organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(1-methyl­eth­yl)-1,3-thia­zolo[4,5-b]pyridine

aCornea Research Chair, Department of Optometry, College of Applied Medical, Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by G. Smith, Queensland University of Technology, Australia (Received 5 March 2015; accepted 25 March 2015; online 2 April 2015)

In the title mol­ecule, C9H10N2S, one of the methyl groups is almost co-planar with the thia­zolo­pyridine rings with a deviation of 0.311 (3) Å from the least-squares plane of the thia­zolo­pyridine group. In the crystal, weak C—H⋯N hydrogen-bonding inter­actions lead to the formation of chains along [011].

1. Related literature

For related compounds, see: Smith et al. (1994[Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197-216.], 1995[Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79-95.]); El-Hiti (2003[El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837-841.]); Johnson et al. (2006[Johnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853-4856.]); Thomae et al. (2008[Thomae, D., Perspicace, E., Hesse, S., Kirsch, G. & Seck, P. (2008). Tetrahedron, 64, 9309-9314.]); Rao et al. (2009[Rao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176-6180.]); Lee et al. (2010[Lee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Comb. Chem. 12, 95-99.]); Luo et al. (2015[Luo, L., Meng, L., Peng, Y., Xing, Y., Sun, Q., Ge, Z. & Li, R. (2015). Eur. J. Org. Chem. pp. 631-637.]). For the X-ray crystal structures of related compounds, see: Yu et al. (2007[Yu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, o968-o969.]); El-Hiti et al. (2014[El-Hiti, G. A., Smith, K., Hegazy, A. S., Masmali, A. M. & Kariuki, B. M. (2014). Acta Cryst. E70, o932.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H10N2S

  • Mr = 178.25

  • Orthorhombic, P n a 21

  • a = 9.6376 (2) Å

  • b = 10.1602 (2) Å

  • c = 8.9254 (2) Å

  • V = 873.98 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.81 mm−1

  • T = 150 K

  • 0.23 × 0.20 × 0.14 mm

2.2. Data collection

  • Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.897, Tmax = 0.940

  • 2848 measured reflections

  • 1366 independent reflections

  • 1351 reflections with I > 2σ(I)

  • Rint = 0.012

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.057

  • S = 1.08

  • 1366 reflections

  • 111 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N1i 0.95 2.51 3.391 (2) 153
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Chemical context top

Thia­zolo­pyridines have been efficiently synthesized and in high yield using different synthetic procedures (Smith et al., 1994, 1995; El-Hiti, 2003; Johnson et al., 2006; Thomae et al., 2008; Rao et al., 2009; Lee et al., 2010; Luo et al., 2015). During our continuing research towards the development of novel synthetic routes for the production of heterocyclic compounds, we have synthesised the title compound 2-(methyl­ethyl)-1,3-thia­zolo[4,5-b]pyridine in high yield (Smith et al., 1995). The X-ray structures for related compounds have been reported (Yu et al., 2007; El-Hiti et al., 2014).

Structural commentary top

The asymmetric unit of the title compound consists of a single molecule of C9H10N2S (Fig. 1). In the molecule, one of the methyl groups is almost co-planar with the thia­zolo­pyridine ring. The deviations from the least-squares plane of the thia­zolo­pyridine group are 0.311 (3)Å and 1.269 (3)Å for C8 and C9 respectively, corresponding to torsion angles N1—C1—C7—C8 and N1—C1—C7—C9 of 169.47 (19) and -65.9 (3)°, respectively.

Weak C—H···N hydrogen-bonding inter­actions occur in the structure to form chains along [011] (Fig. 2, Table 1). No ππ inter­actions are observed in the crystal structure.

Synthesis and crystallization top

2-(1-Methyl­ethyl)-1,3-thia­zolo[4,5-b]pyridine was obtained in 98% yield from acid hydrolysis (HCl, 5 M) of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(1-methyl­ethyl­carbonyl­amino)­pyridine under reflux for 5 h (Smith et al., 1995). Crystallization of the crude product from di­ethyl ether gave colourless crystals of the title compound. The spectroscopic and analytical data for the title compound were consistent with those reported previously (Smith et al., 1995).

Refinement details top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond. Although not of relevance with this achiral compound, the absolute structure factor (Flack, 1983) was determined as 0.031 (11) for 434 Friedel pairs.

Related literature top

For related compounds, see: Smith et al. (1994, 1995); El-Hiti (2003); Johnson et al. (2006); Thomae et al. (2008); Rao et al. (2009); Lee et al. (2010); Luo et al. (2015). For the X-ray crystal structures of related compounds, see: Yu et al. (2007); El-Hiti et al. (2014).

Structure description top

Thia­zolo­pyridines have been efficiently synthesized and in high yield using different synthetic procedures (Smith et al., 1994, 1995; El-Hiti, 2003; Johnson et al., 2006; Thomae et al., 2008; Rao et al., 2009; Lee et al., 2010; Luo et al., 2015). During our continuing research towards the development of novel synthetic routes for the production of heterocyclic compounds, we have synthesised the title compound 2-(methyl­ethyl)-1,3-thia­zolo[4,5-b]pyridine in high yield (Smith et al., 1995). The X-ray structures for related compounds have been reported (Yu et al., 2007; El-Hiti et al., 2014).

The asymmetric unit of the title compound consists of a single molecule of C9H10N2S (Fig. 1). In the molecule, one of the methyl groups is almost co-planar with the thia­zolo­pyridine ring. The deviations from the least-squares plane of the thia­zolo­pyridine group are 0.311 (3)Å and 1.269 (3)Å for C8 and C9 respectively, corresponding to torsion angles N1—C1—C7—C8 and N1—C1—C7—C9 of 169.47 (19) and -65.9 (3)°, respectively.

Weak C—H···N hydrogen-bonding inter­actions occur in the structure to form chains along [011] (Fig. 2, Table 1). No ππ inter­actions are observed in the crystal structure.

For related compounds, see: Smith et al. (1994, 1995); El-Hiti (2003); Johnson et al. (2006); Thomae et al. (2008); Rao et al. (2009); Lee et al. (2010); Luo et al. (2015). For the X-ray crystal structures of related compounds, see: Yu et al. (2007); El-Hiti et al. (2014).

Synthesis and crystallization top

2-(1-Methyl­ethyl)-1,3-thia­zolo[4,5-b]pyridine was obtained in 98% yield from acid hydrolysis (HCl, 5 M) of 3-(diiso­propyl­amino­thio­carbonyl­thio)-2-(1-methyl­ethyl­carbonyl­amino)­pyridine under reflux for 5 h (Smith et al., 1995). Crystallization of the crude product from di­ethyl ether gave colourless crystals of the title compound. The spectroscopic and analytical data for the title compound were consistent with those reported previously (Smith et al., 1995).

Refinement details top

H atoms were positioned geometrically and refined using a riding model with Uiso(H) constrained to be 1.2 times Ueq for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond. Although not of relevance with this achiral compound, the absolute structure factor (Flack, 1983) was determined as 0.031 (11) for 434 Friedel pairs.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
[Figure 1] Fig. 1. A molecule of C9H10N2S with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal structure packing viewed down the c axis with C—H···N interactions shown as dotted lines.
2-(1-Methylethyl)-1,3-thiazolo[4,5-b]pyridine top
Crystal data top
C9H10N2SDx = 1.355 Mg m3
Mr = 178.25Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Pna21Cell parameters from 2276 reflections
a = 9.6376 (2) Åθ = 6.3–73.8°
b = 10.1602 (2) ŵ = 2.81 mm1
c = 8.9254 (2) ÅT = 150 K
V = 873.98 (3) Å3Block, colourless
Z = 40.23 × 0.20 × 0.14 mm
F(000) = 376
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
1366 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source1351 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.012
Detector resolution: 10.5082 pixels mm-1θmax = 74.0°, θmin = 6.3°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 128
Tmin = 0.897, Tmax = 0.940l = 1010
2848 measured reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.1081P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
1366 reflectionsΔρmax = 0.19 e Å3
111 parametersΔρmin = 0.20 e Å3
Crystal data top
C9H10N2SV = 873.98 (3) Å3
Mr = 178.25Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 9.6376 (2) ŵ = 2.81 mm1
b = 10.1602 (2) ÅT = 150 K
c = 8.9254 (2) Å0.23 × 0.20 × 0.14 mm
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
1366 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
1351 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.940Rint = 0.012
2848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.057H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
1366 reflectionsΔρmin = 0.20 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.13501 (18)0.59856 (18)0.8660 (2)0.0227 (4)
C20.23657 (17)0.67547 (17)1.1015 (2)0.0208 (3)
C30.29550 (18)0.56187 (17)1.0365 (2)0.0203 (3)
C40.2865 (2)0.72261 (17)1.2365 (3)0.0257 (4)
H40.24830.79851.28290.031*
C50.39534 (19)0.6532 (2)1.3007 (3)0.0279 (4)
H50.43420.68131.39310.034*
C60.44760 (19)0.54145 (19)1.2283 (3)0.0273 (4)
H60.52200.49591.27520.033*
C70.05003 (18)0.57871 (19)0.7259 (3)0.0271 (4)
H70.01770.48520.72510.033*
C80.0783 (2)0.6663 (2)0.7204 (3)0.0365 (5)
H8A0.13750.64750.80700.055*
H8B0.12990.64880.62790.055*
H8C0.04990.75890.72270.055*
C90.1411 (2)0.5992 (3)0.5875 (3)0.0421 (6)
H9A0.16660.69230.57960.063*
H9B0.08970.57270.49770.063*
H9C0.22530.54570.59660.063*
N10.23563 (16)0.52156 (16)0.9037 (2)0.0241 (3)
N20.40055 (14)0.49434 (16)1.0985 (2)0.0254 (4)
S10.10273 (4)0.73079 (4)0.98822 (7)0.02515 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (8)0.0253 (8)0.0224 (10)0.0013 (7)0.0032 (7)0.0026 (8)
C20.0212 (8)0.0210 (7)0.0203 (9)0.0011 (6)0.0033 (6)0.0004 (7)
C30.0199 (7)0.0206 (7)0.0204 (9)0.0026 (6)0.0032 (6)0.0024 (7)
C40.0292 (9)0.0258 (9)0.0221 (9)0.0028 (7)0.0018 (8)0.0061 (8)
C50.0302 (9)0.0353 (11)0.0184 (9)0.0058 (7)0.0024 (7)0.0002 (9)
C60.0258 (8)0.0303 (9)0.0259 (9)0.0005 (7)0.0035 (8)0.0042 (8)
C70.0266 (8)0.0293 (9)0.0254 (9)0.0036 (7)0.0032 (8)0.0030 (8)
C80.0293 (9)0.0428 (12)0.0374 (13)0.0037 (9)0.0127 (9)0.0071 (11)
C90.0351 (11)0.0705 (16)0.0207 (11)0.0072 (11)0.0024 (8)0.0025 (11)
N10.0231 (7)0.0264 (8)0.0229 (8)0.0012 (6)0.0001 (6)0.0067 (7)
N20.0238 (8)0.0239 (7)0.0284 (9)0.0024 (6)0.0016 (6)0.0002 (7)
S10.0242 (2)0.0266 (2)0.0246 (2)0.00703 (13)0.0007 (2)0.0048 (2)
Geometric parameters (Å, º) top
C1—N11.291 (2)C6—N21.334 (3)
C1—C71.508 (3)C6—H60.9500
C1—S11.7585 (19)C7—C81.524 (3)
C2—C41.383 (3)C7—C91.530 (3)
C2—C31.411 (2)C7—H71.0000
C2—S11.7325 (19)C8—H8A0.9800
C3—N21.342 (2)C8—H8B0.9800
C3—N11.380 (2)C8—H8C0.9800
C4—C51.388 (3)C9—H9A0.9800
C4—H40.9500C9—H9B0.9800
C5—C61.400 (3)C9—H9C0.9800
C5—H50.9500
N1—C1—C7122.91 (17)C8—C7—C9111.1 (2)
N1—C1—S1115.73 (15)C1—C7—H7107.6
C7—C1—S1121.36 (14)C8—C7—H7107.6
C4—C2—C3120.08 (17)C9—C7—H7107.6
C4—C2—S1130.92 (14)C7—C8—H8A109.5
C3—C2—S1108.98 (14)C7—C8—H8B109.5
N2—C3—N1121.16 (16)H8A—C8—H8B109.5
N2—C3—C2123.53 (18)C7—C8—H8C109.5
N1—C3—C2115.30 (16)H8A—C8—H8C109.5
C2—C4—C5116.51 (17)H8B—C8—H8C109.5
C2—C4—H4121.7C7—C9—H9A109.5
C5—C4—H4121.7C7—C9—H9B109.5
C4—C5—C6119.6 (2)H9A—C9—H9B109.5
C4—C5—H5120.2C7—C9—H9C109.5
C6—C5—H5120.2H9A—C9—H9C109.5
N2—C6—C5124.73 (18)H9B—C9—H9C109.5
N2—C6—H6117.6C1—N1—C3110.99 (16)
C5—C6—H6117.6C6—N2—C3115.54 (16)
C1—C7—C8112.90 (18)C2—S1—C189.00 (9)
C1—C7—C9109.85 (15)
C4—C2—C3—N20.3 (3)C7—C1—N1—C3179.88 (16)
S1—C2—C3—N2179.06 (14)S1—C1—N1—C30.6 (2)
C4—C2—C3—N1178.46 (16)N2—C3—N1—C1178.62 (17)
S1—C2—C3—N10.3 (2)C2—C3—N1—C10.1 (2)
C3—C2—C4—C50.4 (3)C5—C6—N2—C30.0 (3)
S1—C2—C4—C5178.89 (15)N1—C3—N2—C6178.61 (17)
C2—C4—C5—C60.4 (3)C2—C3—N2—C60.1 (3)
C4—C5—C6—N20.2 (3)C4—C2—S1—C1178.11 (19)
N1—C1—C7—C8169.47 (19)C3—C2—S1—C10.50 (14)
S1—C1—C7—C811.0 (2)N1—C1—S1—C20.64 (15)
N1—C1—C7—C965.9 (3)C7—C1—S1—C2179.79 (16)
S1—C1—C7—C9113.64 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.952.513.391 (2)153
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···N1i0.952.513.391 (2)153
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

Acknowledgements

The authors extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research and to Cardiff University for continued support.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationEl-Hiti, G. A. (2003). Monatsh. Chem. 134, 837–841.  CAS Google Scholar
First citationEl-Hiti, G. A., Smith, K., Hegazy, A. S., Masmali, A. M. & Kariuki, B. M. (2014). Acta Cryst. E70, o932.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853–4856.  Web of Science CrossRef CAS Google Scholar
First citationLee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Comb. Chem. 12, 95–99.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuo, L., Meng, L., Peng, Y., Xing, Y., Sun, Q., Ge, Z. & Li, R. (2015). Eur. J. Org. Chem. pp. 631–637.  Web of Science CrossRef Google Scholar
First citationRao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176–6180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79–95.  CAS Google Scholar
First citationSmith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). Sulfur Lett. 17, 197–216.  CAS Google Scholar
First citationThomae, D., Perspicace, E., Hesse, S., Kirsch, G. & Seck, P. (2008). Tetrahedron, 64, 9309–9314.  CrossRef CAS Google Scholar
First citationYu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). Acta Cryst. E63, o968–o969.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds