organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o385-o386

Crystal structure of 1,2-bis­­[(2-tert-butyl­phen­yl)imino]­ethane

aInstituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, CT, Bloco J, Ilha do Fundão, Rio de Janeiro, RJ 21945-970, Brazil
*Correspondence e-mail: alexandresilvino@ima.ufrj.br

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 5 February 2015; accepted 3 May 2015; online 9 May 2015)

The whole molecule of the title compound, C22H28N2, (I), is generated by inversion symmetry. The mol­ecule is rather similar to that of 2,3-bis­[(2-tert-butyl­phen­yl)imino]­butane, (II), a di­imine ligand comprising similar structural features [Ferreira et al. (2006[Ferreira, L. C., Filgueiras, C. A. L., Hörner, M., Visentin, L. do C. & Bordinhao, J. (2006). Acta Cryst. E62, o4282-o4284.]). Acta Cryst. E62, o4282–o4284]. Both ligands crystallize with the –N=C(R)—C(R)=N– group around an inversion centre, in a trans configuration. Comparing the two structures, it may be noted that the independent planar groups in both mol­ecules [the central link, –N=C(R)—C(R)=N–, and the terminal aromatic ring] subtend an angle of 69.6 (1)° in (II) and 49.4 (2)° in (I). Ferreira and co-workers proposed that such angle deviation may be ascribed to the presence of two non-classical intra­molecular hydrogen bonds and steric factors. In fact, in (I), similar non-classical hydrogen bonds are observed, and the larger angular deviation in (II) may be assigned to the presence of methyl groups in the di­imino fragment, which can cause steric hindrance due to the presence of bulky tert-butyl substituents in the aromatic rings. The C=N bond lengths are similar in both compounds and agree with comonly accepted values.

1. Related literature

For general properties of di­imines, see: Rix & Brookhart (1995[Rix, F. C. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 1137-1138.]); Hissler et al. (2000[Hissler, M., Connick, W. B., Geiger, D. K., McGarrah, J. E., Lipa, D., Lachicotte, R. J. & Eisenberg, R. (2000). Inorg. Chem. 39, 447-457.]); Ramakrishnan et al. (2011a[Ramakrishnan, S., Shakthipriya, D., Suresh, E., Periasamy, V. S., Akbarsha, M. A. & Palaniandavar, M. (2011a). Inorg. Chem. 50, 6458-6471.]). For the inter­action of di­imine–metal complexes with DNA, see: Wang et al. (2004[Wang, X.-L., Chao, H., Li, H., Hong, X.-L., Liu, Y.-J., Tan, L.-F. & Ji, L. N. (2004). J. Inorg. Biochem. 98, 1143-1150.]); Tan et al. (2008[Tan, C., Liu, J., Chen, L., Shi, S. & Ji, L. (2008). J. Inorg. Biochem. 102, 1644-1653.]); Ramakrishnan et al. (2011b[Ramakrishnan, S., Suresh, E., Akbarsha, M. A., Riyasden, A. & Palaniandavar, M. (2011b). Dalton Trans. 40, 3524-3536.]). For a related structure, see: Ferreira et al. (2006[Ferreira, L. C., Filgueiras, C. A. L., Hörner, M., Visentin, L. do C. & Bordinhao, J. (2006). Acta Cryst. E62, o4282-o4284.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H28N2

  • Mr = 320.46

  • Monoclinic, P 21 /n

  • a = 12.333 (3) Å

  • b = 6.4740 (13) Å

  • c = 12.519 (3) Å

  • β = 95.22 (3)°

  • V = 995.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.3 × 0.17 × 0.07 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 21498 measured reflections

  • 1811 independent reflections

  • 1284 reflections with I > 2σ(I)

  • Rint = 0.072

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.119

  • S = 1.06

  • 1811 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

-

D—H⋯A D—H H⋯A D⋯A D—H⋯A
C10—H10B⋯N1 0.960 2.405 (2) 3.055 (3) 124.8 (3)
C11—H11C⋯N1 0.960 2.414 (2) 3.064 (3) 124.6 (2)

Data collection: COLLECT (Nonius, 2004[Nonius (2004). Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

The design and development of effective anti­cancer metallodrugs has become one of the more important areas in pharmaceutical industry and academia. Nonetheless, side effects associated with these complexes and the development of tumor resistance has led to the search for new generations of metal based anti­cancer agents. Di­imine compounds have been employed in many applications, including olefin polymerization, luminescence studies and metallodrug synthesis. (Rix & Brookhart, 1995; Hissler et al., 2000; Ramakrishnan et al., 2011a) The inter­action of di­imine Cobalt, Ruthenium and Iron complexes with DNA has attracted much attention during the last decade. (Wang et al., 2004; Tan et al. 2008; Ramakrishnan et al., 2011b). The anti­tumoral screening activity of potential metallodrugs with distinct nitro­gen based ligands has helped researchers to understand how factors as size, geometry and electronic structure can contribute to DNA binding thus allowing to categorize which factors are important to enhance metallodrug performance. We report herein on the crystal structure of C22H28N2 (I)

Structural commentary top

The crystal structure of 2,3-Bis(2-tert-butyl­phenyl­imino)­butane, C24H32N2 (II), a di­imine ligand comprising similar structural features was already reported. (Ferreira et al., 2006). Both ligands crystallize with the –N=C(R)—C(R)=N– group around an inversion centre, in a trans configuration. Comparing the two structures, it may be noted that the independent planar groups in both molecules (the central link, –N=C(R)—C(R)=N–, and the terminal aromatic ring) subtend an angle of 69.6 (1)° in (II) and 49.4 (2)° in (I). Ferreira and co-workers proposed that such angle deviation may be ascribed to the presence of two non classical hydrogen bonds and steric factors. In fact, in the title compound, similar non-classical hydrogen bonds were observed: C10—H10B···N1 and C11—H11C···N1. (Fig 1 and Table 1) The greater angle deviation in (II) may be assigned to the presence of methyl groups in the di­imino fragment, which can cause steric hindrance due to the presence of bulky tert-butyl substituents in the aromatic rings. The C=N bond lengths are similar to the corresponding ones in (II) and agree well with what is expected for this bonding mode.

Synthesis and crystallization top

To a solution of 2-tert-butyl­aniline (3.6 g; 26 mmol) in 15 mL de methanol, 1.5 mL of glyoxal solution (40 % in water; 13 mmol) was added. The resulting mixture was stirred overnight at room temperature. The yellow precipitate was filtered off, dried under vacuum for 2 days. Slow evaporation of the filtrate gave crystals suitable for single-crystal XRD studies. (Yield: 90 %)

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The H atoms were placed into the calculated idealized positions. All H atoms were refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq (Csp2) or 1.5Ueq (methyl group)] using a riding model.

Related literature top

For general properties of diimines, see: Rix & Brookhart (1995); Hissler et al. (2000); Ramakrishnan et al. (2011a). For the interaction of diimine–metal complexes with DNA, see: Wang et al. ( 2004); Tan et al. (2008); Ramakrishnan et al. (2011b). For related structures, see: Ferreira et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 2004); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. View of (I) (50% probability displacement ellipsoids). The dashed lines indicate the proposed non-classical intramolecular hydrogen bonds. [Symmetry code: (') 1 - x, 1 - y, -z.]
[Figure 2] Fig. 2. Comparison of the structures of (a) (I) and (b) (II).
2-tert-Butyl-N-{2-[(2-tert-butylphenyl)imino]ethylidene}aniline top
Crystal data top
C22H28N2F(000) = 348
Mr = 320.46Dx = 1.069 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21498 reflections
a = 12.333 (3) Åθ = 3.6–25.4°
b = 6.4740 (13) ŵ = 0.06 mm1
c = 12.519 (3) ÅT = 293 K
β = 95.22 (3)°Plate, yellow
V = 995.5 (3) Å30.3 × 0.17 × 0.07 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
1284 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.072
Detector resolution: 9 pixels mm-1θmax = 25.4°, θmin = 3.6°
CCD scansh = 1414
21498 measured reflectionsk = 77
1811 independent reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2479P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1811 reflectionsΔρmax = 0.13 e Å3
109 parametersΔρmin = 0.15 e Å3
Crystal data top
C22H28N2V = 995.5 (3) Å3
Mr = 320.46Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.333 (3) ŵ = 0.06 mm1
b = 6.4740 (13) ÅT = 293 K
c = 12.519 (3) Å0.3 × 0.17 × 0.07 mm
β = 95.22 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1284 reflections with I > 2σ(I)
21498 measured reflectionsRint = 0.072
1811 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.06Δρmax = 0.13 e Å3
1811 reflectionsΔρmin = 0.15 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.46712 (12)0.1526 (2)0.10801 (11)0.0485 (4)
C10.47499 (15)0.0981 (3)0.01174 (14)0.0520 (5)
H10.44860.18420.04420.062*
C20.41192 (14)0.3400 (3)0.12810 (12)0.0440 (4)
C30.31398 (16)0.3836 (3)0.06876 (15)0.0622 (6)
H30.28730.2920.01550.075*
C40.25541 (18)0.5595 (4)0.08691 (17)0.0736 (7)
H40.190.5870.04650.088*
C50.29551 (17)0.6930 (3)0.16573 (18)0.0694 (6)
H50.25760.81340.17830.083*
C60.39173 (16)0.6496 (3)0.22646 (15)0.0559 (5)
H60.41710.74280.27950.067*
C70.45274 (13)0.4721 (2)0.21188 (13)0.0413 (4)
C80.55778 (14)0.4249 (3)0.28333 (14)0.0476 (4)
C90.58580 (19)0.5962 (4)0.36621 (18)0.0777 (7)
H9A0.59550.72440.32980.117*
H9B0.65180.56120.4090.117*
H9C0.52760.61010.41170.117*
C100.65538 (15)0.4063 (4)0.21568 (17)0.0701 (6)
H10A0.66390.5330.17750.105*
H10B0.64290.2950.16540.105*
H10C0.72030.37910.26190.105*
C110.54410 (18)0.2230 (3)0.34482 (16)0.0684 (6)
H11A0.48340.23540.38720.103*
H11B0.60910.19590.39090.103*
H11C0.53130.11130.29480.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0604 (9)0.0429 (9)0.0420 (8)0.0096 (7)0.0034 (7)0.0089 (7)
C10.0685 (12)0.0456 (10)0.0416 (10)0.0134 (9)0.0028 (8)0.0051 (8)
C20.0546 (10)0.0405 (10)0.0380 (9)0.0103 (8)0.0092 (7)0.0021 (7)
C30.0662 (13)0.0709 (14)0.0482 (11)0.0188 (11)0.0016 (9)0.0108 (10)
C40.0681 (14)0.0872 (17)0.0650 (13)0.0346 (13)0.0029 (11)0.0000 (12)
C50.0734 (14)0.0550 (13)0.0827 (15)0.0288 (11)0.0235 (12)0.0000 (11)
C60.0639 (12)0.0415 (11)0.0650 (12)0.0040 (9)0.0201 (10)0.0096 (9)
C70.0496 (10)0.0348 (9)0.0417 (9)0.0007 (8)0.0171 (7)0.0024 (7)
C80.0514 (10)0.0432 (10)0.0489 (10)0.0055 (8)0.0089 (8)0.0081 (8)
C90.0799 (15)0.0730 (15)0.0787 (15)0.0088 (12)0.0013 (12)0.0280 (12)
C100.0513 (11)0.0795 (16)0.0811 (15)0.0017 (11)0.0144 (10)0.0068 (12)
C110.0809 (14)0.0659 (14)0.0554 (12)0.0091 (12)0.0105 (10)0.0094 (10)
Geometric parameters (Å, º) top
N1—C11.268 (2)C7—C81.536 (2)
N1—C21.425 (2)C8—C91.537 (2)
C1—H10.93C9—H9A0.96
C1—C1i1.454 (3)C9—H9B0.96
C2—C31.388 (2)C9—H9C0.96
C2—C71.410 (2)C8—C101.538 (2)
C3—C41.378 (3)C10—H10A0.96
C3—H30.93C10—H10B0.96
C4—C51.370 (3)C10—H10C0.96
C5—H50.93C8—C111.534 (3)
C4—H40.93C11—H11A0.96
C5—C61.379 (3)C11—H11B0.96
C6—C71.395 (2)C11—H11C0.96
C6—H60.93
C1—N1—C2118.93 (15)C11—C8—C9107.72 (16)
N1—C1—C1i120.4 (2)C7—C8—C9112.06 (15)
N1—C1—H1119.8C11—C8—C10109.68 (16)
C1i—C1—H1119.8C7—C8—C10110.83 (14)
C3—C2—C7120.59 (16)C9—C8—C10106.81 (16)
C3—C2—N1119.03 (15)C8—C9—H9A109.5
C7—C2—N1120.24 (15)C8—C9—H9B109.5
C4—C3—C2121.56 (19)H9A—C9—H9B109.5
C4—C3—H3119.2C8—C9—H9C109.5
C2—C3—H3119.2H9A—C9—H9C109.5
C5—C4—C3118.67 (19)H9B—C9—H9C109.5
C5—C4—H4120.7C8—C10—H10A109.5
C3—C4—H4120.7C8—C10—H10B109.5
C4—C5—C6120.33 (19)H10A—C10—H10B109.5
C4—C5—H5119.8C8—C10—H10C109.5
C6—C5—H5119.8H10A—C10—H10C109.5
C5—C6—C7122.91 (18)H10B—C10—H10C109.5
C5—C6—H6118.5C8—C11—H11A109.5
C7—C6—H6118.5C8—C11—H11B109.5
C6—C7—C2115.89 (16)H11A—C11—H11B109.5
C6—C7—C8121.60 (15)C8—C11—H11C109.5
C2—C7—C8122.51 (14)H11A—C11—H11C109.5
C11—C8—C7109.64 (14)H11B—C11—H11C109.5
C2—N1—C1—C1i176.3 (2)C3—C2—C7—C63.0 (2)
C1—N1—C2—C344.2 (2)N1—C2—C7—C6178.76 (15)
C1—N1—C2—C7139.97 (18)C3—C2—C7—C8176.94 (17)
C7—C2—C3—C42.2 (3)N1—C2—C7—C81.2 (2)
N1—C2—C3—C4178.05 (18)C6—C7—C8—C11117.87 (18)
C2—C3—C4—C50.1 (3)C2—C7—C8—C1162.0 (2)
C3—C4—C5—C61.0 (3)C6—C7—C8—C91.7 (2)
C4—C5—C6—C70.1 (3)C2—C7—C8—C9178.39 (16)
C5—C6—C7—C21.9 (3)C6—C7—C8—C10120.91 (18)
C5—C6—C7—C8178.02 (17)C2—C7—C8—C1059.2 (2)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, °) top
-
D—H···AD—HH···AD···AD—H···A
C10—H10B···N10.9602.405 (2)3.055 (3)124.8 (3)
C11—H11C···N10.9602.414 (2)3.064 (3)124.6 (2)
 

Acknowledgements

The authors thank CAPES, CNPq for financial support and Professor Jackson Antônio Lamounier Camargos Resende, (LDRX) Universidade Federal Fluminense, Brazil, for the use of the diffractometer facility.

References

First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, L. C., Filgueiras, C. A. L., Hörner, M., Visentin, L. do C. & Bordinhao, J. (2006). Acta Cryst. E62, o4282–o4284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHissler, M., Connick, W. B., Geiger, D. K., McGarrah, J. E., Lipa, D., Lachicotte, R. J. & Eisenberg, R. (2000). Inorg. Chem. 39, 447–457.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNonius (2004). Nonius BV, Delft, The Netherlands.  Google Scholar
First citationRamakrishnan, S., Shakthipriya, D., Suresh, E., Periasamy, V. S., Akbarsha, M. A. & Palaniandavar, M. (2011a). Inorg. Chem. 50, 6458–6471.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRamakrishnan, S., Suresh, E., Akbarsha, M. A., Riyasden, A. & Palaniandavar, M. (2011b). Dalton Trans. 40, 3524–3536.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRix, F. C. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 1137–1138.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, C., Liu, J., Chen, L., Shi, S. & Ji, L. (2008). J. Inorg. Biochem. 102, 1644–1653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWang, X.-L., Chao, H., Li, H., Hong, X.-L., Liu, Y.-J., Tan, L.-F. & Ji, L. N. (2004). J. Inorg. Biochem. 98, 1143–1150.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o385-o386
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds