inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of hexa­aqua­di­chlorido­ytterbium(III) chloride

aDepartment of Chemistry & Biochemistry, Central Connecticut State University, New Britain, CT 06053, USA
*Correspondence e-mail: crundwellg@mail.ccsu.edu

Edited by I. D. Brown, McMaster University, Canada (Received 8 April 2015; accepted 29 April 2015; online 7 May 2015)

The crystal structure of the title compound, [YbCl2(H2O)6]Cl, was determined at 110 K. Samples were obtained from evaporated aceto­nitrile solutions containing the title compound, which consists of a [YbCl2(H2O)6]+ cation and a Cl anion. The cations in the title compound sit on a twofold axis and form O—H⋯Cl hydrogen bonds with the nearby Cl anion. The coordination geometry around the metal centre forms a distorted square anti­prism. The ytterbium complex is isotypic with the europium complex [Tambrornino et al. (2014[Tambornino, F., Bielec, P. & Hoch, C. (2014). Acta Cryst. E70, i27.]). Acta Cryst. E70, i27].

1. Related literature

The ytterbium complex is isotypic with the europium complex, the redetermined structure of which was published recently (Tambrornino et al. 2014[Tambornino, F., Bielec, P. & Hoch, C. (2014). Acta Cryst. E70, i27.]) which was in turn similar to studies of other lanthanoid chloride hydrates (Marezio et al., 1961[Marezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst. 14, 234-236.]).

2. Experimental

2.1. Crystal data

  • [YbCl2(H2O)6]Cl

  • Mr = 387.49

  • Monoclinic, P 2/c

  • a = 7.8158 (11) Å

  • b = 6.4651 (3) Å

  • c = 12.7250 (18) Å

  • β = 131.45 (2)°

  • V = 481.92 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 10.52 mm−1

  • T = 110 K

  • 0.24 × 0.18 × 0.17 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD,CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]) Tmin = 0.187, Tmax = 0.268

  • 12358 measured reflections

  • 1806 independent reflections

  • 1762 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.041

  • S = 1.12

  • 1806 reflections

  • 51 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.96 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯Cl2i 0.91 2.37 3.2499 (19) 163
O1—H1B⋯Cl1ii 0.91 2.50 3.171 (2) 131
O2—H2A⋯Cl1iii 0.87 2.36 3.1460 (18) 150
O2—H2B⋯Cl2iv 0.87 2.38 3.1806 (18) 154
O3—H3A⋯Cl2v 0.88 2.33 3.179 (2) 163
O3—H3B⋯Cl1vi 0.88 2.48 3.1758 (19) 136
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y+1, -z+1; (iii) [-x+1, y+1, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x+1, y+1, z+1; (vi) [x, -y+1, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD,CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD,CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL2014.

Supporting information


Comment top

Samples gathered from the mother liquor were coated with mineral oil prior to mounting to reduce sample decay. The ytterbium complex is isomorphous with a recently published redetermination of a europium complex (Tambrornino, et al. 2014) which was in turn similar to studies of other lanthanoid chloride hydrates (Marezio, et al. 1961).

Crystals of ytterbium(III) chloride hexahydrate consist of a [YbCl2(H2O)6]1+ cation and a chlorine anion. The covalent nature of the lanthanoid +3 cations are not surprising given their high charge density. An ORTEP of the title compound is shown in Fig. 1.

Related literature top

The ytterbium complex is isotypic with a recently published redetermination of a europium complex (Tambrornino et al. 2014) which was in turn similar to studies of other lanthanoid chloride hydrates (Marezio et al. 1961).

Experimental top

In 40.0 ml of acetonitrile, 0.1945 grams (0.5019 mmol) of ytterbium(III) chloride hexahydrate was added to 0.1000 grams (0.5020 mmol) of di-2-pyridyl ketone oxime (dpko) with the hopes of synthesizing a Yb-dpko complex. The mixture was heated to dissolve the solids. Upon cooling and subsequent evaporation, small colorless crystals of the title compound were isolated. The metal chloride was purchased from Strem chemicals (99.9% purity) whereas the dpko was purchased from Sigma-Aldrich (99.9%). Both were used without additional purification.

Refinement top

H atoms were included and were allowed to refine to ideal O—H distances based upon geometric considerations. Thermal parameters for all H atoms were included in the refinement in riding motion approximation with Uiso = 1.5Ueq of the carrier atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and ORTEP-3 for Windows (Farrugia, 2012) (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. A view of the title compound (Farrugia, 2012). Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity.
Hexaaquadichloridoytterbium(III) chloride top
Crystal data top
[YbCl2(H2O)6]ClDx = 2.671 Mg m3
Mr = 387.49Melting point: 350 K
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 7.8158 (11) ÅCell parameters from 7486 reflections
b = 6.4651 (3) Åθ = 4.9–33.8°
c = 12.7250 (18) ŵ = 10.52 mm1
β = 131.45 (2)°T = 110 K
V = 481.92 (16) Å3Block, light pink
Z = 20.24 × 0.18 × 0.17 mm
F(000) = 362
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1806 independent reflections
Radiation source: fine-focus sealed tube1762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 16.1790 pixels mm-1θmax = 33.7°, θmin = 4.3°
ω scansh = 1112
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 99
Tmin = 0.187, Tmax = 0.268l = 1919
12358 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0207P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.041(Δ/σ)max = 0.001
S = 1.12Δρmax = 0.91 e Å3
1806 reflectionsΔρmin = 0.96 e Å3
51 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0602 (13)
Crystal data top
[YbCl2(H2O)6]ClV = 481.92 (16) Å3
Mr = 387.49Z = 2
Monoclinic, P2/cMo Kα radiation
a = 7.8158 (11) ŵ = 10.52 mm1
b = 6.4651 (3) ÅT = 110 K
c = 12.7250 (18) Å0.24 × 0.18 × 0.17 mm
β = 131.45 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
1806 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1762 reflections with I > 2σ(I)
Tmin = 0.187, Tmax = 0.268Rint = 0.042
12358 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.041H-atom parameters constrained
S = 1.12Δρmax = 0.91 e Å3
1806 reflectionsΔρmin = 0.96 e Å3
51 parameters
Special details top

Experimental. Sample was covered in mineral oil prior to mounting in cryo stream.

Hydrogen atoms were included and were allowed to refine to ideal O—H distances based upon geometric considerations. Thermal parameters for all H atoms were included in the refinement in riding motion approximation with Uiso = 1.5Ueq of the carrier atom.

CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06-11-2009 CrysAlis171 .NET) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction (2009).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Yb10.50000.65776 (2)0.75000.01599 (6)
Cl10.32165 (12)0.34336 (8)0.56141 (7)0.02594 (12)
Cl20.00000.12652 (14)0.25000.02883 (16)
O10.1817 (3)0.5542 (3)0.71889 (19)0.0266 (3)
H1A0.16260.42790.74160.040*
H1B0.05690.63360.68230.040*
O20.7626 (3)0.9242 (3)0.85341 (19)0.0276 (3)
H2A0.77911.01810.90870.041*
H2B0.86110.94670.84340.041*
O30.5420 (3)0.8002 (3)0.93497 (19)0.0273 (3)
H3A0.67090.84551.01450.041*
H3B0.43150.81700.93610.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Yb10.01594 (8)0.01718 (8)0.01703 (8)0.0000.01184 (6)0.000
Cl10.0283 (3)0.0258 (3)0.0251 (3)0.00427 (18)0.0183 (2)0.00488 (18)
Cl20.0271 (4)0.0336 (4)0.0299 (4)0.0000.0206 (4)0.000
O10.0229 (8)0.0278 (8)0.0343 (9)0.0001 (6)0.0212 (8)0.0043 (7)
O20.0293 (9)0.0262 (8)0.0359 (9)0.0096 (7)0.0253 (8)0.0098 (7)
O30.0310 (9)0.0331 (8)0.0246 (8)0.0050 (7)0.0213 (8)0.0061 (7)
Geometric parameters (Å, º) top
Yb1—O2i2.3101 (17)Yb1—O1i2.3433 (16)
Yb1—O22.3101 (17)Yb1—O12.3434 (17)
Yb1—O3i2.3392 (17)Yb1—Cl1i2.7211 (7)
Yb1—O32.3392 (17)Yb1—Cl12.7212 (7)
O2i—Yb1—O283.56 (10)O1i—Yb1—Cl1i76.75 (5)
O2i—Yb1—O3i69.72 (6)O1—Yb1—Cl1i78.60 (5)
O2—Yb1—O3i76.09 (7)O2i—Yb1—Cl1108.14 (6)
O2i—Yb1—O376.09 (7)O2—Yb1—Cl1143.38 (5)
O2—Yb1—O369.72 (6)O3i—Yb1—Cl175.99 (5)
O3i—Yb1—O3133.64 (9)O3—Yb1—Cl1146.11 (5)
O2i—Yb1—O1i138.85 (6)O1i—Yb1—Cl178.60 (5)
O2—Yb1—O1i70.92 (6)O1—Yb1—Cl176.75 (5)
O3i—Yb1—O1i73.06 (7)Cl1i—Yb1—Cl183.34 (3)
O3—Yb1—O1i121.09 (7)Yb1—O1—H1A125.5
O2i—Yb1—O170.92 (6)Yb1—O1—H1B125.7
O2—Yb1—O1138.85 (6)H1A—O1—H1B108.8
O3i—Yb1—O1121.09 (7)Yb1—O2—H2A125.4
O3—Yb1—O173.06 (7)Yb1—O2—H2B125.4
O1i—Yb1—O1146.79 (9)H2A—O2—H2B109.2
O2i—Yb1—Cl1i143.38 (5)Yb1—O3—H3A125.4
O2—Yb1—Cl1i108.15 (6)Yb1—O3—H3B125.4
O3i—Yb1—Cl1i146.11 (5)H3A—O3—H3B109.2
O3—Yb1—Cl1i75.99 (5)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2ii0.912.373.2499 (19)163
O1—H1B···Cl1iii0.912.503.171 (2)131
O2—H2A···Cl1iv0.872.363.1460 (18)150
O2—H2B···Cl2v0.872.383.1806 (18)154
O3—H3A···Cl2vi0.882.333.179 (2)163
O3—H3B···Cl1vii0.882.483.1758 (19)136
Symmetry codes: (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z+3/2; (v) x+1, y+1, z+1; (vi) x+1, y+1, z+1; (vii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···Cl2i0.912.373.2499 (19)163.3
O1—H1B···Cl1ii0.912.503.171 (2)130.9
O2—H2A···Cl1iii0.872.363.1460 (18)149.6
O2—H2B···Cl2iv0.872.383.1806 (18)153.5
O3—H3A···Cl2v0.882.333.179 (2)162.5
O3—H3B···Cl1vi0.882.483.1758 (19)136.0
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x+1, y+1, z+3/2; (iv) x+1, y+1, z+1; (v) x+1, y+1, z+1; (vi) x, y+1, z+1/2.
 

Acknowledgements

This research was also funded in part by a CCSU–AAUP research grant and CCSU Faculty–Student Research Grants.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarezio, M., Plettinger, H. A. & Zachariasen, W. H. (1961). Acta Cryst. 14, 234–236.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD,CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abington, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTambornino, F., Bielec, P. & Hoch, C. (2014). Acta Cryst. E70, i27.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds