organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o404-o405

Crystal structure of 3β-acet­­oxy­androsta-5,16-dien-17-yl tri­fluoro­methane­sulfon­ate

aHangzhou Jiuyuan Gene Engineering Co. Ltd, Hangzhou 310018, Zhejiang, People's Republic of China, and bDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: rbhuang@xmu.edu.cn

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 11 April 2015; accepted 12 May 2015; online 16 May 2015)

The title compound, C22H29F3O5S [systematic name: (3S,8R,9S,10R,13S,14S)-10,13-dimethyl-17-(tri­fluoro­methylsulfon­yloxy)-2,3,4,7,8,9,10,11,12,13,14,15-dodeca­hydro-1H-cyclo­penta­[a]phenanthren-3-yl acetate], contains a fused four-ring steroidal system. Rings A and C adopt a chair conformation, while rings B and D adopt half-chair and envelope (with the fused CH atom as the flap) conformations, respectively. In the crystal, weak inter­molecular C—H⋯O inter­actions link the mol­ecules into layers parallel to the ab plane.

1. Related literature

For inhibition of the androgen signal axis in prostate cancer cells, see: Attard et al. (2009[Attard, G., Reid, A. H. M., A'Hern, R., Parker, C., Oommen, N. B., Folkerd, E., Messiou, C., Molife, L. R., Maier, G., Thompson, E., Olmos, D., Sinha, R., Lee, G., Dowsett, M., Kaye, S. B., Dearnaley, D., Kheoh, T., Molina, A. & de Bono, J. S. (2009). J. Clin. Oncol. 27, 3742-3748.]). For the use of the title compound as a synthetic precursor of an inhibitor of human cytochrome P45017α, see: Potter et al. (1995[Potter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. (1995). J. Med. Chem. 38, 2463-2471.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H29F3O5S

  • Mr = 462.51

  • Orthorhombic, P 21 21 21

  • a = 8.0734 (10) Å

  • b = 9.9640 (12) Å

  • c = 27.6900 (15) Å

  • V = 2227.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 173 K

  • 0.10 × 0.10 × 0.08 mm

2.2. Data collection

  • Bruker SMART APEX 2000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.980, Tmax = 0.984

  • 22017 measured reflections

  • 5098 independent reflections

  • 3185 reflections with I > 2σ(I)

  • Rint = 0.058

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.189

  • S = 1.11

  • 5098 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.66 e Å−3

  • Absolute structure: Flack x determined using 934 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4i 0.97 2.56 3.485 (6) 160
C21—H21B⋯O2ii 0.97 2.65 3.377 (7) 133
Symmetry codes: (i) x-1, y, z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL2014 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Structural commentary top

The title compound, 3β-acet­oxy­androsta-5,16-dien-17-yl tri­fluoro­methane­sulfonate (I) (Fig. 1), is an inter­mediate of the synthesis of abiraterone acetate which is a pro-drug for 17-(pyridin-3- yl)androsta-5,16-dien-3P-ol, or abiraterone, a potent inhibitor of human cytochrome P45017α (steroidal 17α-hy­droxy­lase-C17,20-lyase) (Attard et al. 2009). 3β-Acet­oxy­androsta-5,16-dien-17-yl tri­fluoro­methane- sulfonate was first synthesized and charaterized by Potter et al. (1995), but structural data were not obtained. In this work, we obtained a single-crystal of (I) and present here its crystal structure.

The title molecule contains a fused four-ring steroidal system. The two saturated six-membered rings A and C adopt chair conformations,while ring B with one double bond adopts a half-chair conformation, and ring D with one double bond adopts an envelope conformation. The absolute structure of (I), which is crystallized in a chiral space group P212121, was reliably determined based on the value of Flack parameter [0.02 (3)]. In the crystal, weak inter­molecular C—H···O inter­actions link the molecules into layers parallel to ab plane.

Synthesis and crystallization top

3β-Acet­oxy­androsta-5,16-dien-17-yl tri­fluoro­methane­sulfonate was synthesized from de­hydro-epiandrosterone acetate via tri­fluoro­methane­sulfonic anhydride with an overall yield of 58% according to a literature method (Potter, 1995). Colourless crystals were obtained by evaporation from a hexane solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Crystal data, data collection and structure refinement details are summarized in Table 1. All H-atoms bound to carbon were refined using a riding model with d(C—H) = 0.93 Å, for aromatic, 0.98 Å for C—H and 0.97 Å for CH2 with Uiso = 1.2Ueq (C). d(C—H) = 0.96 Å with Uiso = 1.5Ueq (C) for CH3 H atoms. The absolute structure could be determined reliably.

Related literature top

For inhibition of the androgen signal axis in prostate cancer cells, see: Attard et al. (2009). For the use of the title compound as a synthetic precursor of an inhibitor of human cytochrome P45017α, see: Potter et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labeling and 50% probability displacement ellipsoids.
(3S,8R,9S,10R,13S,14S)-10,13-Dimethyl-17-(trifluoromethylsulfonyloxy)-2,3,4,7,8,9,10,11,12,13,14,15-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate top
Crystal data top
C22H29F3O5SF(000) = 976
Mr = 462.51Dx = 1.379 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 8.0734 (10) ŵ = 0.20 mm1
b = 9.9640 (12) ÅT = 173 K
c = 27.6900 (15) ÅBlock, colourless
V = 2227.5 (4) Å30.10 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX 2000
diffractometer
5098 independent reflections
Radiation source: Enhance (Mo) X-ray Source3185 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ϕ and ω scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.980, Tmax = 0.984k = 1212
22017 measured reflectionsl = 3435
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.060 w = 1/[σ2(Fo2) + (0.0997P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.189(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.27 e Å3
5098 reflectionsΔρmin = 0.66 e Å3
280 parametersAbsolute structure: Flack x determined using 934 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02 (3)
Crystal data top
C22H29F3O5SV = 2227.5 (4) Å3
Mr = 462.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0734 (10) ŵ = 0.20 mm1
b = 9.9640 (12) ÅT = 173 K
c = 27.6900 (15) Å0.10 × 0.10 × 0.08 mm
Data collection top
Bruker SMART APEX 2000
diffractometer
5098 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3185 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.984Rint = 0.058
22017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.189Δρmax = 0.27 e Å3
S = 1.11Δρmin = 0.66 e Å3
5098 reflectionsAbsolute structure: Flack x determined using 934 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
280 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.10597 (18)0.04595 (17)0.06476 (4)0.0579 (4)
C10.4181 (6)0.0552 (5)0.35593 (14)0.0427 (11)
H1A0.30170.04230.36320.051*
H1B0.45980.02840.34270.051*
C20.5109 (7)0.0846 (6)0.40342 (16)0.0494 (13)
H2A0.46420.16340.41890.059*
H2B0.49990.00920.42530.059*
C30.6921 (6)0.1085 (5)0.39178 (16)0.0449 (12)
H30.73850.02760.37690.054*
C40.7123 (7)0.2252 (5)0.35765 (16)0.0468 (12)
H4A0.82880.23810.35050.056*
H4B0.67100.30640.37280.056*
C50.6179 (6)0.1994 (5)0.31113 (16)0.0391 (10)
C60.6943 (6)0.2032 (5)0.26896 (16)0.0425 (11)
H60.80770.21950.26940.051*
C70.6156 (6)0.1838 (5)0.22092 (16)0.0408 (10)
H7A0.64790.09720.20800.049*
H7B0.65460.25260.19890.049*
C80.4257 (5)0.1907 (5)0.22442 (15)0.0372 (10)
H80.39080.28460.22760.045*
C90.3643 (5)0.1100 (4)0.26848 (16)0.0366 (10)
H90.41040.01950.26490.044*
C100.4335 (6)0.1654 (4)0.31691 (16)0.0374 (10)
C110.1732 (6)0.0929 (5)0.26877 (16)0.0420 (11)
H11A0.14410.02840.29360.050*
H11B0.12350.17810.27760.050*
C120.0973 (6)0.0464 (5)0.22079 (15)0.0396 (10)
H12A0.12970.04560.21430.048*
H12B0.02260.04980.22280.048*
C130.1568 (5)0.1370 (5)0.17978 (15)0.0366 (10)
C140.3473 (5)0.1296 (5)0.17969 (16)0.0376 (10)
H140.37250.03360.18190.045*
C150.3994 (7)0.1698 (6)0.12816 (16)0.0500 (12)
H15A0.40760.26650.12470.060*
H15B0.50380.12880.11900.060*
C160.2568 (7)0.1135 (6)0.09945 (17)0.0519 (13)
H160.25870.09520.06650.062*
C170.1287 (6)0.0943 (5)0.12839 (16)0.0413 (11)
C180.1421 (9)0.2240 (8)0.0518 (3)0.081 (2)
C190.9433 (6)0.1150 (6)0.4372 (2)0.0546 (13)
C201.0190 (8)0.1479 (7)0.4847 (2)0.0683 (17)
H20A0.93410.17670.50670.102*
H20B1.07300.06970.49750.102*
H20C1.09870.21850.48070.102*
C210.3391 (7)0.2934 (5)0.33312 (19)0.0531 (13)
H21A0.22360.27290.33680.080*
H21B0.38300.32410.36340.080*
H21C0.35230.36230.30920.080*
C220.0868 (7)0.2809 (5)0.18514 (18)0.0481 (12)
H22A0.10280.31140.21770.072*
H22B0.14350.34000.16330.072*
H22C0.02940.28060.17770.072*
O10.0134 (6)0.0001 (5)0.03104 (14)0.0813 (15)
O20.2654 (5)0.0135 (5)0.06899 (13)0.0779 (14)
O30.0360 (4)0.0520 (4)0.11675 (10)0.0473 (8)
O41.0173 (5)0.0759 (5)0.40211 (14)0.0753 (13)
O50.7779 (4)0.1346 (4)0.43747 (11)0.0484 (8)
F10.2250 (9)0.2339 (7)0.0126 (2)0.181 (3)
F20.2274 (6)0.2797 (5)0.0871 (2)0.128 (2)
F30.0052 (5)0.2913 (4)0.04760 (17)0.0985 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0568 (8)0.0737 (10)0.0432 (6)0.0149 (8)0.0045 (6)0.0026 (7)
C10.046 (3)0.043 (3)0.040 (2)0.008 (2)0.002 (2)0.003 (2)
C20.056 (3)0.058 (3)0.034 (2)0.011 (3)0.006 (2)0.002 (2)
C30.045 (3)0.049 (3)0.041 (2)0.007 (2)0.001 (2)0.005 (2)
C40.052 (3)0.041 (3)0.047 (3)0.006 (2)0.002 (2)0.004 (2)
C50.037 (2)0.033 (2)0.047 (2)0.003 (2)0.004 (2)0.0006 (19)
C60.035 (2)0.044 (3)0.049 (3)0.005 (2)0.004 (2)0.001 (2)
C70.029 (2)0.042 (3)0.051 (3)0.002 (2)0.006 (2)0.003 (2)
C80.033 (2)0.036 (2)0.043 (2)0.0019 (19)0.0078 (19)0.001 (2)
C90.034 (2)0.031 (2)0.044 (2)0.0018 (19)0.0051 (19)0.0007 (19)
C100.035 (2)0.034 (2)0.043 (2)0.0026 (19)0.0037 (18)0.0027 (19)
C110.036 (2)0.048 (3)0.042 (2)0.004 (2)0.005 (2)0.000 (2)
C120.034 (2)0.038 (2)0.047 (2)0.003 (2)0.001 (2)0.004 (2)
C130.039 (3)0.036 (2)0.035 (2)0.000 (2)0.0048 (18)0.0005 (19)
C140.032 (2)0.037 (2)0.043 (2)0.0008 (19)0.0073 (18)0.002 (2)
C150.043 (3)0.061 (3)0.046 (3)0.004 (3)0.012 (2)0.000 (2)
C160.056 (3)0.059 (3)0.041 (3)0.005 (3)0.008 (2)0.004 (2)
C170.043 (3)0.040 (3)0.041 (2)0.000 (2)0.002 (2)0.0018 (19)
C180.059 (4)0.092 (5)0.093 (5)0.002 (4)0.004 (4)0.046 (4)
C190.047 (3)0.060 (3)0.057 (3)0.009 (3)0.000 (3)0.003 (3)
C200.066 (4)0.083 (4)0.057 (3)0.017 (4)0.011 (3)0.006 (3)
C210.053 (3)0.047 (3)0.059 (3)0.004 (3)0.006 (2)0.014 (2)
C220.052 (3)0.038 (3)0.054 (3)0.003 (2)0.008 (2)0.003 (2)
O10.077 (3)0.111 (4)0.057 (2)0.019 (3)0.008 (2)0.031 (2)
O20.064 (3)0.112 (4)0.058 (2)0.044 (3)0.007 (2)0.005 (2)
O30.0452 (19)0.063 (2)0.0339 (15)0.0105 (18)0.0021 (13)0.0028 (16)
O40.054 (2)0.110 (4)0.062 (2)0.008 (3)0.004 (2)0.009 (2)
O50.046 (2)0.060 (2)0.0387 (17)0.0038 (18)0.0006 (15)0.0044 (16)
F10.166 (6)0.213 (7)0.165 (5)0.031 (5)0.097 (5)0.113 (5)
F20.093 (3)0.092 (3)0.200 (5)0.032 (3)0.061 (4)0.049 (4)
F30.076 (3)0.082 (3)0.137 (4)0.000 (2)0.027 (3)0.048 (3)
Geometric parameters (Å, º) top
S1—O11.418 (4)C11—H11A0.9700
S1—O21.422 (4)C11—H11B0.9700
S1—O31.547 (3)C12—C131.528 (6)
S1—C181.834 (7)C12—H12A0.9700
C1—C21.542 (6)C12—H12B0.9700
C1—C101.546 (6)C13—C171.502 (6)
C1—H1A0.9700C13—C141.539 (6)
C1—H1B0.9700C13—C221.549 (7)
C2—C31.517 (7)C14—C151.541 (6)
C2—H2A0.9700C14—H140.9800
C2—H2B0.9700C15—C161.507 (7)
C3—O51.465 (5)C15—H15A0.9700
C3—C41.507 (7)C15—H15B0.9700
C3—H30.9800C16—C171.323 (7)
C4—C51.518 (6)C16—H160.9300
C4—H4A0.9700C17—O31.431 (6)
C4—H4B0.9700C18—F11.278 (8)
C5—C61.321 (6)C18—F31.298 (8)
C5—C101.535 (6)C18—F21.319 (9)
C6—C71.487 (6)C19—O41.206 (6)
C6—H60.9300C19—O51.350 (6)
C7—C81.538 (6)C19—C201.487 (7)
C7—H7A0.9700C20—H20A0.9600
C7—H7B0.9700C20—H20B0.9600
C8—C141.519 (6)C20—H20C0.9600
C8—C91.543 (6)C21—H21A0.9600
C8—H80.9800C21—H21B0.9600
C9—C111.552 (6)C21—H21C0.9600
C9—C101.554 (6)C22—H22A0.9600
C9—H90.9800C22—H22B0.9600
C10—C211.552 (7)C22—H22C0.9600
C11—C121.535 (6)
O1—S1—O2122.4 (3)C12—C11—H11B108.5
O1—S1—O3112.1 (2)C9—C11—H11B108.5
O2—S1—O3105.7 (2)H11A—C11—H11B107.5
O1—S1—C18106.9 (3)C13—C12—C11109.8 (4)
O2—S1—C18106.0 (3)C13—C12—H12A109.7
O3—S1—C18101.7 (3)C11—C12—H12A109.7
C2—C1—C10114.9 (4)C13—C12—H12B109.7
C2—C1—H1A108.5C11—C12—H12B109.7
C10—C1—H1A108.5H12A—C12—H12B108.2
C2—C1—H1B108.5C17—C13—C12119.3 (4)
C10—C1—H1B108.5C17—C13—C1497.8 (4)
H1A—C1—H1B107.5C12—C13—C14106.7 (4)
C3—C2—C1108.5 (4)C17—C13—C22107.3 (4)
C3—C2—H2A110.0C12—C13—C22111.2 (4)
C1—C2—H2A110.0C14—C13—C22114.2 (4)
C3—C2—H2B110.0C8—C14—C13113.3 (4)
C1—C2—H2B110.0C8—C14—C15122.5 (4)
H2A—C2—H2B108.4C13—C14—C15105.2 (4)
O5—C3—C4110.7 (4)C8—C14—H14104.7
O5—C3—C2107.5 (4)C13—C14—H14104.7
C4—C3—C2111.0 (4)C15—C14—H14104.7
O5—C3—H3109.2C16—C15—C14100.5 (4)
C4—C3—H3109.2C16—C15—H15A111.7
C2—C3—H3109.2C14—C15—H15A111.7
C3—C4—C5110.3 (4)C16—C15—H15B111.7
C3—C4—H4A109.6C14—C15—H15B111.7
C5—C4—H4A109.6H15A—C15—H15B109.4
C3—C4—H4B109.6C17—C16—C15109.4 (4)
C5—C4—H4B109.6C17—C16—H16125.3
H4A—C4—H4B108.1C15—C16—H16125.3
C6—C5—C4120.7 (4)C16—C17—O3129.2 (4)
C6—C5—C10123.4 (4)C16—C17—C13114.5 (4)
C4—C5—C10115.8 (4)O3—C17—C13115.9 (4)
C5—C6—C7126.0 (4)F1—C18—F3109.3 (6)
C5—C6—H6117.0F1—C18—F2108.9 (7)
C7—C6—H6117.0F3—C18—F2107.0 (7)
C6—C7—C8111.3 (4)F1—C18—S1108.9 (7)
C6—C7—H7A109.4F3—C18—S1112.4 (5)
C8—C7—H7A109.4F2—C18—S1110.1 (5)
C6—C7—H7B109.4O4—C19—O5122.7 (5)
C8—C7—H7B109.4O4—C19—C20125.5 (5)
H7A—C7—H7B108.0O5—C19—C20111.7 (5)
C14—C8—C7110.3 (4)C19—C20—H20A109.5
C14—C8—C9107.6 (4)C19—C20—H20B109.5
C7—C8—C9110.3 (4)H20A—C20—H20B109.5
C14—C8—H8109.6C19—C20—H20C109.5
C7—C8—H8109.6H20A—C20—H20C109.5
C9—C8—H8109.6H20B—C20—H20C109.5
C8—C9—C11112.4 (4)C10—C21—H21A109.5
C8—C9—C10112.4 (3)C10—C21—H21B109.5
C11—C9—C10113.1 (4)H21A—C21—H21B109.5
C8—C9—H9106.1C10—C21—H21C109.5
C11—C9—H9106.1H21A—C21—H21C109.5
C10—C9—H9106.1H21B—C21—H21C109.5
C5—C10—C1107.9 (4)C13—C22—H22A109.5
C5—C10—C21109.0 (4)C13—C22—H22B109.5
C1—C10—C21110.0 (4)H22A—C22—H22B109.5
C5—C10—C9109.7 (4)C13—C22—H22C109.5
C1—C10—C9108.8 (4)H22A—C22—H22C109.5
C21—C10—C9111.4 (4)H22B—C22—H22C109.5
C12—C11—C9115.2 (4)C17—O3—S1124.1 (3)
C12—C11—H11A108.5C19—O5—C3116.0 (4)
C9—C11—H11A108.5
C10—C1—C2—C356.8 (6)C9—C8—C14—C1361.6 (5)
C1—C2—C3—O5179.3 (4)C7—C8—C14—C1550.3 (6)
C1—C2—C3—C459.5 (6)C9—C8—C14—C15170.6 (4)
O5—C3—C4—C5178.0 (4)C17—C13—C14—C8169.8 (4)
C2—C3—C4—C558.7 (5)C12—C13—C14—C866.4 (5)
C3—C4—C5—C6123.9 (5)C22—C13—C14—C856.8 (5)
C3—C4—C5—C1054.4 (6)C17—C13—C14—C1533.5 (5)
C4—C5—C6—C7178.1 (5)C12—C13—C14—C15157.3 (4)
C10—C5—C6—C73.8 (8)C22—C13—C14—C1579.6 (5)
C5—C6—C7—C813.3 (7)C8—C14—C15—C16164.6 (4)
C6—C7—C8—C14162.7 (4)C13—C14—C15—C1633.4 (5)
C6—C7—C8—C944.0 (5)C14—C15—C16—C1719.7 (6)
C14—C8—C9—C1149.8 (5)C15—C16—C17—O3175.0 (5)
C7—C8—C9—C11170.1 (4)C15—C16—C17—C132.1 (6)
C14—C8—C9—C10178.7 (4)C12—C13—C17—C16136.8 (5)
C7—C8—C9—C1061.0 (5)C14—C13—C17—C1622.7 (5)
C6—C5—C10—C1129.6 (5)C22—C13—C17—C1695.7 (5)
C4—C5—C10—C148.6 (5)C12—C13—C17—O349.2 (6)
C6—C5—C10—C21111.0 (5)C14—C13—C17—O3163.4 (4)
C4—C5—C10—C2170.8 (5)C22—C13—C17—O378.2 (5)
C6—C5—C10—C911.2 (6)O1—S1—C18—F172.5 (6)
C4—C5—C10—C9167.0 (4)O2—S1—C18—F159.5 (6)
C2—C1—C10—C550.1 (5)O3—S1—C18—F1169.8 (5)
C2—C1—C10—C2168.7 (5)O1—S1—C18—F348.9 (6)
C2—C1—C10—C9169.0 (4)O2—S1—C18—F3179.2 (5)
C8—C9—C10—C542.9 (5)O3—S1—C18—F368.9 (6)
C11—C9—C10—C5171.4 (4)O1—S1—C18—F2168.1 (5)
C8—C9—C10—C1160.7 (4)O2—S1—C18—F259.9 (6)
C11—C9—C10—C170.7 (5)O3—S1—C18—F250.4 (6)
C8—C9—C10—C2177.8 (5)C16—C17—O3—S112.4 (7)
C11—C9—C10—C2150.7 (5)C13—C17—O3—S1160.5 (3)
C8—C9—C11—C1248.0 (6)O1—S1—O3—C1738.7 (5)
C10—C9—C11—C12176.5 (4)O2—S1—O3—C17174.3 (4)
C9—C11—C12—C1351.9 (6)C18—S1—O3—C1775.2 (4)
C11—C12—C13—C17167.1 (4)O4—C19—O5—C31.4 (8)
C11—C12—C13—C1457.8 (5)C20—C19—O5—C3178.3 (4)
C11—C12—C13—C2267.2 (5)C4—C3—O5—C1979.5 (5)
C7—C8—C14—C13178.1 (4)C2—C3—O5—C19159.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.972.563.485 (6)160
C21—H21B···O2ii0.972.653.377 (7)133
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.972.563.485 (6)160
C21—H21B···O2ii0.972.653.377 (7)133
Symmetry codes: (i) x1, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The work was supported financially by the Hangzhou Jiuyuan Gene Engineering Co. Ltd, Hangzhou, Zhejiang, China.

References

First citationAttard, G., Reid, A. H. M., A'Hern, R., Parker, C., Oommen, N. B., Folkerd, E., Messiou, C., Molife, L. R., Maier, G., Thompson, E., Olmos, D., Sinha, R., Lee, G., Dowsett, M., Kaye, S. B., Dearnaley, D., Kheoh, T., Molina, A. & de Bono, J. S. (2009). J. Clin. Oncol. 27, 3742–3748.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPotter, G. A., Barrie, S. E., Jarman, M. & Rowlands, M. G. (1995). J. Med. Chem. 38, 2463–2471.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o404-o405
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds