research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 706-708

Crystal structure of bis­­{S-hexyl 3-[4-(di­methyl­amino)­benzyl­­idene]di­thio­carbazato-κ2N3,S}copper(II)

aDepartment of Chemical and Pharmaceutical Sciences, via Giorgieri 1, 34127 Trieste, Italy, bDepartment of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh, cCenter for Environmental Conservation and Research Safety, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan, and dDepartment of Applied Chemistry, Faculty of Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
*Correspondence e-mail: motaharche@yahoo.com

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 30 April 2015; accepted 15 May 2015; online 28 May 2015)

In the title complex, [Cu(C16H24N3S2)2], the CuII atom is coordinated by two azomethine N and two thiol­ate S atoms of the chelating Schiff base ligands, resulting in a distorted square-planar coordination environment. The S—Cu—N chelating angle is of 84.41 (5)°. The CuII atom is located on a crystallographic inversion centre, leading to a trans configuration of the N,S-chelating ligands.

1. Chemical context

Bidentate Schiff bases of S-methyl or S-benzyl di­thio­carbaza­tes and their metal complexes have received considerable attention for their possible bioactivities (Chan et al., 2008[Chan, M. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141-1149.]; How et al., 2008[How, F. N. F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325-3329.]; Ali et al., 2002[Ali, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali Manaf, A. (2002). J. Inorg. Biochem. 92, 141-148.]; Chew et al., 2004[Chew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385-1392.]; Crouse et al., 2004[Crouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161-168.]). As part of our ongoing structural studies on these S-containing Schiff bases (Howlader et al., 2015[Howlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26-m27.]; Begum et al., 2015[Begum, M. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m63-m64.]), we report herein the structure of a copper(II) complex with the (di­methyl­amino­benzyl­idene)di­thio­carbazate ligand.

[Scheme 1]

2. Structural commentary

In the crystal, the bis-chelated CuII complex resides on a crystallographic inversion centre and the two chelating Schiff bases, in their deprotonated imino thiol­ate form, coordinate the metal centre via the azomethine nitro­gen N1 and thiol­ate sulfur S1 atoms in a trans-planar configuration (Fig. 1[link]). The Cu1—S and Cu1—N coordination bond lengths are of 2.2557 (6) and 2.0060 (14) Å, respectively, with an S1—Cu—N1 chelating angle of 84.41 (5)°. It is worth of note that copper(II) complexes with similar di­thio­carbazate ligands assume a distorted tetra­hedral configuration as well (Tarafder, et al., 2008[Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantra­promma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416-m417.]; Manan, et al., 2011[Manan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., Rosli, R., How, F. N.-F. & Watkin, D. J. (2011). J. Chem. Crystallogr. 41, 1866-1871.]). In these derivatives the coordination distances are close comparable to those here reported. On the other hand the present Cu—S and Cu—N bond lengths are slightly longer with respect to those measured in the centrosymmetric complex with ligand bearing a benzyl group at the S atom [Cu—S = 2.165 (1), Cu—N = 1.929 (4) Å; Tian, et al., 1998[Tian, Y.-P., Duan, C.-Y., You, X.-Z., Mak, T. C. W., Luo, Q. & Zhou, J.-Y. (1998). Transition Met. Chem. 23, 17-20.]).

[Figure 1]
Figure 1
Drawing (ellipsoid probability at 50%) of the CuL2 complex with atom labels of the crystallographic independent unit (primed atoms at −x + 2, −y, −z + 1).

3. Supra­molecular features

The crystal packing shows almost planar complexes piled along axis b with a stacking distance of 5.23947 (10) Å. (Fig. 2[link])

[Figure 2]
Figure 2
Crystal packing of the CuL2 complex viewed down the b axis.

4. Synthesis and crystallization

A solution of Cu(CH3COO)2·H2O (0.10 g, 0.5 mmol, 15 mL methanol) was added to a solution of the N,N′-di­methyl­amino­benzaldehyde Schiff base of S-hexyl­dithio­carbazate (0.32 g, 1.0 mmol, 10 mL methanol). The resulting mixture was stirred at room temperature for seven hours. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals of the compound, suitable for X-ray diffraction, were obtained by slow evaporation from a mixture of di­chloro­methane and aceto­nitrile (2:1), m.p. 437 K.

5. Database survey

The structure of the corresponding copper(II) complex with N,N′-di­methyl­amino­phenyl but having a benzyl group replac­ing the hexyl alkyl chain at S has been reported (Tian, et al., 1998[Tian, Y.-P., Duan, C.-Y., You, X.-Z., Mak, T. C. W., Luo, Q. & Zhou, J.-Y. (1998). Transition Met. Chem. 23, 17-20.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were fixed geom­etrically (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) = 1.2 Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [Cu(C16H24N3S2)2]
Mr 708.56
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 15.0457 (4), 5.23947 (10), 22.1944 (5)
β (°) 95.7007 (7)
V3) 1740.96 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.90
Crystal size (mm) 0.24 × 0.17 × 0.05
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.787, 0.956
No. of measured, independent and observed [I > 2σ(I)] reflections 16718, 3979, 3506
Rint 0.023
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.10
No. of reflections 3979
No. of parameters 199
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.85, −0.49
Computer programs: RAPID-AUTO (Rigaku, 2001[Rigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and CrystalStructure (Rigaku, 2010[Rigaku (2010). Crystal Structure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Chemical context top

Bidentate Schiff bases of S-methyl or S-benzyl di­thio­carbaza­tes and their metal complexes have received considerable attention for their possible bioactivities (Chan et al., 2008; How et al., 2008; Ali et al., 2002; Chew et al., 2004; Crouse et al., 2004). As part of our ongoing structural studies on these S-containing Schiff bases (Howlader et al., 2015; Begum et al., 2015), we report herein the structure of the copper complex with the (di­methyl­amino­benzyl­idene)di­thio­carbazate ligand.

Structural commentary top

In the crystal, the bis­chelated CuII complex resides on a crystallographic inversion centre and the two chelating Schiff bases, in their deprotonated imino thiol­ate form, coordinate the metal centre via the azomethine nitro­gen N1 and thiol­ate sulphur S1 atoms in a trans-planar configuration (Fig. 1). The Cu1—S and Cu1—N coordination bond distances are of 2.2557 (6) and 2.0060 (14) Å, respectively, with a S1—Cu—N1 chelating angle of 84.41 (5)°. It is worth of note that copper(II) complexes with similar di­thio­carbazate ligands assume a distorted tetra­hedral configuration as well (Tarafder, et al., 2008; Manan, et al., 2011). In these derivatives the coordination distances are close comparable to those here reported. On the other hand the present Cu—S and Cu—N bond lengths are slightly longer with respect to those measured in the centrosymmetric complex with ligand bearing a benzyl group at S atom [Cu—S = 2.165 (1), Cu—N = 1.929 (4) Å; Tian, et al., 1998).

Supra­molecular features top

The crystal packing shows almost planar complexes piled along axis b with a stacking distance of 5.23947 (10) Å. (Fig. 2)

Synthesis and crystallization top

A solution of Cu(CH3COO)2.H2O (0.10 g, 0.5 mmol, 15 mL methanol) was added to a solution of the N,N'-di­methyl­amino­benzaldehyde Schiff base of S-hexyl­dithio­carbazate (0.32 g, 1.0 mmol, 10 mL methanol ). The resulting mixture was stirred at room temperature for seven hours. A dark reddish brown precipitate was formed, filtered off, washed with methanol and dried in vacuo over anhydrous CaCl2. Dark reddish brown single crystals of the compound, suitable for X-ray diffraction, were obtained by slow evaporation from a mixture of di­chloro­methane and aceto­nitrile (2:1). M.P. 437 K.

Database survey top

The structure of the corresponding copper(II) complex with di­methyl­amino­phenyl but having a benzyl group replacing the hexyl alkyl chain at S has been reported (Tian, et al., 1998).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were fixed geometrically (C—H = 0.95–0.99 Å) and refined as riding, with Uiso(H) =1.2 Ueq(C).

Related literature top

For the structure of the uncoordinated Schiff base and of the Ni derivative, see the two references of Howlader et al. (2015).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2001); cell refinement: RAPID-AUTO (Rigaku, 2001); data reduction: RAPID-AUTO (Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. Drawing (ellipsoid probability at 50%) of the CuL2 complex with atom labels of the crystallographic independent unit (primed atoms at -x + 2, -y, -z + 1).
[Figure 2] Fig. 2. Crystal packing of the CuL2 complex viewed down the b axis.
Bis{S-hexyl 3-[4-(dimethylamino)benzylidene]dithiocarbazato-κ2N3,S}copper(II) top
Crystal data top
[Cu(C16H24N3S2)2]F(000) = 750.00
Mr = 708.56Dx = 1.352 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 14172 reflections
a = 15.0457 (4) Åθ = 3.1–27.4°
b = 5.23947 (10) ŵ = 0.90 mm1
c = 22.1944 (5) ÅT = 173 K
β = 95.7007 (7)°Platelet, red
V = 1740.96 (7) Å30.24 × 0.17 × 0.05 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3506 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1Rint = 0.023
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1919
Tmin = 0.787, Tmax = 0.956k = 66
16718 measured reflectionsl = 2828
3979 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.429P]
where P = (Fo2 + 2Fc2)/3
3979 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.49 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cu(C16H24N3S2)2]V = 1740.96 (7) Å3
Mr = 708.56Z = 2
Monoclinic, P21/nMo Kα radiation
a = 15.0457 (4) ŵ = 0.90 mm1
b = 5.23947 (10) ÅT = 173 K
c = 22.1944 (5) Å0.24 × 0.17 × 0.05 mm
β = 95.7007 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3979 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
3506 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.956Rint = 0.023
16718 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.10Δρmax = 0.85 e Å3
3979 reflectionsΔρmin = 0.49 e Å3
199 parameters
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.00000.50000.04758 (12)
S11.12679 (3)0.22896 (13)0.49888 (2)0.06611 (19)
S21.17728 (3)0.56787 (10)0.40439 (2)0.05451 (15)
N10.98526 (9)0.0699 (3)0.41070 (6)0.0427 (4)
N21.03819 (9)0.2568 (3)0.38625 (6)0.0421 (3)
N30.83204 (12)0.0665 (4)0.11956 (7)0.0572 (5)
C10.91075 (10)0.0399 (3)0.30708 (7)0.0362 (4)
C20.84924 (10)0.2217 (4)0.28137 (7)0.0392 (4)
C30.82330 (11)0.2318 (3)0.22036 (7)0.0403 (4)
C40.85831 (11)0.0592 (4)0.18022 (7)0.0388 (4)
C50.92043 (11)0.1218 (4)0.20563 (8)0.0429 (4)
C60.94524 (10)0.1320 (4)0.26705 (8)0.0405 (4)
C70.76158 (14)0.2364 (4)0.09510 (8)0.0551 (5)
C80.87505 (14)0.0873 (5)0.07706 (8)0.0565 (5)
C90.93057 (10)0.0546 (4)0.37229 (7)0.0407 (4)
C101.10238 (11)0.3347 (4)0.42509 (8)0.0452 (4)
C111.12802 (12)0.6732 (4)0.33101 (9)0.0496 (4)
C121.15878 (11)0.5323 (3)0.27685 (9)0.0439 (4)
C131.11147 (11)0.6348 (4)0.21775 (9)0.0459 (4)
C141.13850 (13)0.5022 (4)0.16172 (9)0.0487 (5)
C151.08905 (13)0.5981 (5)0.10294 (10)0.0565 (5)
C161.11550 (17)0.4573 (6)0.04766 (10)0.0715 (7)
H10.82480.34180.30720.0470*
H20.78120.35670.20500.0484*
H30.94590.23990.17970.0515*
H40.98660.25840.28260.0486*
H50.77930.41360.10390.0662*
H60.75110.21240.05120.0662*
H70.70670.19820.11370.0662*
H80.84690.05560.03600.0678*
H90.93850.04270.07920.0678*
H100.86890.26820.08710.0678*
H110.89680.18070.39060.0488*
H121.06230.65560.32980.0595*
H131.14140.85690.32670.0595*
H141.14590.34790.28040.0527*
H151.22410.55310.27650.0527*
H161.04620.61580.21890.0551*
H171.12450.81930.21480.0551*
H181.12750.31680.16540.0584*
H191.20340.52640.15980.0584*
H201.02400.57800.10500.0678*
H211.10150.78230.09850.0678*
H221.17900.48590.04380.0858*
H231.08000.52100.01140.0858*
H241.10460.27420.05220.0858*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02944 (16)0.0819 (3)0.03109 (16)0.01276 (13)0.00126 (11)0.01776 (13)
S10.0422 (3)0.1173 (5)0.0373 (3)0.0323 (3)0.00378 (18)0.0104 (3)
S20.0418 (3)0.0645 (3)0.0554 (3)0.0158 (2)0.0040 (2)0.0138 (3)
N10.0291 (7)0.0632 (9)0.0353 (7)0.0061 (6)0.0014 (6)0.0142 (7)
N20.0318 (7)0.0544 (8)0.0393 (7)0.0057 (6)0.0004 (6)0.0139 (6)
N30.0543 (10)0.0814 (12)0.0336 (8)0.0194 (9)0.0065 (7)0.0048 (8)
C10.0267 (7)0.0471 (9)0.0337 (8)0.0006 (6)0.0019 (6)0.0090 (6)
C20.0361 (8)0.0464 (9)0.0341 (8)0.0067 (7)0.0012 (6)0.0027 (7)
C30.0387 (8)0.0443 (9)0.0363 (8)0.0055 (7)0.0049 (7)0.0045 (7)
C40.0333 (8)0.0477 (9)0.0341 (8)0.0025 (7)0.0024 (6)0.0016 (7)
C50.0360 (8)0.0486 (9)0.0430 (9)0.0039 (7)0.0016 (7)0.0045 (7)
C60.0317 (8)0.0439 (9)0.0445 (9)0.0043 (6)0.0040 (7)0.0050 (7)
C70.0637 (12)0.0624 (12)0.0358 (9)0.0053 (9)0.0127 (8)0.0041 (8)
C80.0594 (12)0.0718 (13)0.0379 (9)0.0012 (10)0.0025 (8)0.0085 (9)
C90.0279 (7)0.0589 (10)0.0350 (8)0.0053 (7)0.0016 (6)0.0101 (7)
C100.0325 (8)0.0612 (10)0.0418 (9)0.0057 (7)0.0025 (7)0.0180 (8)
C110.0399 (9)0.0428 (9)0.0647 (12)0.0006 (7)0.0017 (8)0.0078 (8)
C120.0339 (8)0.0409 (8)0.0559 (11)0.0017 (6)0.0010 (7)0.0008 (7)
C130.0355 (8)0.0374 (8)0.0636 (11)0.0020 (7)0.0015 (8)0.0082 (8)
C140.0400 (9)0.0490 (10)0.0561 (11)0.0058 (7)0.0000 (8)0.0137 (8)
C150.0447 (10)0.0612 (11)0.0625 (12)0.0047 (9)0.0002 (9)0.0239 (10)
C160.0617 (14)0.1008 (18)0.0516 (12)0.0101 (12)0.0035 (10)0.0275 (12)
Geometric parameters (Å, º) top
Cu1—S12.2557 (6)C2—H10.950
Cu1—S1i2.2557 (6)C3—H20.950
Cu1—N12.0060 (14)C5—H30.950
Cu1—N1i2.0060 (14)C6—H40.950
S1—C101.7333 (19)C7—H50.980
S2—C101.7540 (19)C7—H60.980
S2—C111.807 (2)C7—H70.980
N1—N21.405 (2)C8—H80.980
N1—C91.300 (2)C8—H90.980
N2—C101.295 (2)C8—H100.980
N3—C41.365 (3)C9—H110.950
N3—C71.448 (3)C11—H120.990
N3—C81.442 (3)C11—H130.990
C1—C21.409 (3)C12—H140.990
C1—C61.401 (3)C12—H150.990
C1—C91.450 (3)C13—H160.990
C2—C31.372 (3)C13—H170.990
C3—C41.408 (3)C14—H180.990
C4—C51.409 (3)C14—H190.990
C5—C61.378 (3)C15—H200.990
C11—C121.521 (3)C15—H210.990
C12—C131.526 (3)C16—H220.980
C13—C141.515 (3)C16—H230.980
C14—C151.522 (3)C16—H240.980
C15—C161.518 (4)
S1—Cu1—S1i180.00 (3)N3—C7—H7109.471
S1—Cu1—N184.41 (5)H5—C7—H6109.470
S1—Cu1—N1i95.59 (5)H5—C7—H7109.466
S1i—Cu1—N195.59 (5)H6—C7—H7109.470
S1i—Cu1—N1i84.41 (5)N3—C8—H8109.474
N1—Cu1—N1i180.00 (9)N3—C8—H9109.468
Cu1—S1—C1094.61 (6)N3—C8—H10109.474
C10—S2—C11103.41 (9)H8—C8—H9109.477
Cu1—N1—N2119.84 (10)H8—C8—H10109.470
Cu1—N1—C9123.85 (13)H9—C8—H10109.464
N2—N1—C9116.27 (14)N1—C9—H11113.512
N1—N2—C10112.12 (14)C1—C9—H11113.515
C4—N3—C7121.09 (17)S2—C11—H12108.342
C4—N3—C8121.64 (17)S2—C11—H13108.340
C7—N3—C8117.24 (15)C12—C11—H12108.348
C2—C1—C6116.61 (14)C12—C11—H13108.348
C2—C1—C9115.46 (15)H12—C11—H13107.429
C6—C1—C9127.93 (15)C11—C12—H14109.470
C1—C2—C3122.46 (16)C11—C12—H15109.469
C2—C3—C4120.79 (15)C13—C12—H14109.463
N3—C4—C3121.06 (16)C13—C12—H15109.473
N3—C4—C5121.94 (17)H14—C12—H15108.061
C3—C4—C5117.00 (15)C12—C13—H16108.791
C4—C5—C6121.71 (16)C12—C13—H17108.792
C1—C6—C5121.43 (15)C14—C13—H16108.801
N1—C9—C1132.97 (16)C14—C13—H17108.796
S1—C10—S2112.88 (10)H16—C13—H17107.674
S1—C10—N2127.03 (15)C13—C14—H18108.802
S2—C10—N2120.09 (14)C13—C14—H19108.799
S2—C11—C12115.75 (13)C15—C14—H18108.789
C11—C12—C13110.86 (14)C15—C14—H19108.785
C12—C13—C14113.82 (15)H18—C14—H19107.662
C13—C14—C15113.83 (16)C14—C15—H20109.040
C14—C15—C16112.79 (18)C14—C15—H21109.036
C1—C2—H1118.769C16—C15—H20109.026
C3—C2—H1118.774C16—C15—H21109.020
C2—C3—H2119.601H20—C15—H21107.805
C4—C3—H2119.605C15—C16—H22109.477
C4—C5—H3119.145C15—C16—H23109.474
C6—C5—H3119.143C15—C16—H24109.466
C1—C6—H4119.289H22—C16—H23109.466
C5—C6—H4119.283H22—C16—H24109.475
N3—C7—H5109.479H23—C16—H24109.470
N3—C7—H6109.472
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C16H24N3S2)2]
Mr708.56
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)15.0457 (4), 5.23947 (10), 22.1944 (5)
β (°) 95.7007 (7)
V3)1740.96 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.24 × 0.17 × 0.05
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.787, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
16718, 3979, 3506
Rint0.023
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.10
No. of reflections3979
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 0.49

Computer programs: RAPID-AUTO (Rigaku, 2001), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

MSB and MMH are grateful to the Department of Chemistry, Rajshahi University, for the provision of laboratory facilities. MCS acknowledges the Department of Applied Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

References

First citationAli, M. A., Mirza, A. H., Butcher, R. J., Tarafder, M. T. H., Keat, T. B. & Ali Manaf, A. (2002). J. Inorg. Biochem. 92, 141–148.  PubMed Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBegum, M. S., Howlader, M. B. H., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m63–m64.  CSD CrossRef IUCr Journals Google Scholar
First citationChan, M. E., Crouse, K. A., Tahir, M. I. M., Rosli, R., Umar-Tsafe, N. & Cowley, A. R. (2008). Polyhedron, 27, 1141–1149.  CSD CrossRef CAS Google Scholar
First citationChew, K. B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385–1392.  Web of Science CSD CrossRef CAS Google Scholar
First citationCrouse, K. A., Chew, K. B., Tarafder, M. T. H., Kasbollah, A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 161–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationHow, F. N. F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). Polyhedron, 27, 3325–3329.  Web of Science CSD CrossRef CAS Google Scholar
First citationHowlader, M. B. H., Begum, M. S., Sheikh, M. C., Miyatake, R. & Zangrando, E. (2015). Acta Cryst. E71, m26–m27.  CSD CrossRef IUCr Journals Google Scholar
First citationManan, M. A. F. A., Tahir, M. I. M., Crouse, K. A., Rosli, R., How, F. N.-F. & Watkin, D. J. (2011). J. Chem. Crystallogr. 41, 1866–1871.  CSD CrossRef Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2001). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). Crystal Structure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A., Chantra­promma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y.-P., Duan, C.-Y., You, X.-Z., Mak, T. C. W., Luo, Q. & Zhou, J.-Y. (1998). Transition Met. Chem. 23, 17–20.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 706-708
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds