research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 640-643

Crystal structure of the Fe-member of usovite

aInstitute for Chemical Technologies and Analytics, Division of Structural Chemistry, Vienna University of Technology, Getreidemarkt 9/164-SC, A-1060 Vienna, Austria
*Correspondence e-mail: mweil@mail.zserv.tuwien.ac.at

Edited by I. D. Brown, McMaster University, Canada (Received 28 April 2015; accepted 15 May 2015; online 20 May 2015)

Crystals of the title compound, with the idealized composition Ba2CaFeAl2F14, dibarium calcium iron(II) dialuminium tetra­deca­fluoride, were obtained serendipitously by reacting a mixture of the binary fluorides BaF2, CaF2 and AlF3 in a leaky steel reactor. The compound crystallizes in the usovite structure type (Ba2CaMgAl2F14), with Fe2+ cations replacing the Mg2+ cations. The principal building units are distorted [CaF8] square-anti­prisms (point group symmetry 2), [FeF6] octa­hedra (point group symmetry -1) and [AlF6] octa­hedra that are condensed into undulating 2[CaFeAl2F14]4− layers parallel (100). The Ba2+ cations separate the layers and exhibit a coordination number of 12. Two crystal structure models with a different treatment of the disordered Fe site [mixed Fe/Ca occupation, model (I), versus underoccupation of Fe, model (II)], are discussed, leading to different refined formulae Ba2Ca1.310 (15)Fe0.690 (15)Al2F14 [model (I)] and Ba2CaFe0.90 (1)Al2F14 [model (II)].

1. Chemical context

Fluorido­aluminates with alkaline earth cations exhibit a rich crystal chemistry (Babel & Tressaud, 1985[Babel, D. & Tressaud, A. (1985). Inorganic Solid Fluorides, edited by P. Hagenmuller, pp. 79-203. Orlando: Academic Press.]; Weil et al., 2001[Weil, M., Zobetz, E., Werner, F. & Kubel, F. (2001). Solid State Sci. 3, 441-453.]). They are suitable host materials for optical applications as has been shown by luminescence exitation studies of SrAlF5 or CaAlF5 doped with Pr3+ and Mn2+ (van der Kolk et al., 2004[Kolk, E. van der, Dorenbos, P., Van Eijk, C. W. E., Vink, A. P., Weil, M. & Chaminade, J.-P. (2004). J. Appl. Phys. 95, 7867-7872.]). In order to prepare large single crystals of a related fluorido­aluminate with composition BaCaAlF7, a different preparation route was chosen in comparison with the reported crystal-growth procedure. Instead of using a ZnCl2 melt (Werner & Weil, 2003[Werner, F. & Weil, M. (2003). Acta Cryst. E59, i17-i19.]), a carbon tool steel container shielded with a molybdenum foil was used for solid state reactions between a mixture of the binary fluorides (Weil & Kubel, 2002[Weil, M. & Kubel, F. (2002). J. Solid State Chem. 164, 150-156.]). However, during one of these experiments it turned out that the container was not completely lined by the molybdenum foil which consequently led to a reaction with the container wall and an incorporation of iron into parts of the reaction products. Crystal structure analysis of selected crystals from this reaction batch revealed an Fe-containing phase that crystallizes isotypically with the mineral usovite, Ba2CaMgAl2F14 (Litvin et al., 1980[Litvin, A. L., Petrunina, A. A., Ostapenko, S. S. & Povarennykh, A. S. (1980). Dopov. Akad. Nauk Ukr. RSR Ser. pp. 47-50.]).

Compounds with the usovite-type structure are represented by the general formula Ba2(MII1)(MII2)(MIII3)2F14 (MII1 = Ca, Cd, Mn; MII2 = Mg, Co, Mn, Cu, Cd, Fe; MIII3 = Al, V, Fe, Cr, Ga, Mn) and crystallize with four formula units in the space group C2/c. Most of the usovite-type representatives known so far were prepared and structurally determined by Babel, Tressaud and co-workers over the last three decades (Holler et al., 1984[Holler, H., Babel, D., Samouel, M. & de Kozak, A. (1984). Rev. Chim. Miner. 21, 358-369.], 1985[Holler, H., Pebler, J. & Babel, D. (1985). Z. Anorg. Allg. Chem. 522, 189-201.]; Kaiser et al., 2002[Kaiser, V., Le Lirzin, A., Darriet, J., Tressaud, A., Holler, H. & Babel, D. (2002). Z. Anorg. Allg. Chem. 628 2617-2626.]; Le Lirzin et al., 1990[Le Lirzin, A., Quiang, X., Darriet, J., Soubeyroux, J. L., Kaiser, V., Pebler, J. & Babel, D. (1990). Eur. J. Solid State Inorg. Chem. 27, 791-803.], 1991[Le Lirzin, A., Soubeyroux, J. L., Tressaud, A., Georges, R. & Darriet, J. (1991). J. Chim. Phys. Phys.-Chim. Biol. 88, 2173-2189.], 2008[Le Lirzin, A., Darriet, J., Tressaud, A. & Babel, D. (2008). Z. Anorg. Allg. Chem. 634 2737-2739.]; Qiang et al., 1988[Qiang, X., Darriet, J., Tressaud, A., Soubeyroux, J. L. & Hagenmuller, P. (1988). Mater. Res. Bull. 23, 637-645.]).

2. Structural commentary

The principal building units of the usovite crystal structure are distorted [BaF12] polyhedra, [(MII1)F8] sqare-anti­prisms (point group symmetry 2) and [(MII2)F6] octa­hedra (point group symmetry [\overline{1}]), as well as rather regular [(MIII3)F6] octa­hedra. The [(MII2)F6] and [(MIII3)F6] octa­hedra are connected by corner-sharing into infinite crosslinked double chains 1[(MII2)F2F4/2(MIII3)2F8F4/2] extending parallel to [010] (Fig. 1[link]). Neighbouring chains are linked by the [(MII1)F8] square-anti­prisms into undulating (100) layers with composition 2[(MII1)(MII2)(MIII3)2F14)]4−, with the Ba2+ cations separating the individual layers (Fig. 2[link]).

[Figure 1]
Figure 1
[AlF6] octa­hedra (yellow, with F atoms green) and [FeF6] octa­hedra (orange) are linked into crosslinked double chains parallel to [010]. Displacement ellipsoids are drawn at the 74% probability level.
[Figure 2]
Figure 2
The crystal structure of the usovite-type title compound, emphasizing the formation of the layered 2[CaFeAl2F14]4− framework parallel to (100), separated by Ba2+ cations. Displacement ellipsoids are drawn at the 74% probability level. The colour code is as in Fig. 1[link], with [CaF8] polyhedra in blue and Ba atoms in red.

The unit-cell volume of the title compound [1067.9 (2) Å3] is slightly larger than that of usovite Ba2CaMgAl2F14 (1027.9 Å; Litvin et al., 1980[Litvin, A. L., Petrunina, A. A., Ostapenko, S. S. & Povarennykh, A. S. (1980). Dopov. Akad. Nauk Ukr. RSR Ser. pp. 47-50.]) due to the replacement of the Mg2+ cations (ionic radius = 0.72 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) by the larger Fe2+ cations (ionic radius = 0.78 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) at the MII2 site. This is also reflected by the bond lengths within the individual coordination polyhedra (Table 1[link]). Wheras the Ba—F, Ca—F and Al—F distances remain nearly unaltered between the two structures, the Mg—F and Fe—F distances show remarkable differences. The Mg—F distances in the usovite structure range from 1.939 to 2.041 Å, the corresponding Fe—F distances in the title structure from 2.015 (2) to 2.216 (2) Å, with a mean distance of 2.123 Å. The latter is in reasonable agreement with the mean FeII—F distance of 2.106 Å in the isotypic crystal structure of Ba2CaFeV2F14 (Kaiser et al., 2002[Kaiser, V., Le Lirzin, A., Darriet, J., Tressaud, A., Holler, H. & Babel, D. (2002). Z. Anorg. Allg. Chem. 628 2617-2626.]). However, the mean bond lengths in both the title structure and Ba2CaFeV2F14 are considerably longer than that of 2.074 Å in the structure of the binary compound FeF2 (Jauch et al., 1993[Jauch, W., Palmer, A. & Schultz, A. J. (1993). Acta Cryst. B49, 984-987.]).

Table 1
Selected bond lengths (Å) for model (I)

For model (II), bond lengths are the same within their standard uncertainties.

Ba—F7 2.696 (2) Ca2—F4 2.376 (2)
Ba—F4i 2.730 (2) Ca2—F4ix 2.376 (2)
Ba—F1i 2.755 (2) Ca2—F5x 2.544 (2)
Ba—F2ii 2.765 (2) Ca2—F5iv 2.544 (2)
Ba—F5iii 2.766 (2) Fe1—F7x 2.015 (2)
Ba—F5iv 2.827 (2) Fe1—F7i 2.015 (2)
Ba—F3iv 2.889 (2) Fe1—F2xi 2.131 (2)
Ba—F1v 2.889 (2) Fe1—F2viii 2.131 (2)
Ba—F3 2.974 (2) Fe1—F3x 2.216 (2)
Ba—F6iii 3.101 (2) Fe1—F3i 2.216 (2)
Ba—F6iv 3.158 (2) Al—F4xii 1.780 (2)
Ba—F1vi 3.233 (3) Al—F1 1.780 (3)
Ca2—F7vii 2.235 (2) Al—F6iv 1.790 (2)
Ca2—F7i 2.235 (2) Al—F2iv 1.799 (2)
Ca2—F6iii 2.369 (2) Al—F5iii 1.843 (2)
Ca2—F6viii 2.369 (2) Al—F3iii 1.846 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+1, z+{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (viii) -x, -y+1, -z+1; (ix) [-x, y, -z+{\script{1\over 2}}]; (x) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (xi) x, y, z-1; (xii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

A similar increase of the M—F bond lengths of the [(MII2)F6] octa­hedra was also observed for a series of other usovite-type structures and was associated with an occupational disorder of the MII2 site. For these models, either a mutual substitution of Ca2+ (on the MII1 site) with corresponding divalent transition metal ions on the MII2 site, or partial replacement of the divalent transition metal ions by Ca2+ at the MII2 site was considered, resulting in stoichiometric compounds and Ca-richer compounds, respectively (Kaiser et al., 2002[Kaiser, V., Le Lirzin, A., Darriet, J., Tressaud, A., Holler, H. & Babel, D. (2002). Z. Anorg. Allg. Chem. 628 2617-2626.]). In the case of the title compound, a model with mutual substitution of Ca2+ and Fe2+ on the MII1 and MII2 sites could be ruled out during refinement. However, a model with an incorporation of Ca2+ on the Fe2+ site resulted in a ratio of Ca:Fe = 0.155 (7):0.345 (7) for this site [model (I); overall refined formula for the compound: Ba2Ca1.310 (15)Fe0.690 (15)Al2F14] and converged with the same reliability factors and remaining electron densities as the model without an incorporation of Ca2+ and underoccupation of the Fe2+ site only [model (II); Table 3]. The refined formula for this model is Ba2Ca2Fe0.90 (1)Al2F14. Bond lengths and angles of the two models are the same within the corresponding standard uncertainties (Table 1[link]).

Kaiser et al. (2002[Kaiser, V., Le Lirzin, A., Darriet, J., Tressaud, A., Holler, H. & Babel, D. (2002). Z. Anorg. Allg. Chem. 628 2617-2626.]) have discussed in detail the pros and cons of the incorporation of Ca2+ (ionic radius = 1.0 Å; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]) at the MII2 site for various usovite-type structures. Strong arguments supporting an MII2 site with mixed Fe/Ca occupation are the resulting bond-valence sums (Brown, 2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) that deviate significantly from the expected values of 2 if only Fe2+ ions are considered to be present at the MII2 site (Table 2[link]). Contrariwise, the bond-valence sums are in excellent agreement with the expected value if a mixed Fe/Ca occupancy is taken into account. The corresponding numbers are listed in Table 2[link] and were calculated with the weighted average occupancy ratio of Fe:Ca = 0.77:0.23 that was estimated by the program VaList (Wills, 2010[Wills, A. S. (2010). VaList. Program available from www.CCP14.ac. uk.]). This ratio is in good agreement with the occupancy ratio from the refinement [model (I): Fe:Ca = 0.69:0.31]. The resulting global instability index (Brown, 2002[Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.]) of 0.04 valence units for model (I) suggests a very tightly bonded structure with little strain. Any strain inherent in the usovite structure is obviously relieved by the substitution of Ca2+ on the MII2 site.

Table 2
Bond-valence sum calculations for model (I) in valence units

Atom Assumed valence state Bond-valence sum Deviation from assumed valence state in valence units Bond-valence sum under consideration of mixed Fe1:Ca1 occupancy*
Ba 2 1.94 0.06 1.94
Fe1 2 1.73 0.27 2.00
Ca2 2 1.95 0.05 1.95
Al 3 2.97 0.03 2.97
F1 1 0.96 0.04 0.96
F2 1 0.99 0.01 1.03
F3 1 0.93 0.07 0.96
F4 1 1.00 0 1.00
F5 1 0.99 0.01 0.99
F6 1 0.92 0.08 0.92
F7 1 0.97 0.03 1.03
Note: (*) calculated with the weighted average Fe:Ca ratio of 0.77:0.23 at the M2 site.

On the other hand, an MII2 site without an incorporation of Ca2+ would result in an underoccupation of Fe2+ [model (II)] and consequently requires the presence of an element in a higher oxidation state (here most probably Fe3+) to compensate the negative charge of −2 of the [Ba2CaAl2F14] framework. Although in this case rather a decrease of MII2—F bond lengths should be expected (contrary to the findings of the current study), it cannot competely ruled out that Fe3+ ions are present at this site. As a matter of fact, based on diffraction data alone, there is a clear tendency towards model (I) but no definite answer whether Fe is partly replaced by Ca on the MII2 site [model (I)] or is statistically occupied by Fe2+ and small amounts of Fe3+ [model (II)]. Complementary analytical techniques like Mössbauer spectroscopy will be needed in future to shed some light on this problem.

3. Synthesis and crystallization

The binary fluorides AlF3 (Merck, Patinal), CaF2 (Merck, Supra­pur) and BaF2 (Riedel de Haen, pure) were mixed in the stoichiometric ratio 1:1:1 and thoroughly ground in a ball mill, pressed into tablets and placed in a carbon tool steel container shielded with a molybdenum foil. NH4F·HF (100 mg, Fluka, p·A.) were added to the mixture to increase the HF pressure, to expel the remaining oxygen and to adjust a slightly reducing atmosphere during the reaction. The reactor was then closed and heated to 1173 K in the course of 20 h, kept at that temperature for 24 h, and then cooled slowly to 973 K at a rate of 10 K h−1, kept at this temperature for 24 h and finally cooled to room temperature overnight. After opening the reactor it became evident that parts of the molybdenum foil were torn apart accompanied by a severe attack of the inner container wall. Single crystals of the title compound were separated from the obtained colourless to light-green bulk material. X-ray powder diffraction of the bulk revealed the formation of α-BaCaAlF7 as the main phase and the title compound as a minority phase. Some additional reflections were also present that could not be assigned to any known phases.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Coordinates of usovite (Litvin et al., 1980[Litvin, A. L., Petrunina, A. A., Ostapenko, S. S. & Povarennykh, A. S. (1980). Dopov. Akad. Nauk Ukr. RSR Ser. pp. 47-50.]) were used as starting parameters for refinement. The model converged rather smoothly with R1 = 0.034 and wR2 = 0.089. However, negative residual electron density at the Fe atom pointed to an underoccupation and/or a statistical disorder of the MII2 site with a lighter element present. In fact, free refinement of the site occupation factor for this site resulted in only 90% occupancy and significant better reliability factors (see Table 3[link]). The same procedure applied for all other atoms resulted in full occupancy within the twofold standard uncertainty. For the final models, full occupancy was therefore considered for all atoms except Fe. Model (I) accounts for an incorporation of Ca2+ at the Fe site under consideration of full occupancy; in model (II), the site occupation factor of the Fe site was refined freely without contribution of Ca2+ at this site. The remaining electron densities (Table 3[link]) are virtually the same for both models. They are associated with truncation effects close to the heavy Ba sites, with the maximum electron density 0.68 Å and the minimum electron density 0.96 Å away from the Ba atom.

Table 3
Experimental details

  Model (I) Model (II)
Crystal data
Chemical formula Ba2Ca1.31Fe0.69Al2F14 Ba2CaFe0.90Al2F14
Mr 685.68 684.98
Crystal system, space group Monoclinic, C2/c Monoclinic, C2/c
Temperature (K) 293 293
a, b, c (Å) 13.7387 (12), 5.2701 (5), 14.759 (3) 13.7387 (12), 5.2701 (5), 14.759 (3)
β (°) 92.074 (14) 92.074 (14)
V3) 1067.9 (2) 1067.9 (2)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 9.21 9.33
Crystal size (mm) 0.43 × 0.11 × 0.07 0.43 × 0.11 × 0.07
 
Data collection
Diffractometer Nonius CAD-4 four-circle diffrac­tometer Nonius CAD-4 four-circle diffrac­tometer
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.329, 0.901 0.329, 0.901
No. of measured, independent and observed [I > 2σ(I)] reflections 5922, 1564, 1490 5922, 1564, 1490
Rint 0.055 0.055
(sin θ/λ)max−1) 0.703 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.09 0.032, 0.078, 1.10
No. of reflections 1564 1564
No. of parameters 95 96
Δρmax, Δρmin (e Å−3) 2.31, −2.03 2.32, −2.03
Computer programs: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]), HELENA implemented in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ATOMS for Windows (Dowty, 2006[Dowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Fluoridoaluminates with alkaline earth cations exhibit a rich crystal chemistry (Babel & Tressaud, 1985; Weil et al., 2001). They are suitable host materials for optical applications as has been shown by luminescence exitation studies of SrAlF5 or CaAlF5 doped with Pr3+ and Mn2+ (van der Kolk et al., 2004). In order to prepare large single crystals of a related fluoridoaluminate with composition BaCaAlF7, a different preparation route was chosen in comparison with the reported crystal-growth procedure. Instead of using a ZnCl2 melt (Werner & Weil, 2003), a carbon tool steel container shielded with a molybdenum foil was used for solid state reactions between a mixture of the binary fluorides (Weil & Kubel, 2002). However, during one of these experiments it turned out that the container was not completely lined by the molybdenum foil which consequently led to a reaction with the container wall and an incorporation of iron into parts of the reaction products. Crystal structure analysis of selected crystals from this reaction batch revealed an Fe-containing phase that crystallizes isotypically with the mineral usovite, Ba2CaMgAl2F14 (Litvin et al., 1980).

Compounds with the usovite-type structure are represented by the general formula Ba2(MII1)(MII2)(MIII3)2F14 (MII1 = Ca, Cd, Mn; MII2 = Mg, Co, Mn, Cu, Cd, Fe; MIII3 = Al, V, Fe, Cr, Ga, Mn) and crystallize with four formula units in the space group C2/c. Most of the usovite-type representatives known so far were prepared and structurally determined by Babel, Tressaud and co-workers over the last three decades (Holler et al., 1984, 1985; Kaiser et al., 2002; Le Lirzin et al., 1990, 1991, 2008; Qiang et al., 1988).

Structural commentary top

The principal building units of the usovite crystal structure are distorted [BaF12] polyhedra, [(MII1)F8] sqare-anti­prisms (point group symmetry 2) and [(MII2)F6] o­cta­hedra (point group symmetry 1), as well as rather regular [(MIII3)F6] o­cta­hedra. The [(MII2)F6] and [(MIII3)F6] o­cta­hedra are connected by corner-sharing into infinite crosslinked double chains 1[(MII2)F2F4/2(MIII3)2F8F4/2] extending parallel to [010] (Fig. 1). Neighbouring chains are linked by the [(MII1)F8] square-anti­prisms into undulating (100) layers with composition 2[(MII1)(MII2)(MIII3)2F14)]4-, with the Ba2+ cations separating the individual layers (Fig. 2).

The unit-cell volume of the title compound [1067.9 (2) Å3] is slightly larger than that of usovite Ba2CaMgAl2F14 (1027.9 Å; Litvin et al., 1980) due to the replacement of the Mg2+ cations (ionic radius = 0.72 Å; Shannon, 1976) by the larger Fe2+ cations (ionic radius = 0.78 Å; Shannon, 1976) at the MII2 site. This is also reflected by the bond lengths within the individual coordination polyhedra (Table 1). Wheras the Ba—F, Ca—F and Al—F distances remain nearly unaltered between the two structures, the Mg—F and Fe—F distances show remarkable differences. The Mg—F distances in the usovite structure range from 1.939 to 2.041 Å, the corresponding Fe—F distances in the title structure from 2.015 (2) to 2.216 (2) Å, with a mean distance of 2.123 Å. The latter is in reasonable agreement with the mean FeII—F distance of 2.106 Å in the isotypic crystal structure of Ba2CaFeV2F14 (Kaiser et al., 2002). However, the mean bond lengths in both the title structure and Ba2CaFeV2F14 are considerably longer than that of 2.074 Å in the structure of the binary compound FeF2 (Jauch et al., 1993).

A similar increase of the M—F bond lengths of the [(MII2)F6] o­cta­hedra was also observed for a series of other usovite-type structures and was associated with an occupational disorder of the MII2 site. For these models, either a mutual substitution of Ca2+ (on the MII1 site) with corresponding divalent transition metal ions on the MII2 site, or partial replacement of the divalent transition metal ions by Ca2+ at the MII2 site was considered, resulting in stoichiometric compounds and Ca-richer compounds, respectively (Kaiser et al., 2002). In the case of the title compound, a model with mutual substitution of Ca2+ and Fe2+ on the MII1 and MII2 sites could be ruled out during refinement. However, a model with an incorporation of Ca2+ on the Fe2+ site resulted in a ratio of Ca:Fe = 0.155 (7):0.345 (7) for this site [model (I); overall refined formula for the compound: Ba2Ca1.310 (15)Fe0.690 (15)Al2F14] and converged with the same reliability factors and remaining electron densities as the model without an incorporation of Ca2+ and underoccupation of the Fe2+ site only [model (II); Table 1]. The refined formula for this model is Ba2Ca2Fe0.90 (1)Al2F14. Bond lengths and angles of the two models are the same within the corresponding standard uncertainty (Table 1).

Kaiser et al. (2002) have discussed in detail the pros and cons of the incorporation of Ca2+ (ionic radius = 1.0 Å; Shannon, 1976) at the MII2 site for various usovite-type structures. Strong arguments supporting an MII2 site with mixed Fe/Ca occupation are the resulting bond-valence sums (Brown, 2002) that deviate significantly from the expected values of 2 if only Fe2+ ions are considered to be present at the MII2 site (Table 2). Contrariwise, the bond-valence sums are in excellent agreement with the expected value if a mixed Fe/Ca occupancy is taken into account. The corresponding numbers are listed in Table 2 and were calculated with the weighted average occupancy ratio of Fe:Ca = 0.77:0.23 that was estimated by the program VaList (Wills, 2010). This ratio is in good agreement with the occupancy ratio from the refinement [model (I): Fe:Ca = 0.69:0.31]. The resulting global instability index (Brown, 2002) of 0.04 valence units for model (I) suggests a very tightly bonded structure with little strain. Any strain inherent in the usovite structure is obviously relieved by the substitution of Ca2+ on the MII2 site.

On the other hand, an MII2 site without an incorporation of Ca2+ would result in an underoccupation of Fe2+ [model (II)] and consequently requires the presence of an element in a higher oxidation state (here most probably Fe3+) to compensate the negative charge of -2 of the [Ba2CaAl2F14] framework. Although in this case rather a decrease of MII2—F bond lengths should be expected (contrary to the findings of the current study), it cannot competely ruled out that Fe3+ ions are present at this site. As a matter of fact, based on diffraction data alone, there is a clear tendency towards model (I) but no definite answer whether Fe is partly replaced by Ca on the MII2 site [model (I)] or is statistically occupied by Fe2+ and small amounts of Fe3+ [model (II)]. Complementary analytical techniques like Mössbauer spectroscopy will be needed in future to shed some light on this problem.

Synthesis and crystallization top

The binary fluorides AlF3 (Merck, Patinal), CaF2 (Merck, Supra­pur) and BaF2 (Riedel de Haen, pure) were mixed in the stoichiometric ratio 1:1:1 and thoroughly ground in a ball mill, pressed into tablets and placed in a carbon tool steel container shielded with a molybdenum foil. NH4F·HF (100 mg, Fluka, p.A.) were added to the mixture to increase the HF pressure, to expel the remaining oxygen and to adjust a slightly reducing atmosphere during the reaction. The reactor was then closed and heated to 1173 K in the course of 20 h, kept at that temperature for 24 h, and then cooled slowly to 973 K at a rate of 10 K h-1, kept at this temperature for 24 h and finally cooled to room temperature overnight. After opening the reactor it became evident that parts of the molybdenum foil were torn apart accompanied by a severe attack of the inner container wall. Single crystals of the title compound were separated from the obtained colourless to light-green bulk material. X-ray powder diffraction of the bulk revealed the formation of α-BaCaAlF7 as the main phase and the title compound as a minority phase. Some additional reflections were also present that could not be assigned to any known phases.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. Coordinates of usovite (Litvin et al., 1980) were used as starting parameters for refinement. The model converged rather smoothly with R1 = 0.034 and wR2 = 0.089. However, negative residual electron density at the Fe atom pointed to an underoccupation and/or a statistical disorder of the MII2 site with a lighter element present. In fact, free refinement of the site occupation factor for this site resulted in only 90% occupancy and significant better reliability factors (see Table 1). The same procedure applied for all other atoms resulted in full occupancy within the twofold standard uncertainty. For the final models, full occupancy was therefore considered for all atoms except Fe. Model (I) accounts for an incorporation of Ca2+ at the Fe site under consideration of full occupancy; in model (II), the site occupation factor of the Fe site was refined freely without contribution of Ca2+ at this site. The remaining electron densities (Table 1) are virtually the same for both models. They are associated with truncation effects close to the heavy Ba sites, with the maximum electron density 0.68 Å and the minimum electron density 0.96 Å away from the Ba atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989) for modelI; CAD-4 Software (Enraf-Nonius, 1989) for modelII. Cell refinement: CAD-4 Software (Enraf–Nonius, 1989) for modelI; CAD-4 Software (Enraf-Nonius, 1989) for modelII. For both compounds, data reduction: HELENA implemented in PLATON (Spek, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: ATOMS for Windows (Dowty, 2006) for modelI; Atoms for Windows (Dowty, 2006) for modelII. For both compounds, software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. [AlF6] octahedra (yellow, with F atoms green) and [FeF6] octahedra (orange) are linked into crosslinked double chains parallel to [010]. Displacement ellipsoids are drawn at the 74% probability level.
[Figure 2] Fig. 2. The crystal structure of the usovite-type title compound, emphasizing the formation of the layered 2[CaFeAl2F14]4- framework parallel to (100), separated by Ba2+ cations. Displacement ellipsoids are drawn at the 74% probability level. The colour code is as in Fig. 1, with [CaF8] polyhedra in blue and Ba atoms in red.
(modelI) Dibarium calcium iron(II) dialuminium tetradecafluoride top
Crystal data top
Ba2CaFeAl2F14F(000) = 1233
Mr = 685.68Dx = 4.265 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 13.7387 (12) Åθ = 16.0–28.7°
b = 5.2701 (5) ŵ = 9.21 mm1
c = 14.759 (3) ÅT = 293 K
β = 92.074 (14)°Lath, colourless
V = 1067.9 (2) Å30.43 × 0.11 × 0.07 mm
Z = 4
Data collection top
Nonius CAD-4 four-circle
diffractometer
1490 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 30.0°, θmin = 2.8°
ω/2θ scansh = 1919
Absorption correction: ψ scan
(North et al., 1968)
k = 77
Tmin = 0.329, Tmax = 0.901l = 2020
5922 measured reflections3 standard reflections every 240 min
1564 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0527P)2 + 2.0371P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.078Δρmax = 2.31 e Å3
S = 1.09Δρmin = 2.03 e Å3
1564 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
95 parametersExtinction coefficient: 0.0022 (2)
0 restraints
Crystal data top
Ba2CaFeAl2F14V = 1067.9 (2) Å3
Mr = 685.68Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.7387 (12) ŵ = 9.21 mm1
b = 5.2701 (5) ÅT = 293 K
c = 14.759 (3) Å0.43 × 0.11 × 0.07 mm
β = 92.074 (14)°
Data collection top
Nonius CAD-4 four-circle
diffractometer
1490 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.055
Tmin = 0.329, Tmax = 0.9013 standard reflections every 240 min
5922 measured reflections intensity decay: none
1564 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03295 parameters
wR(F2) = 0.0780 restraints
S = 1.09Δρmax = 2.31 e Å3
1564 reflectionsΔρmin = 2.03 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba0.308721 (14)0.46574 (4)0.379963 (13)0.01408 (12)
Fe10.00000.50000.00000.0122 (2)0.690 (15)
Ca10.00000.50000.00000.0122 (2)0.310 (15)
Ca20.00000.44616 (15)0.25000.01239 (19)
Al0.38007 (8)0.50390 (18)0.12342 (7)0.0111 (2)
F10.25596 (18)0.4521 (4)0.0896 (2)0.0240 (5)
F20.08574 (15)0.1721 (4)0.97491 (13)0.0184 (4)
F30.37359 (16)0.2100 (4)0.55132 (14)0.0197 (4)
F40.00268 (16)0.0837 (4)0.15434 (15)0.0190 (4)
F50.34180 (14)0.2933 (4)0.71743 (13)0.0157 (4)
F60.12186 (16)0.2677 (4)0.80391 (15)0.0207 (4)
F70.43370 (17)0.0715 (4)0.37866 (16)0.0208 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.01226 (15)0.01401 (16)0.01593 (15)0.00069 (5)0.00023 (9)0.00074 (5)
Fe10.0106 (4)0.0124 (3)0.0136 (4)0.0004 (2)0.0005 (3)0.0029 (2)
Ca10.0106 (4)0.0124 (3)0.0136 (4)0.0004 (2)0.0005 (3)0.0029 (2)
Ca20.0131 (4)0.0124 (4)0.0118 (4)0.0000.0019 (3)0.000
Al0.0114 (5)0.0096 (3)0.0123 (5)0.0007 (3)0.0004 (4)0.0005 (3)
F10.0130 (11)0.0219 (11)0.0366 (14)0.0017 (8)0.0069 (10)0.0007 (9)
F20.0218 (10)0.0183 (9)0.0148 (8)0.0033 (8)0.0016 (7)0.0026 (7)
F30.0269 (11)0.0140 (8)0.0184 (9)0.0003 (8)0.0027 (8)0.0032 (7)
F40.0100 (9)0.0247 (9)0.0224 (10)0.0014 (8)0.0000 (7)0.0087 (8)
F50.0155 (9)0.0173 (8)0.0145 (8)0.0037 (7)0.0027 (6)0.0004 (7)
F60.0220 (10)0.0161 (8)0.0243 (10)0.0037 (8)0.0035 (8)0.0076 (8)
F70.0183 (11)0.0239 (10)0.0206 (10)0.0009 (9)0.0052 (8)0.0067 (8)
Geometric parameters (Å, º) top
Ba—F72.696 (2)Ca2—F42.376 (2)
Ba—F4i2.730 (2)Ca2—F4ix2.376 (2)
Ba—F1i2.755 (2)Ca2—F5x2.544 (2)
Ba—F2ii2.765 (2)Ca2—F5iv2.544 (2)
Ba—F5iii2.766 (2)Fe1—F7x2.015 (2)
Ba—F5iv2.827 (2)Fe1—F7i2.015 (2)
Ba—F3iv2.889 (2)Fe1—F2xi2.131 (2)
Ba—F1v2.889 (2)Fe1—F2viii2.131 (2)
Ba—F32.974 (2)Fe1—F3x2.216 (2)
Ba—F6iii3.101 (2)Fe1—F3i2.216 (2)
Ba—F6iv3.158 (2)Al—F4xii1.780 (2)
Ba—F1vi3.233 (3)Al—F11.780 (3)
Ca2—F7vii2.235 (2)Al—F6iv1.790 (2)
Ca2—F7i2.235 (2)Al—F2iv1.799 (2)
Ca2—F6iii2.369 (2)Al—F5iii1.843 (2)
Ca2—F6viii2.369 (2)Al—F3iii1.846 (2)
F7—Ba—F4i64.22 (7)F6iii—Ca2—F6viii100.95 (11)
F7—Ba—F1i158.04 (7)F7vii—Ca2—F4139.26 (9)
F4i—Ba—F1i97.60 (7)F7i—Ca2—F473.58 (8)
F7—Ba—F2ii89.56 (7)F6iii—Ca2—F4133.25 (7)
F4i—Ba—F2ii65.13 (7)F6viii—Ca2—F4109.76 (8)
F1i—Ba—F2ii70.80 (7)F7vii—Ca2—F4ix73.58 (8)
F7—Ba—F5iii102.89 (6)F7i—Ca2—F4ix139.26 (9)
F4i—Ba—F5iii63.11 (6)F6iii—Ca2—F4ix109.76 (8)
F1i—Ba—F5iii77.18 (7)F6viii—Ca2—F4ix133.25 (7)
F2ii—Ba—F5iii113.14 (6)F4—Ca2—F4ix73.00 (12)
F7—Ba—F5iv94.51 (6)F7vii—Ca2—F5x86.30 (7)
F4i—Ba—F5iv134.23 (6)F7i—Ca2—F5x110.96 (8)
F1i—Ba—F5iv107.32 (7)F6iii—Ca2—F5x165.39 (7)
F2ii—Ba—F5iv159.58 (6)F6viii—Ca2—F5x70.35 (7)
F5iii—Ba—F5iv85.46 (4)F4—Ca2—F5x61.35 (7)
F7—Ba—F3iv108.42 (7)F4ix—Ca2—F5x71.46 (7)
F4i—Ba—F3iv168.26 (6)F7vii—Ca2—F5iv110.96 (8)
F1i—Ba—F3iv87.26 (7)F7i—Ca2—F5iv86.30 (7)
F2ii—Ba—F3iv106.93 (6)F6iii—Ca2—F5iv70.35 (7)
F5iii—Ba—F3iv128.56 (6)F6viii—Ca2—F5iv165.39 (7)
F5iv—Ba—F3iv52.84 (6)F4—Ca2—F5iv71.46 (7)
F7—Ba—F1v58.57 (7)F4ix—Ca2—F5iv61.35 (7)
F4i—Ba—F1v122.79 (7)F5x—Ca2—F5iv120.53 (9)
F1i—Ba—F1v138.03 (11)Fe1ix—Ca2—Ca1ix0.0
F2ii—Ba—F1v113.81 (7)F4xii—Al—F1175.02 (12)
F5iii—Ba—F1v128.75 (7)F4xii—Al—F6iv93.99 (12)
F5iv—Ba—F1v53.35 (7)F1—Al—F6iv90.60 (11)
F3iv—Ba—F1v50.92 (7)F4xii—Al—F2iv93.23 (11)
F7—Ba—F359.03 (6)F1—Al—F2iv88.30 (12)
F4i—Ba—F390.21 (6)F6iv—Al—F2iv94.65 (11)
F1i—Ba—F3111.82 (7)F4xii—Al—F5iii87.88 (10)
F2ii—Ba—F352.19 (6)F1—Al—F5iii90.20 (12)
F5iii—Ba—F3153.12 (6)F6iv—Al—F5iii90.11 (11)
F5iv—Ba—F3113.88 (6)F2iv—Al—F5iii175.02 (11)
F3iv—Ba—F378.06 (7)F4xii—Al—F3iii88.87 (11)
F1v—Ba—F361.81 (7)F1—Al—F3iii86.45 (11)
F7—Ba—F6iii149.96 (6)F6iv—Al—F3iii176.00 (12)
F4i—Ba—F6iii127.50 (6)F2iv—Al—F3iii87.98 (11)
F1i—Ba—F6iii50.94 (6)F5iii—Al—F3iii87.19 (10)
F2ii—Ba—F6iii120.41 (6)Al—F1—Bav114.10 (11)
F5iii—Ba—F6iii68.78 (5)Al—F1—Bai96.30 (9)
F5iv—Ba—F6iii56.89 (6)Bav—F1—Bai138.03 (11)
F3iv—Ba—F6iii63.59 (6)Al—F1—Baiii90.11 (11)
F1v—Ba—F6iii103.02 (6)Bav—F1—Baiii111.43 (8)
F3—Ba—F6iii137.04 (6)Bai—F1—Baiii95.98 (7)
F7—Ba—F6iv58.76 (6)Aliv—F2—Ca1xiii136.08 (11)
F4i—Ba—F6iv67.12 (6)Aliv—F2—Fe1xiii136.08 (11)
F1i—Ba—F6iv127.71 (7)Ca1xiii—F2—Fe1xiii0.0
F2ii—Ba—F6iv130.73 (6)Aliv—F2—Baxiv106.09 (9)
F5iii—Ba—F6iv50.92 (6)Ca1xiii—F2—Baxiv117.51 (8)
F5iv—Ba—F6iv67.24 (5)Fe1xiii—F2—Baxiv117.51 (8)
F3iv—Ba—F6iv118.00 (6)Alvi—F3—Ca1v125.67 (12)
F1v—Ba—F6iv82.68 (7)Alvi—F3—Fe1v125.67 (12)
F3—Ba—F6iv117.62 (5)Ca1v—F3—Fe1v0.0
F6iii—Ba—F6iv97.89 (5)Alvi—F3—Baiv94.81 (9)
F7—Ba—F1vi105.96 (6)Ca1v—F3—Baiv131.32 (9)
F4i—Ba—F1vi113.22 (7)Fe1v—F3—Baiv131.32 (9)
F1i—Ba—F1vi68.57 (8)Alvi—F3—Ba97.28 (9)
F2ii—Ba—F1vi48.35 (6)Ca1v—F3—Ba98.63 (7)
F5iii—Ba—F1vi144.90 (6)Fe1v—F3—Ba98.63 (7)
F5iv—Ba—F1vi111.48 (6)Baiv—F3—Ba101.94 (7)
F3iv—Ba—F1vi58.64 (6)Alxv—F4—Ca2107.90 (10)
F1v—Ba—F1vi84.02 (7)Alxv—F4—Bav142.62 (11)
F3—Ba—F1vi46.95 (6)Ca2—F4—Bav109.17 (8)
F6iii—Ba—F1vi94.27 (6)Alvi—F5—Ca2iv99.49 (9)
F6iv—Ba—F1vi163.69 (5)Alvi—F5—Bavi116.54 (9)
F7x—Fe1—F2xi85.92 (8)Ca2iv—F5—Bavi103.29 (7)
F7i—Fe1—F2xi94.08 (8)Alvi—F5—Baiv96.93 (8)
F7x—Fe1—F2viii94.08 (8)Ca2iv—F5—Baiv117.45 (8)
F7i—Fe1—F2viii85.92 (8)Bavi—F5—Baiv121.50 (7)
F7x—Fe1—F3x82.86 (8)Aliv—F6—Ca2viii133.22 (12)
F7i—Fe1—F3x97.14 (8)Aliv—F6—Bavi100.10 (9)
F2xi—Fe1—F3x95.71 (8)Ca2viii—F6—Bavi113.52 (8)
F2viii—Fe1—F3x84.29 (8)Aliv—F6—Baiv102.40 (9)
F7x—Fe1—F3i97.14 (8)Ca2viii—F6—Baiv101.02 (7)
F7i—Fe1—F3i82.86 (8)Bavi—F6—Baiv102.46 (6)
F2xi—Fe1—F3i84.29 (8)Ca1v—F7—Fe1v0.0
F2viii—Fe1—F3i95.71 (8)Ca1v—F7—Ca2xvi120.98 (11)
F7vii—Ca2—F7i145.63 (12)Fe1v—F7—Ca2xvi120.98 (11)
F7vii—Ca2—F6iii80.29 (8)Ca1v—F7—Ba113.91 (9)
F7i—Ca2—F6iii78.02 (8)Fe1v—F7—Ba113.91 (9)
F7vii—Ca2—F6viii78.02 (8)Ca2xvi—F7—Ba120.86 (10)
F7i—Ca2—F6viii80.29 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z+1/2; (vi) x, y+1, z+1/2; (vii) x1/2, y+1/2, z; (viii) x, y+1, z+1; (ix) x, y, z+1/2; (x) x1/2, y+1/2, z1/2; (xi) x, y, z1; (xii) x+1/2, y+1/2, z; (xiii) x, y, z+1; (xiv) x+1/2, y1/2, z+3/2; (xv) x1/2, y1/2, z; (xvi) x+1/2, y1/2, z.
(modelII) top
Crystal data top
Al2Ba2CaF14Fe0.90F(000) = 1240
Mr = 684.98Dx = 4.260 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 13.7387 (12) Åθ = 16.0–28.7°
b = 5.2701 (5) ŵ = 9.33 mm1
c = 14.759 (3) ÅT = 293 K
β = 92.074 (14)°Lath, colourless
V = 1067.9 (2) Å30.43 × 0.11 × 0.07 mm
Z = 4
Data collection top
Nonius CAD-4 four-circle
diffractometer
1490 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 30.0°, θmin = 2.8°
ω/2θ scansh = 1919
Absorption correction: ψ scan
(North et al., 1968)
k = 77
Tmin = 0.329, Tmax = 0.901l = 2020
5922 measured reflections3 standard reflections every 240 min
1564 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: isomorphous structure methods
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0532P)2 + 1.6437P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.078Δρmax = 2.32 e Å3
S = 1.10Δρmin = 2.03 e Å3
1564 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
96 parametersExtinction coefficient: 0.0022 (2)
0 restraints
Crystal data top
Al2Ba2CaF14Fe0.90V = 1067.9 (2) Å3
Mr = 684.98Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.7387 (12) ŵ = 9.33 mm1
b = 5.2701 (5) ÅT = 293 K
c = 14.759 (3) Å0.43 × 0.11 × 0.07 mm
β = 92.074 (14)°
Data collection top
Nonius CAD-4 four-circle
diffractometer
1490 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.055
Tmin = 0.329, Tmax = 0.9013 standard reflections every 240 min
5922 measured reflections intensity decay: none
1564 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03296 parameters
wR(F2) = 0.0780 restraints
S = 1.10Δρmax = 2.32 e Å3
1564 reflectionsΔρmin = 2.03 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba0.308719 (14)0.46574 (4)0.379962 (12)0.01408 (12)
Ca0.00000.44617 (15)0.25000.01239 (19)
Al0.38008 (8)0.50390 (18)0.12340 (7)0.0111 (2)
Fe0.00000.50000.00000.0114 (3)0.901 (5)
F10.25596 (18)0.4521 (4)0.0896 (2)0.0240 (5)
F20.08572 (15)0.1721 (4)0.97492 (13)0.0184 (4)
F30.37360 (16)0.2100 (4)0.55132 (14)0.0197 (4)
F40.00267 (15)0.0837 (4)0.15434 (15)0.0190 (4)
F50.34178 (14)0.2932 (4)0.71742 (13)0.0157 (4)
F60.12185 (16)0.2677 (4)0.80392 (14)0.0207 (4)
F70.43372 (16)0.0715 (4)0.37867 (16)0.0208 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba0.01226 (16)0.01399 (16)0.01592 (15)0.00069 (5)0.00023 (9)0.00074 (5)
Ca0.0131 (4)0.0124 (4)0.0118 (4)0.0000.0019 (3)0.000
Al0.0114 (5)0.0096 (3)0.0123 (5)0.0007 (3)0.0003 (4)0.0005 (3)
Fe0.0098 (4)0.0115 (3)0.0128 (4)0.0004 (2)0.0005 (3)0.0030 (2)
F10.0129 (11)0.0219 (11)0.0366 (14)0.0017 (8)0.0068 (10)0.0007 (9)
F20.0219 (10)0.0184 (9)0.0148 (8)0.0032 (8)0.0016 (7)0.0026 (7)
F30.0270 (11)0.0140 (8)0.0184 (9)0.0004 (8)0.0027 (8)0.0031 (7)
F40.0100 (9)0.0247 (9)0.0224 (10)0.0013 (8)0.0000 (7)0.0086 (8)
F50.0156 (9)0.0172 (8)0.0145 (8)0.0038 (7)0.0027 (6)0.0004 (7)
F60.0221 (10)0.0160 (8)0.0243 (10)0.0037 (8)0.0036 (8)0.0076 (8)
F70.0182 (11)0.0238 (9)0.0207 (10)0.0008 (8)0.0053 (8)0.0067 (8)
Geometric parameters (Å, º) top
Ba—F72.696 (2)Ca—F42.376 (2)
Ba—F4i2.730 (2)Ca—F4ix2.376 (2)
Ba—F1i2.755 (2)Ca—F5x2.544 (2)
Ba—F2ii2.766 (2)Ca—F5iv2.544 (2)
Ba—F5iii2.767 (2)Fe—F7i2.015 (2)
Ba—F5iv2.826 (2)Fe—F7x2.015 (2)
Ba—F3iv2.889 (2)Fe—F2viii2.131 (2)
Ba—F1v2.889 (2)Fe—F2xi2.131 (2)
Ba—F32.974 (2)Fe—F3x2.216 (2)
Ba—F6iii3.101 (2)Fe—F3i2.216 (2)
Ba—F6iv3.159 (2)Al—F4xii1.779 (2)
Ba—F1vi3.232 (3)Al—F11.780 (3)
Ca—F7vii2.235 (2)Al—F6iv1.790 (2)
Ca—F7i2.235 (2)Al—F2iv1.799 (2)
Ca—F6iii2.369 (2)Al—F5iii1.843 (2)
Ca—F6viii2.369 (2)Al—F3iii1.846 (2)
F7—Ba—F4i64.22 (7)F7i—Ca—F4ix139.26 (9)
F7—Ba—F1i158.04 (7)F6iii—Ca—F4ix109.75 (8)
F4i—Ba—F1i97.60 (7)F6viii—Ca—F4ix133.25 (7)
F7—Ba—F2ii89.56 (7)F4—Ca—F4ix73.01 (12)
F4i—Ba—F2ii65.12 (7)F7vii—Ca—F5x86.30 (7)
F1i—Ba—F2ii70.80 (7)F7i—Ca—F5x110.95 (8)
F7—Ba—F5iii102.89 (6)F6iii—Ca—F5x165.38 (7)
F4i—Ba—F5iii63.12 (6)F6viii—Ca—F5x70.34 (7)
F1i—Ba—F5iii77.18 (7)F4—Ca—F5x61.35 (7)
F2ii—Ba—F5iii113.14 (6)F4ix—Ca—F5x71.47 (7)
F7—Ba—F5iv94.51 (6)F7vii—Ca—F5iv110.95 (7)
F4i—Ba—F5iv134.23 (6)F7i—Ca—F5iv86.30 (7)
F1i—Ba—F5iv107.33 (6)F6iii—Ca—F5iv70.34 (7)
F2ii—Ba—F5iv159.58 (6)F6viii—Ca—F5iv165.38 (7)
F5iii—Ba—F5iv85.46 (4)F4—Ca—F5iv71.47 (7)
F7—Ba—F3iv108.42 (6)F4ix—Ca—F5iv61.35 (7)
F4i—Ba—F3iv168.26 (6)F5x—Ca—F5iv120.54 (9)
F1i—Ba—F3iv87.26 (7)F4xii—Al—F1175.02 (12)
F2ii—Ba—F3iv106.93 (6)F4xii—Al—F6iv94.00 (11)
F5iii—Ba—F3iv128.56 (6)F1—Al—F6iv90.60 (11)
F5iv—Ba—F3iv52.85 (6)F4xii—Al—F2iv93.23 (11)
F7—Ba—F1v58.57 (7)F1—Al—F2iv88.31 (12)
F4i—Ba—F1v122.79 (7)F6iv—Al—F2iv94.65 (11)
F1i—Ba—F1v138.03 (11)F4xii—Al—F5iii87.88 (10)
F2ii—Ba—F1v113.81 (7)F1—Al—F5iii90.18 (12)
F5iii—Ba—F1v128.76 (7)F6iv—Al—F5iii90.11 (11)
F5iv—Ba—F1v53.36 (6)F2iv—Al—F5iii175.02 (10)
F3iv—Ba—F1v50.92 (7)F4xii—Al—F3iii88.87 (11)
F7—Ba—F359.02 (6)F1—Al—F3iii86.45 (11)
F4i—Ba—F390.21 (6)F6iv—Al—F3iii175.99 (12)
F1i—Ba—F3111.81 (7)F2iv—Al—F3iii87.98 (10)
F2ii—Ba—F352.19 (6)F5iii—Al—F3iii87.19 (10)
F5iii—Ba—F3153.12 (6)F7i—Fe—F2viii85.92 (8)
F5iv—Ba—F3113.88 (6)F7x—Fe—F2viii94.08 (8)
F3iv—Ba—F378.06 (7)F7i—Fe—F2xi94.08 (8)
F1v—Ba—F361.81 (6)F7x—Fe—F2xi85.92 (8)
F7—Ba—F6iii149.97 (6)F7i—Fe—F3x97.13 (8)
F4i—Ba—F6iii127.50 (6)F7x—Fe—F3x82.87 (8)
F1i—Ba—F6iii50.94 (6)F2viii—Fe—F3x84.30 (8)
F2ii—Ba—F6iii120.42 (6)F2xi—Fe—F3x95.70 (8)
F5iii—Ba—F6iii68.77 (5)F7i—Fe—F3i82.87 (8)
F5iv—Ba—F6iii56.89 (6)F7x—Fe—F3i97.13 (8)
F3iv—Ba—F6iii63.59 (6)F2viii—Fe—F3i95.70 (8)
F1v—Ba—F6iii103.02 (6)F2xi—Fe—F3i84.30 (8)
F3—Ba—F6iii137.04 (6)Al—F1—Bav114.10 (11)
F7—Ba—F6iv58.77 (6)Al—F1—Bai96.30 (9)
F4i—Ba—F6iv67.12 (6)Bav—F1—Bai138.03 (10)
F1i—Ba—F6iv127.71 (7)Al—F1—Baiii90.11 (11)
F2ii—Ba—F6iv130.72 (6)Bav—F1—Baiii111.43 (8)
F5iii—Ba—F6iv50.93 (5)Bai—F1—Baiii95.98 (7)
F5iv—Ba—F6iv67.24 (5)Aliv—F2—Fexiii136.08 (11)
F3iv—Ba—F6iv118.00 (6)Aliv—F2—Baxiv106.08 (9)
F1v—Ba—F6iv82.69 (7)Fexiii—F2—Baxiv117.52 (8)
F3—Ba—F6iv117.62 (5)Alvi—F3—Fev125.66 (11)
F6iii—Ba—F6iv97.89 (5)Alvi—F3—Baiv94.81 (9)
F7—Ba—F1vi105.96 (6)Fev—F3—Baiv131.32 (9)
F4i—Ba—F1vi113.22 (7)Alvi—F3—Ba97.27 (9)
F1i—Ba—F1vi68.57 (8)Fev—F3—Ba98.64 (7)
F2ii—Ba—F1vi48.36 (6)Baiv—F3—Ba101.94 (7)
F5iii—Ba—F1vi144.89 (5)Alxv—F4—Ca107.92 (10)
F5iv—Ba—F1vi111.48 (6)Alxv—F4—Bav142.62 (11)
F3iv—Ba—F1vi58.64 (6)Ca—F4—Bav109.17 (8)
F1v—Ba—F1vi84.02 (7)Alvi—F5—Caiv99.48 (9)
F3—Ba—F1vi46.95 (6)Alvi—F5—Bavi116.53 (9)
F6iii—Ba—F1vi94.27 (6)Caiv—F5—Bavi103.28 (7)
F6iv—Ba—F1vi163.69 (5)Alvi—F5—Baiv96.94 (8)
F7vii—Ca—F7i145.64 (12)Caiv—F5—Baiv117.45 (7)
F7vii—Ca—F6iii80.29 (8)Bavi—F5—Baiv121.51 (7)
F7i—Ca—F6iii78.04 (8)Aliv—F6—Caviii133.22 (12)
F7vii—Ca—F6viii78.04 (8)Aliv—F6—Bavi100.10 (9)
F7i—Ca—F6viii80.29 (8)Caviii—F6—Bavi113.52 (8)
F6iii—Ca—F6viii100.95 (11)Aliv—F6—Baiv102.40 (9)
F7vii—Ca—F4139.26 (9)Caviii—F6—Baiv101.01 (7)
F7i—Ca—F473.57 (8)Bavi—F6—Baiv102.45 (6)
F6iii—Ca—F4133.25 (7)Fev—F7—Caxvi120.99 (11)
F6viii—Ca—F4109.75 (8)Fev—F7—Ba113.91 (9)
F7vii—Ca—F4ix73.57 (8)Caxvi—F7—Ba120.85 (10)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z+1/2; (vi) x, y+1, z+1/2; (vii) x1/2, y+1/2, z; (viii) x, y+1, z+1; (ix) x, y, z+1/2; (x) x1/2, y+1/2, z1/2; (xi) x, y, z1; (xii) x+1/2, y+1/2, z; (xiii) x, y, z+1; (xiv) x+1/2, y1/2, z+3/2; (xv) x1/2, y1/2, z; (xvi) x+1/2, y1/2, z.
Selected bond lengths (Å) for (modelI) top
Ba—F72.696 (2)Ca2—F42.376 (2)
Ba—F4i2.730 (2)Ca2—F4ix2.376 (2)
Ba—F1i2.755 (2)Ca2—F5x2.544 (2)
Ba—F2ii2.765 (2)Ca2—F5iv2.544 (2)
Ba—F5iii2.766 (2)Fe1—F7x2.015 (2)
Ba—F5iv2.827 (2)Fe1—F7i2.015 (2)
Ba—F3iv2.889 (2)Fe1—F2xi2.131 (2)
Ba—F1v2.889 (2)Fe1—F2viii2.131 (2)
Ba—F32.974 (2)Fe1—F3x2.216 (2)
Ba—F6iii3.101 (2)Fe1—F3i2.216 (2)
Ba—F6iv3.158 (2)Al—F4xii1.780 (2)
Ba—F1vi3.233 (3)Al—F11.780 (3)
Ca2—F7vii2.235 (2)Al—F6iv1.790 (2)
Ca2—F7i2.235 (2)Al—F2iv1.799 (2)
Ca2—F6iii2.369 (2)Al—F5iii1.843 (2)
Ca2—F6viii2.369 (2)Al—F3iii1.846 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z1/2; (iv) x+1/2, y+1/2, z+1; (v) x+1/2, y1/2, z+1/2; (vi) x, y+1, z+1/2; (vii) x1/2, y+1/2, z; (viii) x, y+1, z+1; (ix) x, y, z+1/2; (x) x1/2, y+1/2, z1/2; (xi) x, y, z1; (xii) x+1/2, y+1/2, z.
Bond-valence sum calculations for model (I) in valence units top
AtomAssumed valence stateBond-valence sumDeviation from assumed valence state in valence unitsBond-valence sum under consideration of mixed Fe1:Ca1 occupancy*
Ba21.940.061.94
Fe121.730.272.00
Ca221.950.051.95
Al32.970.032.97
F110.960.040.96
F210.990.011.03
F310.930.070.96
F411.0001.00
F510.990.010.99
F610.920.080.92
F710.970.031.03
Note: (*) calculated with the weighted average Fe:Ca ratio of 0.77:0.23 at the M2 site

Experimental details

(modelI)(modelII)
Crystal data
Chemical formulaBa2CaFeAl2F14Al2Ba2CaF14Fe0.90
Mr685.68684.98
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)293293
a, b, c (Å)13.7387 (12), 5.2701 (5), 14.759 (3)13.7387 (12), 5.2701 (5), 14.759 (3)
β (°) 92.074 (14) 92.074 (14)
V3)1067.9 (2)1067.9 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)9.219.33
Crystal size (mm)0.43 × 0.11 × 0.070.43 × 0.11 × 0.07
Data collection
DiffractometerNonius CAD-4 four-circle
diffractometer
Nonius CAD-4 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.329, 0.9010.329, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
5922, 1564, 1490 5922, 1564, 1490
Rint0.0550.055
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.09 0.032, 0.078, 1.10
No. of reflections15641564
No. of parameters9596
Δρmax, Δρmin (e Å3)2.31, 2.032.32, 2.03

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CAD-4 Software (Enraf-Nonius, 1989), HELENA implemented in PLATON (Spek, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ATOMS for Windows (Dowty, 2006), Atoms for Windows (Dowty, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer. I thank I. D. Brown for very helpful comments and suggestions regarding the bond-valence method.

References

First citationBabel, D. & Tressaud, A. (1985). Inorganic Solid Fluorides, edited by P. Hagenmuller, pp. 79–203. Orlando: Academic Press.  Google Scholar
First citationBrown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.  Google Scholar
First citationDowty, E. (2006). ATOMS for Windows. Shape Software, Kingsport, Tennessee, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHoller, H., Babel, D., Samouel, M. & de Kozak, A. (1984). Rev. Chim. Miner. 21, 358–369.  CAS Google Scholar
First citationHoller, H., Pebler, J. & Babel, D. (1985). Z. Anorg. Allg. Chem. 522, 189–201.  CrossRef CAS Google Scholar
First citationJauch, W., Palmer, A. & Schultz, A. J. (1993). Acta Cryst. B49, 984–987.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaiser, V., Le Lirzin, A., Darriet, J., Tressaud, A., Holler, H. & Babel, D. (2002). Z. Anorg. Allg. Chem. 628 2617–2626.  CrossRef CAS Google Scholar
First citationKolk, E. van der, Dorenbos, P., Van Eijk, C. W. E., Vink, A. P., Weil, M. & Chaminade, J.-P. (2004). J. Appl. Phys. 95, 7867–7872.  Google Scholar
First citationLe Lirzin, A., Darriet, J., Tressaud, A. & Babel, D. (2008). Z. Anorg. Allg. Chem. 634 2737–2739.  CrossRef CAS Google Scholar
First citationLe Lirzin, A., Quiang, X., Darriet, J., Soubeyroux, J. L., Kaiser, V., Pebler, J. & Babel, D. (1990). Eur. J. Solid State Inorg. Chem. 27, 791–803.  CAS Google Scholar
First citationLe Lirzin, A., Soubeyroux, J. L., Tressaud, A., Georges, R. & Darriet, J. (1991). J. Chim. Phys. Phys.-Chim. Biol. 88, 2173–2189.  CAS Google Scholar
First citationLitvin, A. L., Petrunina, A. A., Ostapenko, S. S. & Povarennykh, A. S. (1980). Dopov. Akad. Nauk Ukr. RSR Ser. pp. 47–50.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationQiang, X., Darriet, J., Tressaud, A., Soubeyroux, J. L. & Hagenmuller, P. (1988). Mater. Res. Bull. 23, 637–645.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeil, M. & Kubel, F. (2002). J. Solid State Chem. 164, 150–156.  CrossRef CAS Google Scholar
First citationWeil, M., Zobetz, E., Werner, F. & Kubel, F. (2001). Solid State Sci. 3, 441–453.  Web of Science CrossRef CAS Google Scholar
First citationWerner, F. & Weil, M. (2003). Acta Cryst. E59, i17–i19.  CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWills, A. S. (2010). VaList. Program available from www.CCP14.ac. uk.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 640-643
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds