organic compounds
of 1-nitro-4-(trimethylsilylethynyl)naphthalene
aSchool of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China, and bResearch School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
*Correspondence e-mail: Graeme.Moxey@anu.edu.au
In the title compound, C15H15NO2Si, the dihedral angle between the nitro group and the mean plane of the naphthalene system is 22.04 (11)°. In the crystal, π–π interactions generate supramolecular chains propagating along the a-axis direction; the centroid-to-centroid distances range from 3.5590 (12) to 3.8535 (12) Å.
CCDC reference: 1058939
1. Related literature
For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980). For desilylation of the related 1-nitro-4-(trimethylsilylethynyl)benzene and its use in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a,b, 2003); Garcia et al. (2002). For related structures, see: Squadrito et al. (1990); Khan et al. (2004).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1058939
https://doi.org/10.1107/S2056989015007173/xu5846sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989015007173/xu5846Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989015007173/xu5846Isup3.cml
1-Iodo-4-nitronaphthalene (1.196 g, 4.00 mmol) was added to triethylamine (30 mL) and the mixture deoxygenated and charged with nitrogen. PdCl2(PPh3)2 (12 mg, 0.016 mmol), CuI (6 mg, 0.03 mmol) and trimethylsilylacetylene (0.7 mL, 5.00 mmol) were added and the reaction heated to 35 °C overnight. The solution was filtered through filter paper, washing with triethylamine (10 mL), and the solvent was removed from the filtrate. The residue was then passed through a short pad of silica, eluting with 4:1 petrol:CH2Cl2. Reduction in volume of the δ, 400 MHz, CDCl3): 8.55 (d, JHH = 8.0 Hz, 1H, H8), 8.47 (d, JHH = 8.0 Hz, 1H, H5), 8.15 (d, JHH = 8.0 Hz, 1H, H11), 7.79 – 7.65 (m, 3H, H4, H9, H10), 0.36 (s, 9H, Me); 13C NMR (δ, 101 MHz, CDCl3): 146.3 (C6), 134.4 (C12), 129.8 (C9), 128.9 (C4), 128.2 (C11), 127.7 (C3), 127.1 (C10), 125.1 (C7), 123.5 (C8), 123.3 (C5), 105.1 (C2), 101.4 (C1), 0.1 (s, Me); IR (ATR, cm-1): 2956, 2156, 1507, 1323. Bright yellow crystals of the title compound were obtained by diffusion of methanol into a dichloromethane solution.
afforded the product as a yellow solid (1.034 g, 96%). Anal. Calc. for C15H15NO2Si: C, 66.88; H, 5.61; N, 5.20. Found: C, 66.67; H, 5.68; N, 5.28%. 1H NMR (For the syntheses of arylalkynes by Sonogashira coupling, see: Takahashi et al. (1980). For desilylation of the related 1-nitro-4-(trimethylsilylethynyl)benzene and its use in the construction of metal alkynyl complexes with enhanced non-linear optical properties, see: McDonagh et al. (1996a,b, 2003); Garcia et al. (2002). For related structures, see: Squadrito et al. (1990); Khan et al. (2004).
1-Iodo-4-nitronaphthalene (1.196 g, 4.00 mmol) was added to triethylamine (30 mL) and the mixture deoxygenated and charged with nitrogen. PdCl2(PPh3)2 (12 mg, 0.016 mmol), CuI (6 mg, 0.03 mmol) and trimethylsilylacetylene (0.7 mL, 5.00 mmol) were added and the reaction heated to 35 °C overnight. The solution was filtered through filter paper, washing with triethylamine (10 mL), and the solvent was removed from the filtrate. The residue was then passed through a short pad of silica, eluting with 4:1 petrol:CH2Cl2. Reduction in volume of the δ, 400 MHz, CDCl3): 8.55 (d, JHH = 8.0 Hz, 1H, H8), 8.47 (d, JHH = 8.0 Hz, 1H, H5), 8.15 (d, JHH = 8.0 Hz, 1H, H11), 7.79 – 7.65 (m, 3H, H4, H9, H10), 0.36 (s, 9H, Me); 13C NMR (δ, 101 MHz, CDCl3): 146.3 (C6), 134.4 (C12), 129.8 (C9), 128.9 (C4), 128.2 (C11), 127.7 (C3), 127.1 (C10), 125.1 (C7), 123.5 (C8), 123.3 (C5), 105.1 (C2), 101.4 (C1), 0.1 (s, Me); IR (ATR, cm-1): 2956, 2156, 1507, 1323. Bright yellow crystals of the title compound were obtained by diffusion of methanol into a dichloromethane solution.
afforded the product as a yellow solid (1.034 g, 96%). Anal. Calc. for C15H15NO2Si: C, 66.88; H, 5.61; N, 5.20. Found: C, 66.67; H, 5.68; N, 5.28%. 1H NMR ( detailsCrystal data, data collection and structure
details are summarized below.Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C15H15NO2Si | Z = 2 |
Mr = 269.37 | F(000) = 284 |
Triclinic, P1 | Dx = 1.288 Mg m−3 |
a = 6.9679 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2425 (12) Å | Cell parameters from 1967 reflections |
c = 11.799 (1) Å | θ = 2.6–28.3° |
α = 100.242 (9)° | µ = 0.17 mm−1 |
β = 99.698 (9)° | T = 150 K |
γ = 107.127 (12)° | Needle, yellow |
V = 694.62 (15) Å3 | 0.23 × 0.07 × 0.04 mm |
Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer | 3112 independent reflections |
Radiation source: SuperNova (Mo) X-ray Source | 2621 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.021 |
Detector resolution: 8.1297 pixels mm-1 | θmax = 29.2°, θmin = 1.8° |
ω scans | h = −6→9 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] | k = −11→12 |
Tmin = 0.986, Tmax = 0.996 | l = −15→15 |
4695 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.114 | w = 1/[σ2(Fo2) + (0.0415P)2 + 0.3469P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
3112 reflections | Δρmax = 0.36 e Å−3 |
175 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
C15H15NO2Si | γ = 107.127 (12)° |
Mr = 269.37 | V = 694.62 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.9679 (9) Å | Mo Kα radiation |
b = 9.2425 (12) Å | µ = 0.17 mm−1 |
c = 11.799 (1) Å | T = 150 K |
α = 100.242 (9)° | 0.23 × 0.07 × 0.04 mm |
β = 99.698 (9)° |
Agilent SuperNova (Dual, Cu at zero, EosS2) diffractometer | 3112 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] | 2621 reflections with I > 2σ(I) |
Tmin = 0.986, Tmax = 0.996 | Rint = 0.021 |
4695 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.36 e Å−3 |
3112 reflections | Δρmin = −0.23 e Å−3 |
175 parameters |
Experimental. Absorption correction: CrysAlis Pro (Agilent Technologies, 2014) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.2485 (3) | 0.6318 (2) | 0.44838 (15) | 0.0204 (4) | |
C2 | 0.1929 (2) | 0.4663 (2) | 0.41137 (15) | 0.0188 (4) | |
C3 | 0.1112 (3) | 0.3754 (2) | 0.29263 (16) | 0.0247 (4) | |
H3 | 0.0875 | 0.4239 | 0.2316 | 0.030* | |
C4 | 0.0675 (3) | 0.2178 (2) | 0.26757 (17) | 0.0293 (4) | |
H4 | 0.0147 | 0.1606 | 0.1893 | 0.035* | |
C5 | 0.1001 (3) | 0.1400 (2) | 0.35659 (18) | 0.0293 (4) | |
H5 | 0.0661 | 0.0321 | 0.3376 | 0.035* | |
C6 | 0.1819 (3) | 0.2230 (2) | 0.47120 (17) | 0.0234 (4) | |
H6 | 0.2048 | 0.1711 | 0.5301 | 0.028* | |
C7 | 0.2324 (2) | 0.3874 (2) | 0.50191 (15) | 0.0182 (4) | |
C8 | 0.3257 (3) | 0.4749 (2) | 0.62159 (15) | 0.0187 (4) | |
C9 | 0.3745 (3) | 0.6352 (2) | 0.65052 (15) | 0.0220 (4) | |
H9 | 0.4329 | 0.6912 | 0.7288 | 0.026* | |
C10 | 0.3369 (3) | 0.7131 (2) | 0.56329 (16) | 0.0225 (4) | |
H10 | 0.3720 | 0.8211 | 0.5832 | 0.027* | |
C11 | 0.3756 (3) | 0.3974 (2) | 0.71220 (15) | 0.0215 (4) | |
C12 | 0.4216 (3) | 0.3354 (2) | 0.78877 (16) | 0.0235 (4) | |
C13 | 0.4757 (3) | 0.0381 (2) | 0.83030 (17) | 0.0300 (4) | |
H13A | 0.3530 | −0.0142 | 0.7682 | 0.045* | |
H13B | 0.4823 | −0.0237 | 0.8873 | 0.045* | |
H13C | 0.5949 | 0.0523 | 0.7973 | 0.045* | |
C14 | 0.2518 (3) | 0.2089 (3) | 0.97894 (19) | 0.0361 (5) | |
H14A | 0.1234 | 0.1699 | 0.9203 | 0.054* | |
H14B | 0.2647 | 0.3083 | 1.0269 | 0.054* | |
H14C | 0.2547 | 0.1369 | 1.0281 | 0.054* | |
C15 | 0.7217 (3) | 0.3443 (2) | 1.00937 (18) | 0.0327 (5) | |
H15A | 0.7507 | 0.2860 | 1.0658 | 0.049* | |
H15B | 0.7161 | 0.4421 | 1.0501 | 0.049* | |
H15C | 0.8287 | 0.3633 | 0.9667 | 0.049* | |
N1 | 0.2165 (3) | 0.7285 (2) | 0.36481 (15) | 0.0275 (4) | |
O1 | 0.0903 (2) | 0.6698 (2) | 0.27072 (14) | 0.0437 (4) | |
O2 | 0.3213 (3) | 0.86743 (19) | 0.39546 (15) | 0.0532 (5) | |
Si1 | 0.47002 (8) | 0.23164 (6) | 0.90416 (4) | 0.02062 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0176 (8) | 0.0279 (10) | 0.0240 (9) | 0.0126 (7) | 0.0093 (7) | 0.0138 (7) |
C2 | 0.0125 (7) | 0.0262 (9) | 0.0212 (8) | 0.0085 (7) | 0.0063 (7) | 0.0086 (7) |
C3 | 0.0193 (9) | 0.0349 (11) | 0.0191 (9) | 0.0081 (8) | 0.0036 (7) | 0.0076 (8) |
C4 | 0.0228 (9) | 0.0372 (12) | 0.0213 (9) | 0.0066 (8) | 0.0030 (8) | −0.0012 (8) |
C5 | 0.0256 (10) | 0.0240 (10) | 0.0350 (11) | 0.0071 (8) | 0.0065 (8) | 0.0016 (8) |
C6 | 0.0211 (9) | 0.0239 (10) | 0.0280 (9) | 0.0093 (7) | 0.0067 (8) | 0.0093 (8) |
C7 | 0.0123 (7) | 0.0238 (9) | 0.0212 (8) | 0.0077 (7) | 0.0064 (7) | 0.0074 (7) |
C8 | 0.0160 (8) | 0.0264 (9) | 0.0199 (8) | 0.0114 (7) | 0.0078 (7) | 0.0100 (7) |
C9 | 0.0217 (9) | 0.0262 (10) | 0.0193 (8) | 0.0103 (7) | 0.0065 (7) | 0.0033 (7) |
C10 | 0.0233 (9) | 0.0229 (9) | 0.0267 (9) | 0.0124 (8) | 0.0105 (8) | 0.0073 (7) |
C11 | 0.0196 (8) | 0.0267 (10) | 0.0208 (9) | 0.0105 (7) | 0.0070 (7) | 0.0054 (7) |
C12 | 0.0248 (9) | 0.0274 (10) | 0.0217 (9) | 0.0110 (8) | 0.0078 (7) | 0.0083 (7) |
C13 | 0.0396 (11) | 0.0241 (10) | 0.0272 (10) | 0.0113 (9) | 0.0099 (9) | 0.0058 (8) |
C14 | 0.0410 (12) | 0.0438 (13) | 0.0373 (11) | 0.0215 (10) | 0.0217 (10) | 0.0197 (10) |
C15 | 0.0364 (11) | 0.0296 (11) | 0.0282 (10) | 0.0100 (9) | −0.0004 (9) | 0.0066 (8) |
N1 | 0.0294 (9) | 0.0352 (10) | 0.0313 (9) | 0.0193 (8) | 0.0158 (7) | 0.0186 (8) |
O1 | 0.0390 (9) | 0.0558 (11) | 0.0400 (9) | 0.0167 (8) | −0.0007 (7) | 0.0290 (8) |
O2 | 0.0889 (14) | 0.0287 (9) | 0.0447 (10) | 0.0188 (9) | 0.0129 (9) | 0.0198 (8) |
Si1 | 0.0252 (3) | 0.0222 (3) | 0.0169 (2) | 0.0097 (2) | 0.00518 (19) | 0.00766 (19) |
C1—C2 | 1.427 (3) | C10—H10 | 0.9300 |
C1—C10 | 1.366 (3) | C11—C12 | 1.201 (2) |
C1—N1 | 1.476 (2) | C12—Si1 | 1.8403 (19) |
C2—C3 | 1.422 (3) | C13—H13A | 0.9600 |
C2—C7 | 1.430 (2) | C13—H13B | 0.9600 |
C3—H3 | 0.9300 | C13—H13C | 0.9600 |
C3—C4 | 1.363 (3) | C13—Si1 | 1.860 (2) |
C4—H4 | 0.9300 | C14—H14A | 0.9600 |
C4—C5 | 1.399 (3) | C14—H14B | 0.9600 |
C5—H5 | 0.9300 | C14—H14C | 0.9600 |
C5—C6 | 1.362 (3) | C14—Si1 | 1.862 (2) |
C6—H6 | 0.9300 | C15—H15A | 0.9600 |
C6—C7 | 1.418 (3) | C15—H15B | 0.9600 |
C7—C8 | 1.430 (2) | C15—H15C | 0.9600 |
C8—C9 | 1.382 (3) | C15—Si1 | 1.853 (2) |
C8—C11 | 1.439 (2) | N1—O1 | 1.215 (2) |
C9—H9 | 0.9300 | N1—O2 | 1.228 (2) |
C9—C10 | 1.390 (2) | ||
C2—C1—N1 | 122.38 (16) | C12—C11—C8 | 178.5 (2) |
C10—C1—C2 | 122.82 (16) | C11—C12—Si1 | 175.42 (17) |
C10—C1—N1 | 114.80 (16) | H13A—C13—H13B | 109.5 |
C1—C2—C7 | 116.38 (15) | H13A—C13—H13C | 109.5 |
C3—C2—C1 | 125.72 (16) | H13B—C13—H13C | 109.5 |
C3—C2—C7 | 117.84 (17) | Si1—C13—H13A | 109.5 |
C2—C3—H3 | 119.7 | Si1—C13—H13B | 109.5 |
C4—C3—C2 | 120.51 (17) | Si1—C13—H13C | 109.5 |
C4—C3—H3 | 119.7 | H14A—C14—H14B | 109.5 |
C3—C4—H4 | 119.2 | H14A—C14—H14C | 109.5 |
C3—C4—C5 | 121.65 (18) | H14B—C14—H14C | 109.5 |
C5—C4—H4 | 119.2 | Si1—C14—H14A | 109.5 |
C4—C5—H5 | 120.1 | Si1—C14—H14B | 109.5 |
C6—C5—C4 | 119.74 (18) | Si1—C14—H14C | 109.5 |
C6—C5—H5 | 120.1 | H15A—C15—H15B | 109.5 |
C5—C6—H6 | 119.6 | H15A—C15—H15C | 109.5 |
C5—C6—C7 | 120.89 (17) | H15B—C15—H15C | 109.5 |
C7—C6—H6 | 119.6 | Si1—C15—H15A | 109.5 |
C2—C7—C8 | 119.87 (16) | Si1—C15—H15B | 109.5 |
C6—C7—C2 | 119.33 (16) | Si1—C15—H15C | 109.5 |
C6—C7—C8 | 120.79 (16) | O1—N1—C1 | 119.96 (17) |
C7—C8—C11 | 120.25 (16) | O1—N1—O2 | 123.02 (17) |
C9—C8—C7 | 120.30 (16) | O2—N1—C1 | 117.02 (17) |
C9—C8—C11 | 119.42 (16) | C12—Si1—C13 | 107.97 (9) |
C8—C9—H9 | 119.8 | C12—Si1—C14 | 106.63 (9) |
C8—C9—C10 | 120.33 (16) | C12—Si1—C15 | 109.92 (9) |
C10—C9—H9 | 119.8 | C13—Si1—C14 | 110.88 (10) |
C1—C10—C9 | 120.29 (17) | C15—Si1—C13 | 109.63 (10) |
C1—C10—H10 | 119.9 | C15—Si1—C14 | 111.70 (10) |
C9—C10—H10 | 119.9 | ||
C1—C2—C3—C4 | 178.69 (16) | C5—C6—C7—C8 | −177.53 (16) |
C1—C2—C7—C6 | −179.69 (14) | C6—C7—C8—C9 | 179.94 (15) |
C1—C2—C7—C8 | −0.9 (2) | C6—C7—C8—C11 | 1.9 (2) |
C2—C1—C10—C9 | −0.7 (3) | C7—C2—C3—C4 | 1.7 (2) |
C2—C1—N1—O1 | 21.6 (2) | C7—C8—C9—C10 | −1.2 (2) |
C2—C1—N1—O2 | −158.72 (17) | C8—C9—C10—C1 | 0.9 (3) |
C2—C3—C4—C5 | 0.2 (3) | C10—C1—C2—C3 | −176.32 (16) |
C2—C7—C8—C9 | 1.2 (2) | C10—C1—C2—C7 | 0.7 (2) |
C2—C7—C8—C11 | −176.86 (14) | C10—C1—N1—O1 | −158.99 (17) |
C3—C2—C7—C6 | −2.4 (2) | C10—C1—N1—O2 | 20.7 (2) |
C3—C2—C7—C8 | 176.36 (15) | C11—C8—C9—C10 | 176.88 (15) |
C3—C4—C5—C6 | −1.5 (3) | N1—C1—C2—C3 | 3.1 (3) |
C4—C5—C6—C7 | 0.7 (3) | N1—C1—C2—C7 | −179.89 (14) |
C5—C6—C7—C2 | 1.2 (2) | N1—C1—C10—C9 | 179.83 (14) |
Experimental details
Crystal data | |
Chemical formula | C15H15NO2Si |
Mr | 269.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 6.9679 (9), 9.2425 (12), 11.799 (1) |
α, β, γ (°) | 100.242 (9), 99.698 (9), 107.127 (12) |
V (Å3) | 694.62 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.17 |
Crystal size (mm) | 0.23 × 0.07 × 0.04 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, EosS2) |
Absorption correction | Analytical [CrysAlis PRO (Agilent, 2014), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.986, 0.996 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4695, 3112, 2621 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.686 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.114, 1.07 |
No. of reflections | 3112 |
No. of parameters | 175 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.36, −0.23 |
Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
We gratefully acknowledge support from the Australian Research Council (LE130100057) to purchase Agilent Technologies SuperNova and XCalibur diffractometers. We thank Professors C. Zhang (Jiangnan University), M. P. Cifuentes (Australian National University) and M. G. Humphrey (Australian National University) for assistance.
References
Agilent Technologies (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Garcia, M. H., Robalo, M. P., Dias, A. R., Duarte, M. T., Wenseleers, W., Aerts, G., Goovaerts, E., Cifuentes, M. P., Hurst, S., Humphrey, M. G., Samoc, M. & Luther-Davies, B. (2002). Organometallics, 21, 2107–2118. Web of Science CSD CrossRef CAS Google Scholar
Khan, M. S., Al-Mandhary, M. R. A., Al-Suti, M. K., Al-Battashi, F. R., Al-Saadi, S., Ahrens, B., Bjernemose, J. K., Mahon, M. F., Raithby, P. R., Younus, M., Chawdhury, N., Kohler, A., Marseglia, E. A., Tedesco, E., Feeder, N. & Teat, S. J. (2004). Dalton Trans. pp. 2377–2385. Web of Science CSD CrossRef Google Scholar
McDonagh, A. M., Powell, C. E., Morrall, J. P., Cifuentes, M. P. & Humphrey, M. G. (2003). Organometallics, 22, 1402–1413. Web of Science CrossRef CAS Google Scholar
McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Hockless, D. C. R., Skelton, B. W. & White, A. H. (1996a). J. Organomet. Chem. 523, 33–40. CSD CrossRef CAS Web of Science Google Scholar
McDonagh, A. M., Whittall, I. R., Humphrey, M. G., Skelton, B. W. & White, A. H. (1996b). J. Organomet. Chem. 519, 229–235. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Squadrito, G. L., Shane, B. S., Fronczek, F. R., Church, D. F. & Pryor, W. A. (1990). Chem. Res. Toxicol. 3, 231–235. CSD CrossRef CAS PubMed Web of Science Google Scholar
Takahashi, S., Kuroyama, Y., Sonogashira, K. & Hagihara, N. (1980). Synthesis, pp. 627–630. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.