0093 (7)0.0067 (8)0.0093 (8)
C70.0123 (7)0.0238 (9)0.0212 (8)0.0077 (7)0.0064 (7)0.0074 (7)
C80.0160 (8)0.0264 (9)0.0199 (8)0.0114 (7)0.0078 (7)0.0100 (7)
C90.0217 (9)0.0262 (10)0.0193 (8)0.0103 (7)0.0065 (7)0.0033 (7)
C100.0233 (9)0.0229 (9)0.0267 (9)0.0124 (8)0.0105 (8)0.0073 (7)
C110.0196 (8)0.0267 (10)0.0208 (9)0.0105 (7)0.0070 (7)0.0054 (7)
C120.0248 (9)0.0274 (10)0.0217 (9)0.0110 (8)0.0078 (7)0.0083 (7)
C130.0396 (11)0.0241 (10)0.0272 (10)0.0113 (9)0.0099 (9)0.0058 (8)
C140.0410 (12)0.0438 (13)0.0373 (11)0.0215 (10)0.0217 (10)0.0197 (10)
C150.0364 (11)0.0296 (11)0.0282 (10)0.0100 (9)0.0004 (9)0.0066 (8)
N10.0294 (9)0.0352 (10)0.0313 (9)0.0193 (8)0.0158 (7)0.0186 (8)
O10.0390 (9)0.0558 (11)0.0400 (9)0.0167 (8)0.0007 (7)0.0290 (8)
O20.0889 (14)0.0287 (9)0.0447 (10)0.0188 (9)0.0129 (9)0.0198 (8)
Si10.0252 (3)0.0222 (3)0.0169 (2)0.0097 (2)0.00518 (19)0.00766 (19)
Geometric parameters (Å, º) top
C1—C21.427 (3)C10—H100.9300
C1—C101.366 (3)C11—C121.201 (2)
C1—N11.476 (2)C12—Si11.8403 (19)
C2—C31.422 (3)C13—H13A0.9600
C2—C71.430 (2)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C3—C41.363 (3)C13—Si11.860 (2)
C4—H40.9300C14—H14A0.9600
C4—C51.399 (3)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C5—C61.362 (3)C14—Si11.862 (2)
C6—H60.9300C15—H15A0.9600
C6—C71.418 (3)C15—H15B0.9600
C7—C81.430 (2)C15—H15C0.9600
C8—C91.382 (3)C15—Si11.853 (2)
C8—C111.439 (2)N1—O11.215 (2)
C9—H90.9300N1—O21.228 (2)
C9—C101.390 (2)
C2—C1—N1122.38 (16)C12—C11—C8178.5 (2)
C10—C1—C2122.82 (16)C11—C12—Si1175.42 (17)
C10—C1—N1114.80 (16)H13A—C13—H13B109.5
C1—C2—C7116.38 (15)H13A—C13—H13C109.5
C3—C2—C1125.72 (16)H13B—C13—H13C109.5
C3—C2—C7117.84 (17)Si1—C13—H13A109.5
C2—C3—H3119.7Si1—C13—H13B109.5
C4—C3—C2120.51 (17)Si1—C13—H13C109.5
C4—C3—H3119.7H14A—C14—H14B109.5
C3—C4—H4119.2H14A—C14—H14C109.5
C3—C4—C5121.65 (18)H14B—C14—H14C109.5
C5—C4—H4119.2Si1—C14—H14A109.5
C4—C5—H5120.1Si1—C14—H14B109.5
C6—C5—C4119.74 (18)Si1—C14—H14C109.5
C6—C5—H5120.1H15A—C15—H15B109.5
C5—C6—H6119.6H15A—C15—H15C109.5
C5—C6—C7120.89 (17)H15B—C15—H15C109.5
C7—C6—H6119.6Si1—C15—H15A109.5
C2—C7—C8119.87 (16)Si1—C15—H15B109.5
C6—C7—C2119.33 (16)Si1—C15—H15C109.5
C6—C7—C8120.79 (16)O1—N1—C1119.96 (17)
C7—C8—C11120.25 (16)O1—N1—O2123.02 (17)
C9—C8—C7120.30 (16)O2—N1—C1117.02 (17)
C9—C8—C11119.42 (16)C12—Si1—C13107.97 (9)
C8—C9—H9119.8C12—Si1—C14106.63 (9)
C8—C9—C10120.33 (16)C12—Si1—C15109.92 (9)
C10—C9—H9119.8C13—Si1—C14110.88 (10)
C1—C10—C9120.29 (17)C15—Si1—C13109.63 (10)
C1—C10—H10119.9C15—Si1—C14111.70 (10)
C9—C10—H10119.9
C1—C2—C3—C4178.69 (16)C5—C6—C7—C8177.53 (16)
C1—C2—C7—C6179.69 (14)C6—C7—C8—C9179.94 (15)
C1—C2—C7—C80.9 (2)C6—C7—C8—C111.9 (2)
C2—C1—C10—C90.7 (3)C7—C2—C3—C41.7 (2)
C2—C1—N1—O121.6 (2)C7—C8—C9—C101.2 (2)
C2—C1—N1—O2158.72 (17)C8—C9—C10—C10.9 (3)
C2—C3—C4—C50.2 (3)C10—C1—C2—C3176.32 (16)
C2—C7—C8—C91.2 (2)C10—C1—C2—C70.7 (2)
C2—C7—C8—C11176.86 (14)C10—C1—N1—O1158.99 (17)
C3—C2—C7—C62.4 (2)C10—C1—N1—O220.7 (2)
C3—C2—C7—C8176.36 (15)C11—C8—C9—C10176.88 (15)
C3—C4—C5—C61.5 (3)N1—C1—C2—C33.1 (3)
C4—C5—C6—C70.7 (3)N1—C1—C2—C7179.89 (14)
C5—C6—C7—C21.2 (2)N1—C1—C10—C9179.83 (14)

Experimental details

Crystal data
Chemical formulaC15H15NO2Si
Mr269.37
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.9679 (9), 9.2425 (12), 11.799 (1)
α, β, γ (°)100.242 (9), 99.698 (9), 107.127 (12)
V3)694.62 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.23 × 0.07 × 0.04
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, EosS2)
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.986, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
4695, 3112, 2621
Rint0.021
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.114, 1.07
No. of reflections3112
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We gratefully acknowledge support from the Australian Research Council (LE130100057) to purchase Agilent Technologies SuperNova and XCalibur diffractometers. We thank Professors C. Zhang (Jiangnan University), M. P. Cifuentes (Australian National University) and M. G. Humphrey (Australian National University) for assistance.

References

First citationAgilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGarcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107–2118.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Al-Battashi, F. R., Al-Saadi, S., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Raithby, P. R., Younus, M., Chawdhury, N., Kohler, A., Marseglia, E. A., Tedesco, E., Feeder, N. & Teat, S. J. (2004). Dalton Trans. pp. 2377–2385.  Web of Science CSD CrossRef Google Scholar
First citationMcDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402–1413.  Web of Science CrossRef CAS Google Scholar
First citationMcDonagh, A. M., Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. & White, A. H. (1996a). J. Organomet. Chem. 523, 33–40.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcDonagh, A. M., Whittall, I. R., Humphrey, M. G., Skelton, B. W. & White, A. H. (1996b). J. Organomet. Chem. 519, 229–235.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSquadrito, G. L., Shane, B. S., Fronczek, F. R., Church, D. F. & Pryor, W. A. (1990). Chem. Res. Toxicol. 3, 231–235.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationTakahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627–630.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds