organic compounds
tert-butylphenyl)imino]ethane
of 1,2-bis[(2-aInstituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, CT, Bloco J, Ilha do Fundão, Rio de Janeiro, RJ 21945-970, Brazil
*Correspondence e-mail: alexandresilvino@ima.ufrj.br
The whole molecule of the title compound, C22H28N2, (I), is generated by inversion symmetry. The molecule is rather similar to that of 2,3-bis[(2-tert-butylphenyl)imino]butane, (II), a diimine ligand comprising similar structural features [Ferreira et al. (2006). Acta Cryst. E62, o4282–o4284]. Both ligands crystallize with the –N=C(R)—C(R)=N– group around an inversion centre, in a trans configuration. Comparing the two structures, it may be noted that the independent planar groups in both molecules [the central link, –N=C(R)—C(R)=N–, and the terminal aromatic ring] subtend an angle of 69.6 (1)° in (II) and 49.4 (2)° in (I). Ferreira and co-workers proposed that such angle deviation may be ascribed to the presence of two non-classical intramolecular hydrogen bonds and steric factors. In fact, in (I), similar non-classical hydrogen bonds are observed, and the larger angular deviation in (II) may be assigned to the presence of methyl groups in the diimino fragment, which can cause due to the presence of bulky tert-butyl substituents in the aromatic rings. The C=N bond lengths are similar in both compounds and agree with comonly accepted values.
Keywords: crystal structure; diimine; non-classical hydrogen bonds; DNA.
CCDC reference: 1062877
1. Related literature
For general properties of diimines, see: Rix & Brookhart (1995); Hissler et al. (2000); Ramakrishnan et al. (2011a). For the interaction of diimine–metal complexes with DNA, see: Wang et al. (2004); Tan et al. (2008); Ramakrishnan et al. (2011b). For a related structure, see: Ferreira et al. (2006).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
|
Data collection: COLLECT (Nonius, 2004); cell DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1062877
10.1107/S2056989015008610/bg2548sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015008610/bg2548Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015008610/bg2548Isup3.cml
The design and development of effective anticancer metallodrugs has become one of the more important areas in pharmaceutical industry and academia. Nonetheless, side effects associated with these complexes and the development of tumor resistance has led to the search for new generations of metal based anticancer agents. Diimine compounds have been employed in many applications, including olefin polymerization, luminescence studies and metallodrug synthesis. (Rix & Brookhart, 1995; Hissler et al., 2000; Ramakrishnan et al., 2011a) The interaction of diimine Cobalt, Ruthenium and Iron complexes with DNA has attracted much attention during the last decade. (Wang et al., 2004; Tan et al. 2008; Ramakrishnan et al., 2011b). The antitumoral screening activity of potential metallodrugs with distinct nitrogen based ligands has helped researchers to understand how factors as size, geometry and electronic structure can contribute to DNA binding thus allowing to categorize which factors are important to enhance metallodrug performance. We report herein on the
of C22H28N2 (I)The
of 2,3-Bis(2-tert-butylphenylimino)butane, C24H32N2 (II), a diimine ligand comprising similar structural features was already reported. (Ferreira et al., 2006). Both ligands crystallize with the –N=C(R)—C(R)=N– group around an inversion centre, in a trans configuration. Comparing the two structures, it may be noted that the independent planar groups in both molecules (the central link, –N=C(R)—C(R)=N–, and the terminal aromatic ring) subtend an angle of 69.6 (1)° in (II) and 49.4 (2)° in (I). Ferreira and co-workers proposed that such angle deviation may be ascribed to the presence of two non classical hydrogen bonds and steric factors. In fact, in the title compound, similar non-classical hydrogen bonds were observed: C10—H10B···N1 and C11—H11C···N1. (Fig 1 and Table 1) The greater angle deviation in (II) may be assigned to the presence of methyl groups in the diimino fragment, which can cause due to the presence of bulky tert-butyl substituents in the aromatic rings. The C=N bond lengths are similar to the corresponding ones in (II) and agree well with what is expected for this bonding mode.To a solution of 2-tert-butylaniline (3.6 g; 26 mmol) in 15 mL de methanol, 1.5 mL of glyoxal solution (40 % in water; 13 mmol) was added. The resulting mixture was stirred overnight at room temperature. The yellow precipitate was filtered off, dried under vacuum for 2 days. Slow evaporation of the filtrate gave crystals suitable for single-crystal XRD studies. (Yield: 90 %)
Data collection: COLLECT (Nonius, 2004); cell
DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C22H28N2 | F(000) = 348 |
Mr = 320.46 | Dx = 1.069 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 21498 reflections |
a = 12.333 (3) Å | θ = 3.6–25.4° |
b = 6.4740 (13) Å | µ = 0.06 mm−1 |
c = 12.519 (3) Å | T = 293 K |
β = 95.22 (3)° | Plate, yellow |
V = 995.5 (3) Å3 | 0.3 × 0.17 × 0.07 mm |
Z = 2 |
Nonius KappaCCD diffractometer | 1284 reflections with I > 2σ(I) |
Horizonally mounted graphite crystal monochromator | Rint = 0.072 |
Detector resolution: 9 pixels mm-1 | θmax = 25.4°, θmin = 3.6° |
CCD scans | h = −14→14 |
21498 measured reflections | k = −7→7 |
1811 independent reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2479P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1811 reflections | Δρmax = 0.13 e Å−3 |
109 parameters | Δρmin = −0.15 e Å−3 |
C22H28N2 | V = 995.5 (3) Å3 |
Mr = 320.46 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.333 (3) Å | µ = 0.06 mm−1 |
b = 6.4740 (13) Å | T = 293 K |
c = 12.519 (3) Å | 0.3 × 0.17 × 0.07 mm |
β = 95.22 (3)° |
Nonius KappaCCD diffractometer | 1284 reflections with I > 2σ(I) |
21498 measured reflections | Rint = 0.072 |
1811 independent reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.13 e Å−3 |
1811 reflections | Δρmin = −0.15 e Å−3 |
109 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.46712 (12) | 0.1526 (2) | 0.10801 (11) | 0.0485 (4) | |
C1 | 0.47499 (15) | 0.0981 (3) | 0.01174 (14) | 0.0520 (5) | |
H1 | 0.4486 | 0.1842 | −0.0442 | 0.062* | |
C2 | 0.41192 (14) | 0.3400 (3) | 0.12810 (12) | 0.0440 (4) | |
C3 | 0.31398 (16) | 0.3836 (3) | 0.06876 (15) | 0.0622 (6) | |
H3 | 0.2873 | 0.292 | 0.0155 | 0.075* | |
C4 | 0.25541 (18) | 0.5595 (4) | 0.08691 (17) | 0.0736 (7) | |
H4 | 0.19 | 0.587 | 0.0465 | 0.088* | |
C5 | 0.29551 (17) | 0.6930 (3) | 0.16573 (18) | 0.0694 (6) | |
H5 | 0.2576 | 0.8134 | 0.1783 | 0.083* | |
C6 | 0.39173 (16) | 0.6496 (3) | 0.22646 (15) | 0.0559 (5) | |
H6 | 0.4171 | 0.7428 | 0.2795 | 0.067* | |
C7 | 0.45274 (13) | 0.4721 (2) | 0.21188 (13) | 0.0413 (4) | |
C8 | 0.55778 (14) | 0.4249 (3) | 0.28333 (14) | 0.0476 (4) | |
C9 | 0.58580 (19) | 0.5962 (4) | 0.36621 (18) | 0.0777 (7) | |
H9A | 0.5955 | 0.7244 | 0.3298 | 0.117* | |
H9B | 0.6518 | 0.5612 | 0.409 | 0.117* | |
H9C | 0.5276 | 0.6101 | 0.4117 | 0.117* | |
C10 | 0.65538 (15) | 0.4063 (4) | 0.21568 (17) | 0.0701 (6) | |
H10A | 0.6639 | 0.533 | 0.1775 | 0.105* | |
H10B | 0.6429 | 0.295 | 0.1654 | 0.105* | |
H10C | 0.7203 | 0.3791 | 0.2619 | 0.105* | |
C11 | 0.54410 (18) | 0.2230 (3) | 0.34482 (16) | 0.0684 (6) | |
H11A | 0.4834 | 0.2354 | 0.3872 | 0.103* | |
H11B | 0.6091 | 0.1959 | 0.3909 | 0.103* | |
H11C | 0.5313 | 0.1113 | 0.2948 | 0.103* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0604 (9) | 0.0429 (9) | 0.0420 (8) | 0.0096 (7) | 0.0034 (7) | −0.0089 (7) |
C1 | 0.0685 (12) | 0.0456 (10) | 0.0416 (10) | 0.0134 (9) | 0.0028 (8) | −0.0051 (8) |
C2 | 0.0546 (10) | 0.0405 (10) | 0.0380 (9) | 0.0103 (8) | 0.0092 (7) | −0.0021 (7) |
C3 | 0.0662 (13) | 0.0709 (14) | 0.0482 (11) | 0.0188 (11) | −0.0016 (9) | −0.0108 (10) |
C4 | 0.0681 (14) | 0.0872 (17) | 0.0650 (13) | 0.0346 (13) | 0.0029 (11) | 0.0000 (12) |
C5 | 0.0734 (14) | 0.0550 (13) | 0.0827 (15) | 0.0288 (11) | 0.0235 (12) | 0.0000 (11) |
C6 | 0.0639 (12) | 0.0415 (11) | 0.0650 (12) | 0.0040 (9) | 0.0201 (10) | −0.0096 (9) |
C7 | 0.0496 (10) | 0.0348 (9) | 0.0417 (9) | −0.0007 (8) | 0.0171 (7) | −0.0024 (7) |
C8 | 0.0514 (10) | 0.0432 (10) | 0.0489 (10) | −0.0055 (8) | 0.0089 (8) | −0.0081 (8) |
C9 | 0.0799 (15) | 0.0730 (15) | 0.0787 (15) | −0.0088 (12) | −0.0013 (12) | −0.0280 (12) |
C10 | 0.0513 (11) | 0.0795 (16) | 0.0811 (15) | 0.0017 (11) | 0.0144 (10) | −0.0068 (12) |
C11 | 0.0809 (14) | 0.0659 (14) | 0.0554 (12) | −0.0091 (12) | −0.0105 (10) | 0.0094 (10) |
N1—C1 | 1.268 (2) | C7—C8 | 1.536 (2) |
N1—C2 | 1.425 (2) | C8—C9 | 1.537 (2) |
C1—H1 | 0.93 | C9—H9A | 0.96 |
C1—C1i | 1.454 (3) | C9—H9B | 0.96 |
C2—C3 | 1.388 (2) | C9—H9C | 0.96 |
C2—C7 | 1.410 (2) | C8—C10 | 1.538 (2) |
C3—C4 | 1.378 (3) | C10—H10A | 0.96 |
C3—H3 | 0.93 | C10—H10B | 0.96 |
C4—C5 | 1.370 (3) | C10—H10C | 0.96 |
C5—H5 | 0.93 | C8—C11 | 1.534 (3) |
C4—H4 | 0.93 | C11—H11A | 0.96 |
C5—C6 | 1.379 (3) | C11—H11B | 0.96 |
C6—C7 | 1.395 (2) | C11—H11C | 0.96 |
C6—H6 | 0.93 | ||
C1—N1—C2 | 118.93 (15) | C11—C8—C9 | 107.72 (16) |
N1—C1—C1i | 120.4 (2) | C7—C8—C9 | 112.06 (15) |
N1—C1—H1 | 119.8 | C11—C8—C10 | 109.68 (16) |
C1i—C1—H1 | 119.8 | C7—C8—C10 | 110.83 (14) |
C3—C2—C7 | 120.59 (16) | C9—C8—C10 | 106.81 (16) |
C3—C2—N1 | 119.03 (15) | C8—C9—H9A | 109.5 |
C7—C2—N1 | 120.24 (15) | C8—C9—H9B | 109.5 |
C4—C3—C2 | 121.56 (19) | H9A—C9—H9B | 109.5 |
C4—C3—H3 | 119.2 | C8—C9—H9C | 109.5 |
C2—C3—H3 | 119.2 | H9A—C9—H9C | 109.5 |
C5—C4—C3 | 118.67 (19) | H9B—C9—H9C | 109.5 |
C5—C4—H4 | 120.7 | C8—C10—H10A | 109.5 |
C3—C4—H4 | 120.7 | C8—C10—H10B | 109.5 |
C4—C5—C6 | 120.33 (19) | H10A—C10—H10B | 109.5 |
C4—C5—H5 | 119.8 | C8—C10—H10C | 109.5 |
C6—C5—H5 | 119.8 | H10A—C10—H10C | 109.5 |
C5—C6—C7 | 122.91 (18) | H10B—C10—H10C | 109.5 |
C5—C6—H6 | 118.5 | C8—C11—H11A | 109.5 |
C7—C6—H6 | 118.5 | C8—C11—H11B | 109.5 |
C6—C7—C2 | 115.89 (16) | H11A—C11—H11B | 109.5 |
C6—C7—C8 | 121.60 (15) | C8—C11—H11C | 109.5 |
C2—C7—C8 | 122.51 (14) | H11A—C11—H11C | 109.5 |
C11—C8—C7 | 109.64 (14) | H11B—C11—H11C | 109.5 |
C2—N1—C1—C1i | −176.3 (2) | C3—C2—C7—C6 | −3.0 (2) |
C1—N1—C2—C3 | 44.2 (2) | N1—C2—C7—C6 | −178.76 (15) |
C1—N1—C2—C7 | −139.97 (18) | C3—C2—C7—C8 | 176.94 (17) |
C7—C2—C3—C4 | 2.2 (3) | N1—C2—C7—C8 | 1.2 (2) |
N1—C2—C3—C4 | 178.05 (18) | C6—C7—C8—C11 | 117.87 (18) |
C2—C3—C4—C5 | −0.1 (3) | C2—C7—C8—C11 | −62.0 (2) |
C3—C4—C5—C6 | −1.0 (3) | C6—C7—C8—C9 | −1.7 (2) |
C4—C5—C6—C7 | 0.1 (3) | C2—C7—C8—C9 | 178.39 (16) |
C5—C6—C7—C2 | 1.9 (3) | C6—C7—C8—C10 | −120.91 (18) |
C5—C6—C7—C8 | −178.02 (17) | C2—C7—C8—C10 | 59.2 (2) |
Symmetry code: (i) −x+1, −y, −z. |
- |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···N1 | 0.960 | 2.405 (2) | 3.055 (3) | 124.8 (3) |
C11—H11C···N1 | 0.960 | 2.414 (2) | 3.064 (3) | 124.6 (2) |
Acknowledgements
The authors thank CAPES, CNPq for financial support and Professor Jackson Antônio Lamounier Camargos Resende, (LDRX) Universidade Federal Fluminense, Brazil, for the use of the diffractometer facility.
References
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ferreira, L. C., Filgueiras, C. A. L., Hörner, M., Visentin, L. do C. & Bordinhao, J. (2006). Acta Cryst. E62, o4282–o4284. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hissler, M., Connick, W. B., Geiger, D. K., McGarrah, J. E., Lipa, D., Lachicotte, R. J. & Eisenberg, R. (2000). Inorg. Chem. 39, 447–457. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nonius (2004). Nonius BV, Delft, The Netherlands. Google Scholar
Ramakrishnan, S., Shakthipriya, D., Suresh, E., Periasamy, V. S., Akbarsha, M. A. & Palaniandavar, M. (2011a). Inorg. Chem. 50, 6458–6471. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ramakrishnan, S., Suresh, E., Akbarsha, M. A., Riyasden, A. & Palaniandavar, M. (2011b). Dalton Trans. 40, 3524–3536. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rix, F. C. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 1137–1138. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tan, C., Liu, J., Chen, L., Shi, S. & Ji, L. (2008). J. Inorg. Biochem. 102, 1644–1653. Web of Science CrossRef PubMed CAS Google Scholar
Wang, X.-L., Chao, H., Li, H., Hong, X.-L., Liu, Y.-J., Tan, L.-F. & Ji, L. N. (2004). J. Inorg. Biochem. 98, 1143–1150. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.