organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-{3-acetyl-2-(4-chloro­phen­yl)-6-hy­dr­oxy-4-[(2-hy­dr­oxy­prop­yl)amino]-6-methyl­cyclo­hex-3-en-1-yl}ethanone

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China (Received 19 April 2015; accepted 25 April 2015; online 30 April 2015)

In the title compound, C20H26ClNO4, the central cyclo­hexene ring adopts an approximate envelope conformation with the C atom binding with the hy­droxy group at the tip of the flap. There is an intramolecular N—H⋯O hydrogen bond generating an S(6) ring motif. In the crystal, classical O—H⋯O hydrogen bonds and weak C—H⋯O and C—H⋯Cl inter­actions link the mol­ecules, forming a three-dimensional supra­molecular architecture. The crystal structure was refined as a four-component twin.

1. Related literature

For use of 1,3-diketones as building block in mutasynthesis and as chelating ligands, see: Bergé et al. (1997[Bergé, J. P., Bourgougnon, N., Carbonnelle, D., Le Bert, V., Tomasoni, C., Durand, P. & Roussakis, C. (1997). Anticancer Res. 17, 2115-2120.]); Nagpal et al. (2001[Nagpal, A., Unny, R. & Joshi, Y. C. (2001). Heterocycl. Commun. 32, 589-592.]); Simoni et al. (1999[Simoni, D., Invidiata, F. P., Rondanin, R., Grimaudo, S., Cannizzo, G., Barbusca, E., Porretto, F., D'Alessandro, N. & Tolomeo, M. (1999). J. Med. Chem. 42, 4961-4969.]); Garnovskii et al. (1999[Garnovskii, A. D., Kharisov, B. I., Blanco, L. M., Garnovskii, D. A., Burlov, A. S., Vasilchenko, I. S. & Bondarenko, G. I. (1999). J. Coord. Chem. 46, 365-395.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H26ClNO4

  • Mr = 379.87

  • Monoclinic, P 21

  • a = 5.5490 (2) Å

  • b = 8.7759 (3) Å

  • c = 19.4428 (6) Å

  • β = 92.815 (2)°

  • V = 945.67 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.98 mm−1

  • T = 150 K

  • 0.26 × 0.18 × 0.02 mm

2.2. Data collection

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.63, Tmax = 0.97

  • 7079 measured reflections

  • 7079 independent reflections

  • 6072 reflections with I > 2σ(I)

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.144

  • S = 1.06

  • 7079 reflections

  • 242 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.38 e Å−3

  • Absolute structure: The crystal is a non-merohedral twin with each component being a racemic twin as well.

  • Absolute structure parameter: 0.033 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.84 1.97 2.811 (6) 174
O3—H3A⋯O4i 0.84 1.95 2.768 (6) 164
N1—H1B⋯O4 0.91 1.82 2.601 (7) 142
C2—H2⋯O1ii 1.00 2.61 3.488 (6) 147
C4—H4A⋯O1ii 0.99 2.58 3.456 (7) 147
C4—H4A⋯O2ii 0.99 2.57 3.347 (6) 136
C14—H14A⋯Cl1iii 0.98 2.98 3.818 (7) 145
C15—H15B⋯O1ii 0.98 2.62 3.473 (8) 146
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

1,3-Diketones are important building block, and their usefulness in cyclic and heterocyclic preparations has been largely illustrated (Bergé et al., 1997; Nagpal et al., 2001; Simoni et al., 1999). Also, 1,3-diketones are key structural units in many chelating ligand for lanthanide and transition metals (Garnovskii et al., 1999). In this concept, we report in this study the synthesis and crystal structure study of the title compound.

In the title molecule, the central six-membered ring adopts an approximate envelope conformation with C3 at the tip of the "flap" (Fig. 1). A Cremer-Pople puckering analysis gives a puckering amplitude Q = 0.530 (6) Å and additional parameters θ = 58.7 (6)° and φ = 109.3 (8)°. The conformation of the 2-hydroxypropylamino side chain is determined in part by the intramolecular N1—H1B···O4 hydrogen bonds. Two intermolecular hydrogen bonds (O2—H2A···O3i and O3—H3A···O4i (i: 1 - x, 1/2 + y, 1 - z) form a unit which is propagated by the 21 axis using further pairs of these hydrogen bonds to generate layers approximately parallel to (101) (Fig. 2). In addition, there are intermolecular "three point" C—H···O interactions between the central cyclohexene ring and O1 parallel to the a axis (Fig. 3).

Related literature top

For use of 1,3-diketones as building block in mutasynthesis and as chelating ligands, see: Bergé et al. (1997); Nagpal et al. (2001); Simoni et al. (1999); Garnovskii et al. (1999).

Experimental top

A mixture of 4-chlorobenzaldehyde (1 mmol, 140 mg), 1-aminopropan-2-ol (1 mmol, 75 mg) and pentane-2,4-dione (1 mmol, 100 mg) in 30 ml e thanol was refluxed for 2 h. The resulting solid product was collected, dried under vacuum and recrystallized from ethanol to afford colourless crystals in excelent yield (92%).

Refinement top

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen and oxygen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 and O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the final stages of the refinement it became evident that not only was the crystal twinned by a 180° rotation about the c* axis but also each of these components was a racemic twin. Consequently, the model was finally refined as a 4-component twin.

Structure description top

1,3-Diketones are important building block, and their usefulness in cyclic and heterocyclic preparations has been largely illustrated (Bergé et al., 1997; Nagpal et al., 2001; Simoni et al., 1999). Also, 1,3-diketones are key structural units in many chelating ligand for lanthanide and transition metals (Garnovskii et al., 1999). In this concept, we report in this study the synthesis and crystal structure study of the title compound.

In the title molecule, the central six-membered ring adopts an approximate envelope conformation with C3 at the tip of the "flap" (Fig. 1). A Cremer-Pople puckering analysis gives a puckering amplitude Q = 0.530 (6) Å and additional parameters θ = 58.7 (6)° and φ = 109.3 (8)°. The conformation of the 2-hydroxypropylamino side chain is determined in part by the intramolecular N1—H1B···O4 hydrogen bonds. Two intermolecular hydrogen bonds (O2—H2A···O3i and O3—H3A···O4i (i: 1 - x, 1/2 + y, 1 - z) form a unit which is propagated by the 21 axis using further pairs of these hydrogen bonds to generate layers approximately parallel to (101) (Fig. 2). In addition, there are intermolecular "three point" C—H···O interactions between the central cyclohexene ring and O1 parallel to the a axis (Fig. 3).

For use of 1,3-diketones as building block in mutasynthesis and as chelating ligands, see: Bergé et al. (1997); Nagpal et al. (2001); Simoni et al. (1999); Garnovskii et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with labeling scheme and 50% probability ellipsoids. The intramolecular N—H···O hydrogen bond is shown as a dotted line.
[Figure 2] Fig. 2. Packing viewed down the a axis. O—H···O hydrogen bonds are shown as red dotted lines.
[Figure 3] Fig. 3. Packing showing the "three-point" C—H···O interactions as black dotted lines.
1-{3-Acetyl-2-(4-chlorophenyl)-6-hydroxy-4-[(2-hydroxypropyl)amino]-6-methylcyclohex-3-en-1-yl}ethanone top
Crystal data top
C20H26ClNO4F(000) = 404
Mr = 379.87Dx = 1.323 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 5.5490 (2) ÅCell parameters from 5259 reflections
b = 8.7759 (3) Åθ = 4.6–72.4°
c = 19.4428 (6) ŵ = 1.98 mm1
β = 92.815 (2)°T = 150 K
V = 945.67 (6) Å3Plate, colourless
Z = 20.26 × 0.18 × 0.02 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
7079 measured reflections
Radiation source: INCOATEC IµS micro–focus source7079 independent reflections
Mirror monochromator6072 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1θmax = 72.5°, θmin = 4.6°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1010
Tmin = 0.63, Tmax = 0.97l = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0693P)2 + 0.3038P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
7079 reflectionsΔρmax = 0.39 e Å3
242 parametersΔρmin = 0.38 e Å3
1 restraintAbsolute structure: The crystal is a non-merohedral twin with each component being a racemic twin as well.
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.033 (15)
Crystal data top
C20H26ClNO4V = 945.67 (6) Å3
Mr = 379.87Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.5490 (2) ŵ = 1.98 mm1
b = 8.7759 (3) ÅT = 150 K
c = 19.4428 (6) Å0.26 × 0.18 × 0.02 mm
β = 92.815 (2)°
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
7079 measured reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
7079 independent reflections
Tmin = 0.63, Tmax = 0.976072 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.144Δρmax = 0.39 e Å3
S = 1.06Δρmin = 0.38 e Å3
7079 reflectionsAbsolute structure: The crystal is a non-merohedral twin with each component being a racemic twin as well.
242 parametersAbsolute structure parameter: 0.033 (15)
1 restraint
Special details top

Experimental. Analysis of 1837 reflections having I/σ(I) > 12 and chosen from the full data set with CELL_NOW (Sheldrick, 2008) showed the crystal to belong to the monoclinic system and to be twinned by a 180° rotation about the c* axis. The raw data were processed using the multi-component version of SAINT under control of the two-component orientation file generated by CELL_NOW.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to oxygen were placed in locations derived from a difference map and their parameters adjusted to give O—H = 0.84 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. In the final stages of the refinement it became evident that not only was the crystal twinned by a 180° rotation about the c* axis but also each of these components was a racemic twin. Consequently, the model was finally refined as a 4-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.6307 (4)0.0955 (2)1.00356 (9)0.0579 (6)
O11.1051 (7)0.7167 (5)0.8132 (2)0.0376 (11)
O20.8526 (6)0.7591 (5)0.6729 (2)0.0320 (10)
H2A0.82200.81760.63940.038*
O30.2467 (7)0.4376 (5)0.4451 (2)0.0332 (10)
H3A0.29140.52690.43660.040*
O40.6555 (7)0.2231 (5)0.6072 (2)0.0341 (10)
N10.3747 (8)0.4595 (7)0.5929 (2)0.0312 (12)
H1B0.41640.36020.58710.037*
C10.7897 (9)0.4895 (7)0.7530 (3)0.0248 (12)
H10.96720.49630.74680.030*
C20.7024 (9)0.6487 (6)0.7741 (3)0.0251 (12)
H20.55230.63510.79980.030*
C30.6400 (9)0.7509 (7)0.7111 (3)0.0264 (13)
C40.4393 (9)0.6728 (7)0.6691 (3)0.0282 (13)
H4A0.29170.67340.69570.034*
H4B0.40450.73220.62650.034*
C50.4944 (10)0.5119 (8)0.6498 (3)0.0288 (14)
C60.6716 (9)0.4266 (7)0.6858 (3)0.0256 (12)
C70.7523 (10)0.3846 (7)0.8148 (3)0.0255 (12)
C80.5421 (11)0.3006 (8)0.8207 (3)0.0337 (14)
H80.42120.30470.78450.040*
C90.5031 (12)0.2112 (8)0.8778 (3)0.0385 (15)
H90.36010.15230.88020.046*
C100.6767 (12)0.2094 (8)0.9311 (3)0.0390 (16)
C110.8864 (12)0.2898 (8)0.9274 (3)0.0407 (17)
H111.00560.28560.96410.049*
C120.9244 (11)0.3778 (8)0.8695 (3)0.0361 (15)
H121.06990.43410.86700.043*
C130.8910 (10)0.7249 (7)0.8224 (3)0.0292 (13)
C140.8022 (13)0.8077 (9)0.8835 (3)0.0424 (17)
H14A0.76460.73400.91930.064*
H14B0.65660.86540.86980.064*
H14C0.92740.87780.90160.064*
C150.5570 (10)0.9097 (8)0.7316 (3)0.0342 (14)
H15A0.68610.96020.75920.051*
H15B0.41310.90110.75860.051*
H15C0.51830.96980.69000.051*
C160.1783 (11)0.5437 (8)0.5557 (3)0.0362 (15)
H16A0.24080.64210.53920.043*
H16B0.04860.56570.58750.043*
C170.0785 (11)0.4540 (9)0.4965 (3)0.0403 (17)
H170.04390.34960.51400.048*
C180.1597 (10)0.5198 (8)0.4682 (3)0.0367 (15)
H18A0.13340.62310.45100.055*
H18B0.27450.52340.50490.055*
H18C0.22490.45540.43050.055*
C190.7529 (10)0.2866 (7)0.6595 (3)0.0278 (13)
C200.9775 (10)0.2105 (8)0.6928 (3)0.0302 (13)
H20A0.99420.10770.67390.045*
H20B0.96170.20420.74270.045*
H20C1.12050.27090.68310.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0853 (14)0.0563 (11)0.0340 (8)0.0254 (10)0.0201 (8)0.0185 (9)
O10.025 (2)0.048 (3)0.039 (2)0.007 (2)0.0011 (17)0.002 (2)
O20.0218 (19)0.039 (3)0.035 (2)0.0045 (18)0.0055 (16)0.009 (2)
O30.028 (2)0.040 (3)0.032 (2)0.001 (2)0.0011 (16)0.002 (2)
O40.034 (2)0.039 (3)0.029 (2)0.003 (2)0.0077 (16)0.004 (2)
N10.023 (2)0.044 (3)0.026 (2)0.006 (2)0.0041 (18)0.001 (2)
C10.018 (2)0.030 (3)0.026 (3)0.000 (2)0.002 (2)0.003 (2)
C20.018 (2)0.030 (3)0.027 (3)0.000 (2)0.003 (2)0.001 (3)
C30.020 (3)0.031 (3)0.029 (3)0.001 (2)0.003 (2)0.005 (3)
C40.019 (3)0.038 (4)0.027 (3)0.002 (2)0.000 (2)0.004 (3)
C50.020 (3)0.047 (4)0.020 (3)0.002 (3)0.004 (2)0.002 (3)
C60.020 (2)0.032 (3)0.025 (3)0.001 (2)0.001 (2)0.005 (3)
C70.026 (3)0.027 (3)0.023 (3)0.008 (2)0.002 (2)0.000 (2)
C80.028 (3)0.040 (4)0.032 (3)0.003 (3)0.001 (2)0.011 (3)
C90.038 (3)0.036 (4)0.042 (4)0.007 (3)0.007 (3)0.013 (3)
C100.049 (4)0.041 (4)0.028 (3)0.014 (3)0.010 (3)0.002 (3)
C110.052 (4)0.041 (4)0.028 (3)0.012 (3)0.011 (3)0.001 (3)
C120.036 (3)0.043 (4)0.029 (3)0.001 (3)0.007 (2)0.000 (3)
C130.029 (3)0.030 (3)0.028 (3)0.005 (3)0.001 (2)0.006 (3)
C140.048 (4)0.045 (4)0.034 (3)0.001 (3)0.002 (3)0.009 (3)
C150.029 (3)0.038 (4)0.036 (3)0.007 (3)0.003 (2)0.007 (3)
C160.027 (3)0.046 (4)0.035 (3)0.011 (3)0.008 (2)0.001 (3)
C170.029 (3)0.057 (5)0.034 (3)0.006 (3)0.000 (3)0.008 (3)
C180.022 (3)0.049 (4)0.039 (4)0.002 (3)0.003 (2)0.008 (3)
C190.025 (3)0.036 (3)0.022 (3)0.000 (3)0.001 (2)0.001 (3)
C200.025 (3)0.035 (3)0.030 (3)0.003 (3)0.001 (2)0.003 (3)
Geometric parameters (Å, º) top
Cl1—C101.756 (7)C8—H80.9500
O1—C131.212 (7)C9—C101.381 (9)
O2—C31.427 (6)C9—H90.9500
O2—H2A0.8400C10—C111.366 (10)
O3—C171.407 (7)C11—C121.390 (9)
O3—H3A0.8404C11—H110.9500
O4—C191.257 (7)C12—H120.9500
N1—C51.342 (7)C13—C141.497 (9)
N1—C161.477 (7)C14—H14A0.9800
N1—H1B0.9100C14—H14B0.9800
C1—C61.534 (7)C14—H14C0.9800
C1—C71.537 (8)C15—H15A0.9800
C1—C21.541 (8)C15—H15B0.9800
C1—H11.0000C15—H15C0.9800
C2—C131.526 (7)C16—C171.480 (9)
C2—C31.543 (8)C16—H16A0.9900
C2—H21.0000C16—H16B0.9900
C3—C41.513 (8)C17—C181.521 (8)
C3—C151.526 (9)C17—H171.0000
C4—C51.497 (9)C18—H18A0.9800
C4—H4A0.9900C18—H18B0.9800
C4—H4B0.9900C18—H18C0.9800
C5—C61.396 (8)C19—C201.530 (8)
C6—C191.414 (9)C20—H20A0.9800
C7—C81.389 (8)C20—H20B0.9800
C7—C121.394 (8)C20—H20C0.9800
C8—C91.385 (9)
C3—O2—H2A107.1C10—C11—H11120.2
C17—O3—H3A104.9C12—C11—H11120.2
C5—N1—C16123.8 (6)C11—C12—C7121.0 (6)
C5—N1—H1B108.2C11—C12—H12119.5
C16—N1—H1B127.2C7—C12—H12119.5
C6—C1—C7112.5 (5)O1—C13—C14120.7 (5)
C6—C1—C2115.2 (5)O1—C13—C2122.0 (5)
C7—C1—C2106.1 (4)C14—C13—C2117.3 (5)
C6—C1—H1107.6C13—C14—H14A109.5
C7—C1—H1107.6C13—C14—H14B109.5
C2—C1—H1107.6H14A—C14—H14B109.5
C13—C2—C1110.3 (4)C13—C14—H14C109.5
C13—C2—C3110.7 (5)H14A—C14—H14C109.5
C1—C2—C3112.2 (5)H14B—C14—H14C109.5
C13—C2—H2107.8C3—C15—H15A109.5
C1—C2—H2107.8C3—C15—H15B109.5
C3—C2—H2107.8H15A—C15—H15B109.5
O2—C3—C4110.3 (5)C3—C15—H15C109.5
O2—C3—C15111.0 (5)H15A—C15—H15C109.5
C4—C3—C15109.3 (5)H15B—C15—H15C109.5
O2—C3—C2106.4 (4)N1—C16—C17110.7 (5)
C4—C3—C2107.2 (5)N1—C16—H16A109.5
C15—C3—C2112.6 (5)C17—C16—H16A109.5
C5—C4—C3114.2 (5)N1—C16—H16B109.5
C5—C4—H4A108.7C17—C16—H16B109.5
C3—C4—H4A108.7H16A—C16—H16B108.1
C5—C4—H4B108.7O3—C17—C16111.8 (5)
C3—C4—H4B108.7O3—C17—C18112.2 (5)
H4A—C4—H4B107.6C16—C17—C18111.4 (6)
N1—C5—C6122.5 (6)O3—C17—H17107.0
N1—C5—C4115.5 (5)C16—C17—H17107.0
C6—C5—C4121.8 (5)C18—C17—H17107.0
C5—C6—C19120.8 (5)C17—C18—H18A109.5
C5—C6—C1119.7 (6)C17—C18—H18B109.5
C19—C6—C1119.4 (5)H18A—C18—H18B109.5
C8—C7—C12117.4 (6)C17—C18—H18C109.5
C8—C7—C1121.9 (5)H18A—C18—H18C109.5
C12—C7—C1120.5 (5)H18B—C18—H18C109.5
C9—C8—C7122.1 (6)O4—C19—C6123.1 (5)
C9—C8—H8118.9O4—C19—C20117.2 (5)
C7—C8—H8118.9C6—C19—C20119.6 (5)
C10—C9—C8118.5 (6)C19—C20—H20A109.5
C10—C9—H9120.7C19—C20—H20B109.5
C8—C9—H9120.7H20A—C20—H20B109.5
C11—C10—C9121.2 (6)C19—C20—H20C109.5
C11—C10—Cl1119.7 (5)H20A—C20—H20C109.5
C9—C10—Cl1119.0 (5)H20B—C20—H20C109.5
C10—C11—C12119.6 (6)
C6—C1—C2—C13157.7 (5)C6—C1—C7—C834.3 (7)
C7—C1—C2—C1377.1 (5)C2—C1—C7—C892.5 (6)
C6—C1—C2—C333.8 (6)C6—C1—C7—C12149.6 (5)
C7—C1—C2—C3159.0 (4)C2—C1—C7—C1283.6 (6)
C13—C2—C3—O266.3 (6)C12—C7—C8—C90.9 (9)
C1—C2—C3—O257.4 (6)C1—C7—C8—C9177.1 (6)
C13—C2—C3—C4175.7 (4)C7—C8—C9—C101.8 (10)
C1—C2—C3—C460.7 (6)C8—C9—C10—C112.1 (10)
C13—C2—C3—C1555.5 (6)C8—C9—C10—Cl1179.6 (5)
C1—C2—C3—C15179.1 (5)C9—C10—C11—C121.4 (10)
O2—C3—C4—C561.4 (6)Cl1—C10—C11—C12178.9 (5)
C15—C3—C4—C5176.4 (5)C10—C11—C12—C70.4 (10)
C2—C3—C4—C554.1 (6)C8—C7—C12—C110.1 (9)
C16—N1—C5—C6176.8 (6)C1—C7—C12—C11176.5 (6)
C16—N1—C5—C47.7 (8)C1—C2—C13—O141.0 (7)
C3—C4—C5—N1154.8 (5)C3—C2—C13—O183.7 (7)
C3—C4—C5—C620.7 (7)C1—C2—C13—C14137.3 (6)
N1—C5—C6—C197.2 (9)C3—C2—C13—C1498.0 (6)
C4—C5—C6—C19168.0 (5)C5—N1—C16—C17178.4 (6)
N1—C5—C6—C1176.1 (5)N1—C16—C17—O367.3 (7)
C4—C5—C6—C18.7 (8)N1—C16—C17—C18166.3 (5)
C7—C1—C6—C5120.3 (6)C5—C6—C19—O47.9 (9)
C2—C1—C6—C51.5 (8)C1—C6—C19—O4175.4 (5)
C7—C1—C6—C1963.0 (7)C5—C6—C19—C20168.7 (5)
C2—C1—C6—C19175.2 (5)C1—C6—C19—C207.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.841.972.811 (6)174
O3—H3A···O4i0.841.952.768 (6)164
N1—H1B···O40.911.822.601 (7)142
C2—H2···O1ii1.002.613.488 (6)147
C4—H4A···O1ii0.992.583.456 (7)147
C4—H4A···O2ii0.992.573.347 (6)136
C14—H14A···Cl1iii0.982.983.818 (7)145
C15—H15B···O1ii0.982.623.473 (8)146
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z; (iii) x+1, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.841.972.811 (6)174
O3—H3A···O4i0.841.952.768 (6)164
N1—H1B···O40.911.822.601 (7)142
C2—H2···O1ii1.002.613.488 (6)147
C4—H4A···O1ii0.992.583.456 (7)147
C4—H4A···O2ii0.992.573.347 (6)136
C14—H14A···Cl1iii0.982.983.818 (7)145
C15—H15B···O1ii0.982.623.473 (8)146
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x1, y, z; (iii) x+1, y+1/2, z+2.
 

Acknowledgements

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBergé, J. P., Bourgougnon, N., Carbonnelle, D., Le Bert, V., Tomasoni, C., Durand, P. & Roussakis, C. (1997). Anticancer Res. 17, 2115–2120.  PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGarnovskii, A. D., Kharisov, B. I., Blanco, L. M., Garnovskii, D. A., Burlov, A. S., Vasilchenko, I. S. & Bondarenko, G. I. (1999). J. Coord. Chem. 46, 365–395.  CrossRef CAS Google Scholar
First citationNagpal, A., Unny, R. & Joshi, Y. C. (2001). Heterocycl. Commun. 32, 589–592.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimoni, D., Invidiata, F. P., Rondanin, R., Grimaudo, S., Cannizzo, G., Barbusca, E., Porretto, F., D'Alessandro, N. & Tolomeo, M. (1999). J. Med. Chem. 42, 4961–4969.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds