metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[tetra­aqua­zinc(II)]-μ-1,4-bis­­[4-(1H-imidazol-1-yl)benzo­yl]piperazine] dinitrate monohydrate]

aCollege of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jcliuchem@163.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 3 April 2015; accepted 19 April 2015; online 25 April 2015)

In the title polymeric complex, {[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O}n, the ZnII cation, located about a twofold rotation axis, is coordinated by two imidazole groups and four water mol­ecules in a distorted N2O4 octa­hedral geometry; among the four coordinate water mol­ecules, two are located on the same twofold rotation axis. The 1,4-bis­[4-(1H-imidazol-1-yl)benzo­yl]piperazine] ligand is centro-symmetric, with the centroid of the piperazine ring located on an inversion center, and bridges the ZnII cations, forming polymeric chains propagating along [201]. In the crystal, O—H⋯O and weak C—H⋯O hydrogen bonds link the polymeric chains, nitrate anions and solvent water mol­ecules into a three-dimensional supra­molecular architecture. A short O⋯O contact of 2.823 (13) Å is observed between neighboring nitrate anions.

1. Related literature

For related coordination polymers and their potential applications, see: Xu et al. (2004[Xu, H., Song, Y. & Hou, H. (2004). Inorg. Chim. Acta, 357, 3541-3548.]); Gandolfo & LaDuca (2011a[Gandolfo, C. M. & LaDuca, R. L. (2011a). Cryst. Growth Des. 11, 1328-1337.],b[Gandolfo, C. M. & LaDuca, R. L. (2011b). Inorg. Chem. Commun. 14, 1111-1114.]); Wang et al. (2011[Wang, C.-Y., Wilseck, Z. M. & LaDuca, R. L. (2011). Inorg. Chem. 50, 8997-9003.], 2014[Wang, X.-L., Sui, F.-F., Lin, H.-Y., Zhang, J.-W. & Liu, G.-C. (2014). Cryst. Growth Des. 14, 3438-3452.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn(C24H22N6O2)(H2O)4](NO3)2·2H2O

  • Mr = 723.96

  • Monoclinic, C 2/c

  • a = 22.051 (4) Å

  • b = 7.8861 (16) Å

  • c = 17.837 (4) Å

  • β = 102.65 (3)°

  • V = 3026.5 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 294 K

  • 0.27 × 0.25 × 0.22 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.79, Tmax = 0.83

  • 5133 measured reflections

  • 2720 independent reflections

  • 2212 reflections with I > 2σ(I)

  • Rint = 0.030

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.144

  • S = 1.05

  • 2720 reflections

  • 196 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O4i 0.84 1.96 2.795 (6) 174
O2—H2A⋯O5ii 0.84 2.16 2.956 (15) 159
O2—H2A⋯O6ii 0.84 2.32 3.060 (10) 148
O2—H2B⋯O8 0.85 1.83 2.676 (7) 176
O3—H3A⋯O4iii 0.84 1.99 2.804 (6) 163
O8—H8A⋯O7 0.85 2.14 2.914 (11) 151
O8—H8B⋯O7iv 0.82 2.14 2.926 (11) 160
C1—H1⋯O6ii 0.93 2.51 3.232 (11) 135
C5—H5⋯O6ii 0.93 2.59 3.485 (12) 162
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z+2]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Structural commentary top

Piperazine derivatives as N-containing ligands which have different combination of span, multi-coordination point and hydrogen-bonding points of contact, to conform coordination complexes has attracted great attention. (Wang et al., 2011, 2014; Gandolfo & LaDuca et al., 2011a,b; Xu et al., 2004). Nevertheless, piperazine derivatives-containing the imidazole group as the coordinated point have been designed forming coordination compounds relatively few. As the imidazole has a similar properties with pyridine, so in this context, we design and successfully synthesized the compound {[Zn(C24H22N6O2)(H2O)4](NO3)2(H2O)2}n based on the piperazine-1,4-diylbis((4-(1H-imidazol-1-yl)phenyl)­methanone) ligand, obtained under hydro­thermal technique. An asymmetric unit of the title compound includes a half ZnII, a half piperazine-1,4-diylbis((4-(1H-imidazol-1-yl)phenyl)­methanone) ligands, two coordinated water molecules, an uncoordinated nitrate anion and one uncoordinated water molecule (Fig. 1). The ZnII atom is coordinated and lies on an inversion centre of a slighter distorted o­cta­hedral, with two ligands [two imidazole N atoms, Zn—N = 2.122 (3) Å] and four coordinated water molecules [Zn—O bond lengths in the range of 2.112 (4) – 2.138 (3) Å]. Between the 1D chains formed by the ligand and ZnII atoms are inter­connected via water O—H···O hydrogen bonds to form a three dimension supra­molecular architecture. In the crystal, in the nitrate anions and the uncoordinated water molecules forming the O—H···N hydrogen bonds to stabilize the three dimension skeleton (Fig. 2).

Synthesis and crystallization top

A mixture of L (0.1 mmol, 0.0462 g), Zn(NO3)2.6H2O (0.2 mmol, 0.059 g), distilled water (6.0 mL) sealed in a 25 mL Teflon-lined stainless steel vessel and heated at 130 °C for 72 h under auto-pressure, after cooling to room temperature. Primrose yellow prismatic single crystals were removed (yield: 24%).

Refinement details top

Water H atoms were located in a difference Fourier map and refined in riding mode with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and refined using a riding model, Uiso(H) = 1.2Ueq(C).

Related literature top

For related coordination polymers and their potential applications, see: Xu et al. (2004); Gandolfo & LaDuca (2011a,b); Wang et al. (2011, 2014).

Structure description top

Piperazine derivatives as N-containing ligands which have different combination of span, multi-coordination point and hydrogen-bonding points of contact, to conform coordination complexes has attracted great attention. (Wang et al., 2011, 2014; Gandolfo & LaDuca et al., 2011a,b; Xu et al., 2004). Nevertheless, piperazine derivatives-containing the imidazole group as the coordinated point have been designed forming coordination compounds relatively few. As the imidazole has a similar properties with pyridine, so in this context, we design and successfully synthesized the compound {[Zn(C24H22N6O2)(H2O)4](NO3)2(H2O)2}n based on the piperazine-1,4-diylbis((4-(1H-imidazol-1-yl)phenyl)­methanone) ligand, obtained under hydro­thermal technique. An asymmetric unit of the title compound includes a half ZnII, a half piperazine-1,4-diylbis((4-(1H-imidazol-1-yl)phenyl)­methanone) ligands, two coordinated water molecules, an uncoordinated nitrate anion and one uncoordinated water molecule (Fig. 1). The ZnII atom is coordinated and lies on an inversion centre of a slighter distorted o­cta­hedral, with two ligands [two imidazole N atoms, Zn—N = 2.122 (3) Å] and four coordinated water molecules [Zn—O bond lengths in the range of 2.112 (4) – 2.138 (3) Å]. Between the 1D chains formed by the ligand and ZnII atoms are inter­connected via water O—H···O hydrogen bonds to form a three dimension supra­molecular architecture. In the crystal, in the nitrate anions and the uncoordinated water molecules forming the O—H···N hydrogen bonds to stabilize the three dimension skeleton (Fig. 2).

For related coordination polymers and their potential applications, see: Xu et al. (2004); Gandolfo & LaDuca (2011a,b); Wang et al. (2011, 2014).

Synthesis and crystallization top

A mixture of L (0.1 mmol, 0.0462 g), Zn(NO3)2.6H2O (0.2 mmol, 0.059 g), distilled water (6.0 mL) sealed in a 25 mL Teflon-lined stainless steel vessel and heated at 130 °C for 72 h under auto-pressure, after cooling to room temperature. Primrose yellow prismatic single crystals were removed (yield: 24%).

Refinement details top

Water H atoms were located in a difference Fourier map and refined in riding mode with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and refined using a riding model, Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A part of the polymeric chain of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
catena-Poly[[[tetraaquazinc(II)]-µ-1,4-bis[4-(1H-imidazol-1-yl)benzoyl]piperazine] dinitrate monohydrate] top
Crystal data top
[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2OF(000) = 1504
Mr = 723.96Dx = 1.589 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7728 reflections
a = 22.051 (4) Åθ = 2.7–28.6°
b = 7.8861 (16) ŵ = 0.90 mm1
c = 17.837 (4) ÅT = 294 K
β = 102.65 (3)°Block, colorless
V = 3026.5 (11) Å30.27 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2720 independent reflections
Radiation source: fine-focus sealed tube2212 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scanθmax = 25.2°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2626
Tmin = 0.79, Tmax = 0.83k = 96
5133 measured reflectionsl = 2111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0575P)2 + 8.9494P]
where P = (Fo2 + 2Fc2)/3
2720 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.57 e Å3
6 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Zn(C24H22N6O2)(H2O)4](NO3)2·2H2OV = 3026.5 (11) Å3
Mr = 723.96Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.051 (4) ŵ = 0.90 mm1
b = 7.8861 (16) ÅT = 294 K
c = 17.837 (4) Å0.27 × 0.25 × 0.22 mm
β = 102.65 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2720 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2212 reflections with I > 2σ(I)
Tmin = 0.79, Tmax = 0.83Rint = 0.030
5133 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0556 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.05Δρmax = 0.57 e Å3
2720 reflectionsΔρmin = 0.83 e Å3
196 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.96013 (12)0.75000.0363 (3)
N10.6774 (3)0.2834 (11)0.7201 (4)0.078 (2)
N20.56556 (19)0.9716 (6)0.8564 (2)0.0366 (10)
N30.6522 (2)0.9960 (6)0.9451 (3)0.0380 (11)
O10.50000.6945 (7)0.75000.0656 (19)
H1A0.52150.62700.78130.079*
O20.57119 (17)0.9622 (6)0.6871 (2)0.0541 (11)
H2A0.59601.04330.69030.065*
H2B0.59930.88720.69220.065*
O30.50001.2290 (7)0.75000.0530 (15)
H3A0.52831.29290.77380.064*
O40.92408 (18)1.0374 (6)1.1542 (2)0.0508 (11)
O50.6282 (4)0.3010 (19)0.6852 (6)0.224 (7)
O60.6930 (4)0.1535 (12)0.7462 (6)0.164 (4)
O70.7160 (4)0.3959 (12)0.7332 (7)0.167 (4)
O80.6636 (2)0.7354 (8)0.7064 (4)0.104 (2)
H8A0.66510.62800.70910.125*
H8B0.69520.77410.73390.125*
C10.6268 (2)0.9722 (8)0.8698 (3)0.0410 (13)
H10.64960.95790.83210.049*
C20.5516 (3)0.9983 (8)0.9263 (3)0.0466 (15)
H20.51151.00510.93470.056*
C30.6038 (3)1.0134 (9)0.9812 (3)0.0499 (16)
H30.60651.03201.03330.060*
C40.7176 (2)1.0017 (7)0.9795 (3)0.0380 (13)
C50.7578 (2)1.0726 (8)0.9392 (3)0.0426 (14)
H50.74291.11970.89090.051*
C60.8208 (2)1.0726 (8)0.9719 (3)0.0440 (14)
H60.84841.11860.94470.053*
C70.8435 (2)1.0051 (7)1.0444 (3)0.0381 (13)
C80.8017 (3)0.9408 (8)1.0846 (3)0.0445 (14)
H80.81610.90011.13430.053*
C90.7385 (3)0.9360 (8)1.0522 (3)0.0447 (14)
H90.71080.88931.07890.054*
C100.9109 (3)1.0080 (7)1.0844 (3)0.042
N40.95517 (18)0.9803 (6)1.0449 (2)0.036
C120.9476 (3)0.8984 (9)0.9696 (3)0.050
H12A0.90370.88810.94630.060*
H12B0.96510.78510.97620.060*
C131.0212 (3)1.0026 (9)1.0821 (4)0.0522 (16)
H13A1.04100.89271.09260.063*
H13B1.02481.06201.13050.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0232 (5)0.0463 (6)0.0345 (5)0.0000.0042 (3)0.000
N10.057 (4)0.099 (6)0.076 (4)0.007 (4)0.010 (4)0.036 (4)
N20.024 (2)0.047 (3)0.034 (2)0.0000 (19)0.0029 (18)0.001 (2)
N30.023 (2)0.054 (3)0.033 (2)0.0007 (19)0.0043 (18)0.001 (2)
O10.069 (4)0.042 (3)0.063 (4)0.0000.035 (3)0.000
O20.027 (2)0.086 (3)0.047 (2)0.004 (2)0.0023 (18)0.005 (2)
O30.047 (3)0.044 (3)0.054 (4)0.0000.019 (3)0.000
O40.033 (2)0.076 (3)0.037 (2)0.001 (2)0.0075 (17)0.008 (2)
O50.069 (5)0.422 (19)0.157 (8)0.008 (7)0.027 (5)0.171 (10)
O60.126 (7)0.130 (7)0.210 (10)0.035 (6)0.019 (6)0.073 (7)
O70.127 (7)0.104 (6)0.276 (13)0.019 (6)0.054 (8)0.027 (7)
O80.055 (3)0.113 (5)0.137 (6)0.025 (3)0.004 (3)0.029 (4)
C10.025 (3)0.063 (4)0.031 (3)0.003 (3)0.002 (2)0.006 (3)
C20.024 (3)0.073 (4)0.041 (3)0.000 (3)0.003 (2)0.004 (3)
C30.034 (3)0.080 (5)0.034 (3)0.005 (3)0.004 (2)0.004 (3)
C40.025 (3)0.050 (3)0.033 (3)0.001 (2)0.006 (2)0.001 (2)
C50.031 (3)0.057 (4)0.033 (3)0.002 (3)0.005 (2)0.009 (3)
C60.029 (3)0.061 (4)0.040 (3)0.006 (3)0.002 (2)0.007 (3)
C70.024 (3)0.050 (3)0.035 (3)0.001 (2)0.007 (2)0.003 (2)
C80.037 (3)0.059 (4)0.031 (3)0.000 (3)0.007 (2)0.005 (3)
C90.029 (3)0.065 (4)0.037 (3)0.005 (3)0.002 (2)0.006 (3)
C100.0290.0490.0400.0010.0100.002
N40.0180.0550.0290.0060.0060.009
C120.0300.0630.0500.0060.0040.014
C130.027 (3)0.079 (5)0.043 (3)0.005 (3)0.009 (2)0.011 (3)
Geometric parameters (Å, º) top
Zn1—O12.095 (6)C2—H20.9300
Zn1—O2i2.120 (4)C3—H30.9300
Zn1—O22.120 (4)C4—C51.375 (8)
Zn1—O32.120 (6)C4—C91.379 (8)
Zn1—N22.121 (4)C5—C61.384 (7)
Zn1—N2i2.121 (4)C5—H50.9300
N1—O51.136 (9)C6—C71.387 (8)
N1—O61.146 (10)C6—H60.9300
N1—O71.216 (10)C7—C81.383 (8)
N2—C11.318 (7)C7—C101.501 (7)
N2—C21.364 (7)C8—C91.386 (8)
N3—C11.351 (7)C8—H80.9300
N3—C31.369 (7)C9—H90.9300
N3—C41.439 (6)C10—N41.342 (7)
O1—H1A0.8391N4—C121.466 (7)
O2—H2A0.8351N4—C131.471 (6)
O2—H2B0.8465C12—C13ii1.489 (9)
O3—H3A0.8409C12—H12A0.9700
O4—C101.235 (7)C12—H12B0.9700
O8—H8A0.8490C13—C12ii1.489 (9)
O8—H8B0.8196C13—H13A0.9700
C1—H10.9300C13—H13B0.9700
C2—C31.344 (8)
O1—Zn1—O2i90.45 (13)N3—C3—H3126.8
O1—Zn1—O290.45 (13)C5—C4—C9121.5 (5)
O2i—Zn1—O2179.1 (3)C5—C4—N3119.4 (5)
O1—Zn1—O3180.000 (3)C9—C4—N3119.1 (5)
O2i—Zn1—O389.55 (13)C4—C5—C6118.8 (5)
O2—Zn1—O389.55 (13)C4—C5—H5120.6
O1—Zn1—N292.45 (13)C6—C5—H5120.6
O2i—Zn1—N287.99 (16)C5—C6—C7121.1 (5)
O2—Zn1—N291.97 (16)C5—C6—H6119.4
O3—Zn1—N287.55 (13)C7—C6—H6119.4
O1—Zn1—N2i92.45 (13)C8—C7—C6118.6 (5)
O2i—Zn1—N2i91.97 (16)C8—C7—C10117.5 (5)
O2—Zn1—N2i87.99 (16)C6—C7—C10123.8 (5)
O3—Zn1—N2i87.55 (13)C7—C8—C9121.1 (5)
N2—Zn1—N2i175.1 (3)C7—C8—H8119.5
O5—N1—O6119.8 (11)C9—C8—H8119.5
O5—N1—O7124.1 (11)C4—C9—C8118.7 (5)
O6—N1—O7116.1 (9)C4—C9—H9120.6
C1—N2—C2105.2 (4)C8—C9—H9120.6
C1—N2—Zn1129.2 (4)O4—C10—N4121.4 (5)
C2—N2—Zn1125.3 (4)O4—C10—C7118.2 (5)
C1—N3—C3106.5 (4)N4—C10—C7120.4 (5)
C1—N3—C4125.9 (5)C10—N4—C12127.1 (4)
C3—N3—C4127.5 (5)C10—N4—C13120.4 (4)
Zn1—O1—H1A129.4C12—N4—C13111.6 (4)
Zn1—O2—H2A121.3N4—C12—C13ii111.2 (5)
Zn1—O2—H2B123.2N4—C12—H12A109.4
H2A—O2—H2B94.3C13ii—C12—H12A109.4
Zn1—O3—H3A126.8N4—C12—H12B109.4
H8A—O8—H8B108.6C13ii—C12—H12B109.4
N2—C1—N3111.5 (5)H12A—C12—H12B108.0
N2—C1—H1124.3N4—C13—C12ii109.3 (5)
N3—C1—H1124.3N4—C13—H13A109.8
C3—C2—N2110.5 (5)C12ii—C13—H13A109.8
C3—C2—H2124.8N4—C13—H13B109.8
N2—C2—H2124.8C12ii—C13—H13B109.8
C2—C3—N3106.3 (5)H13A—C13—H13B108.3
C2—C3—H3126.8
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+2, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4iii0.841.962.795 (6)174
O2—H2A···O5iv0.842.162.956 (15)159
O2—H2A···O6iv0.842.323.060 (10)148
O2—H2B···O80.851.832.676 (7)176
O3—H3A···O4v0.841.992.804 (6)163
O8—H8A···O70.852.142.914 (11)151
O8—H8B···O7vi0.822.142.926 (11)160
C1—H1···O6iv0.932.513.232 (11)135
C5—H5···O6iv0.932.593.485 (12)162
Symmetry codes: (iii) x+3/2, y+3/2, z+2; (iv) x, y+1, z; (v) x+3/2, y+5/2, z+2; (vi) x+3/2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.841.962.795 (6)174
O2—H2A···O5ii0.842.162.956 (15)159
O2—H2A···O6ii0.842.323.060 (10)148
O2—H2B···O80.851.832.676 (7)176
O3—H3A···O4iii0.841.992.804 (6)163
O8—H8A···O70.852.142.914 (11)151
O8—H8B···O7iv0.822.142.926 (11)160
C1—H1···O6ii0.932.513.232 (11)135
C5—H5···O6ii0.932.593.485 (12)162
Symmetry codes: (i) x+3/2, y+3/2, z+2; (ii) x, y+1, z; (iii) x+3/2, y+5/2, z+2; (iv) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Nos. 21461023 and 21361023) and the Fundamental Research Funds of Gansu University, China.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGandolfo, C. M. & LaDuca, R. L. (2011a). Cryst. Growth Des. 11, 1328–1337.  CSD CrossRef CAS Google Scholar
First citationGandolfo, C. M. & LaDuca, R. L. (2011b). Inorg. Chem. Commun. 14, 1111–1114.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Sui, F.-F., Lin, H.-Y., Zhang, J.-W. & Liu, G.-C. (2014). Cryst. Growth Des. 14, 3438–3452.  CSD CrossRef CAS Google Scholar
First citationWang, C.-Y., Wilseck, Z. M. & LaDuca, R. L. (2011). Inorg. Chem. 50, 8997–9003.  CrossRef CAS PubMed Google Scholar
First citationXu, H., Song, Y. & Hou, H. (2004). Inorg. Chim. Acta, 357, 3541–3548.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds