organic compounds
of 4-amino-2,6-dichlorophenol
aDepartment of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA, and bDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu
The title compound, C6H5Cl2NO, has a single planar molecule in the with the non-H atoms possessing a mean deviation from planarity of 0.020 Å. In the crystal, O—H⋯N hydrogen bonds lead to the formation of infinite chains along [101] which are further linked by N—H⋯O hydrogen bonds, forming (010) sheets.
Keywords: crystal structure; aminophenols; hydrogen bonding.
CCDC reference: 1400729
1. Related literature
For the p-aminophenol, see: Brown (1951). For other related structures, see: Ermer & Eling (1994); Dey et al. (2005); Bacchi et al. (2009).
of the parent2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: APEX2 (Bruker, 2014); cell SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and OLEX2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1400729
10.1107/S2056989015009172/ff2137sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015009172/ff2137Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015009172/ff2137Isup3.cml
The hydrogen bonding networks of aminophenols have been explored as hydroxy and amino groups are complementary hydrogen bonding donors and acceptors. This is exemplified in p-aminophenol, which exhibits a supertetrahedral hydrogen bonded architecture where all hydrogen bonding donors and acceptors are saturated (Brown, 1951; Ermer et al., 1994). The mono-substitution in 4-amino-2-methylphenol and 4-amino-3-methylphenol yields a square motif structure that again exhibits saturation among hydrogen bonding donors and acceptors (Dey et al., 2005). The more sterically encumbered substitution of 4-amino-2,6-diphenylphenol prevents the saturation in hydrogen bonding, with only O–H···N and N–H···aryl interactions observed (Bacchi et al., 2009). The 2,6-dichloro substitution of the title compound also prevents saturation in its hydrogen bonding network.
The molecular structure of the title compound demonstrates a planar molecule with a mean deviation from the plane of the non-hydrogen atoms of 0.020 Å. Intermolecular hydrogen bonding between O1–H1···N1 results in infinite chains along [101] which combine with intermolecular hydrogen bonding between N1–H1a···O1 to give (010) sheets. The packing for the title compound indicating hydrogen bonding is shown in Figure 2.
A commercial sample (Aldrich) was used for the crystallization. Crystals suitable for single crystal X-ray analysis were grown by slow evaporation of a methanol solution.
All non-hydrogen atoms were refined anisotropically (Olex2) by full matrix least squares on F2. Hydrogen atoms H1, H1a and H1b were found from a Fourier difference map. H1 was allowed to refine freely with an isotropic displacement parameter of 1.20 times Ueq of the parent O atom. H1a and H1b were refined with a fixed distance of 0.87 (0.005) Å and isotropic displacement parameters of 1.20 times Ueq of the parent N atom. The two remaining hydrogen atoms were placed in calculated positions and then refined with riding model with C–H lengths of 0.95 Å with isotropic displacement parameters set to 1.20 times Ueq of the parent C atom.
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).C6H5Cl2NO | F(000) = 363.7579 |
Mr = 178.02 | Dx = 1.662 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2yn | Cell parameters from 5198 reflections |
a = 4.6064 (5) Å | θ = 5.1–72.2° |
b = 11.7569 (12) Å | µ = 7.59 mm−1 |
c = 13.2291 (13) Å | T = 120 K |
β = 96.760 (5)° | Plate, colourless |
V = 711.47 (13) Å3 | 0.4 × 0.2 × 0.1 mm |
Z = 4 |
Bruker D8 Venture CMOS diffractometer | 1402 independent reflections |
Radiation source: microfocus Cu | 1273 reflections with I ≥ 2σ(I) |
HELIOS MX monochromator | Rint = 0.043 |
Detector resolution: 102.4 pixels mm-1 | θmax = 72.2°, θmin = 5.1° |
ϕ and ω scans | h = −5→5 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −14→14 |
Tmin = 0.425, Tmax = 0.754 | l = −12→16 |
7481 measured reflections |
Refinement on F2 | 2 restraints |
Least-squares matrix: full | 7 constraints |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.091 | w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1912P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1402 reflections | Δρmax = 0.33 e Å−3 |
99 parameters | Δρmin = −0.35 e Å−3 |
C6H5Cl2NO | V = 711.47 (13) Å3 |
Mr = 178.02 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 4.6064 (5) Å | µ = 7.59 mm−1 |
b = 11.7569 (12) Å | T = 120 K |
c = 13.2291 (13) Å | 0.4 × 0.2 × 0.1 mm |
β = 96.760 (5)° |
Bruker D8 Venture CMOS diffractometer | 1402 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | 1273 reflections with I ≥ 2σ(I) |
Tmin = 0.425, Tmax = 0.754 | Rint = 0.043 |
7481 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 2 restraints |
wR(F2) = 0.091 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.33 e Å−3 |
1402 reflections | Δρmin = −0.35 e Å−3 |
99 parameters |
Experimental. Absorption correction: SADABS-2014/4 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.1370 before and 0.0641 after correction. The Ratio of minimum to maximum transmission is 0.5642. The λ/2 correction factor is 0.00150. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.10618 (10) | 0.09750 (4) | 0.70434 (3) | 0.02213 (17) | |
Cl2 | 0.79187 (11) | 0.44532 (4) | 0.61176 (4) | 0.02666 (18) | |
O1 | 0.4519 (3) | 0.30303 (12) | 0.74687 (10) | 0.0214 (3) | |
N1 | 0.4522 (4) | 0.13356 (14) | 0.35171 (12) | 0.0199 (4) | |
C1 | 0.4563 (4) | 0.26523 (16) | 0.65055 (14) | 0.0176 (4) | |
C4 | 0.4607 (4) | 0.17796 (16) | 0.45234 (13) | 0.0176 (4) | |
C5 | 0.6112 (4) | 0.27756 (16) | 0.48060 (14) | 0.0196 (4) | |
H5 | 0.7170 (4) | 0.31620 (16) | 0.43359 (14) | 0.0235 (5)* | |
C2 | 0.3011 (4) | 0.16753 (16) | 0.61822 (14) | 0.0171 (4) | |
C3 | 0.3014 (4) | 0.12337 (16) | 0.52110 (14) | 0.0182 (4) | |
H3 | 0.1938 (4) | 0.05638 (16) | 0.50165 (14) | 0.0219 (5)* | |
C6 | 0.6052 (4) | 0.31990 (16) | 0.57788 (14) | 0.0179 (4) | |
H1 | 0.615 (5) | 0.329 (2) | 0.7732 (18) | 0.0215 (5)* | |
H1a | 0.601 (3) | 0.1551 (19) | 0.3217 (15) | 0.0215 (5)* | |
H1b | 0.451 (5) | 0.0598 (4) | 0.3523 (17) | 0.0215 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0232 (3) | 0.0246 (3) | 0.0204 (3) | −0.00409 (16) | 0.00988 (19) | 0.00083 (17) |
Cl2 | 0.0334 (3) | 0.0245 (3) | 0.0225 (3) | −0.01014 (19) | 0.0052 (2) | −0.00026 (18) |
O1 | 0.0193 (6) | 0.0298 (7) | 0.0156 (7) | −0.0039 (6) | 0.0046 (5) | −0.0042 (6) |
N1 | 0.0206 (8) | 0.0247 (9) | 0.0151 (8) | 0.0013 (6) | 0.0057 (6) | −0.0009 (6) |
C1 | 0.0146 (8) | 0.0225 (9) | 0.0159 (9) | 0.0027 (7) | 0.0023 (7) | 0.0008 (7) |
C4 | 0.0138 (8) | 0.0248 (9) | 0.0142 (9) | 0.0050 (7) | 0.0009 (7) | 0.0005 (7) |
C5 | 0.0177 (9) | 0.0244 (10) | 0.0173 (9) | 0.0005 (7) | 0.0048 (7) | 0.0054 (7) |
C2 | 0.0144 (8) | 0.0215 (9) | 0.0163 (9) | 0.0011 (7) | 0.0051 (7) | 0.0035 (7) |
C3 | 0.0148 (8) | 0.0217 (9) | 0.0185 (10) | 0.0005 (7) | 0.0029 (7) | −0.0007 (7) |
C6 | 0.0158 (8) | 0.0188 (9) | 0.0194 (9) | −0.0007 (7) | 0.0026 (7) | 0.0016 (7) |
Cl1—C2 | 1.7387 (18) | C1—C6 | 1.401 (3) |
Cl2—C6 | 1.7389 (19) | C4—C5 | 1.389 (3) |
O1—C1 | 1.352 (2) | C4—C3 | 1.391 (3) |
O1—H1 | 0.85 (2) | C5—H5 | 0.9500 |
N1—C4 | 1.426 (2) | C5—C6 | 1.383 (3) |
N1—H1a | 0.870 (5) | C2—C3 | 1.386 (3) |
N1—H1b | 0.867 (5) | C3—H3 | 0.9500 |
C1—C2 | 1.393 (3) | ||
H1—O1—C1 | 113.3 (16) | C6—C5—C4 | 119.33 (17) |
H1a—N1—C4 | 112.6 (15) | C6—C5—H5 | 120.34 (11) |
H1b—N1—C4 | 110.9 (15) | C1—C2—Cl1 | 118.37 (14) |
H1b—N1—H1a | 108 (2) | C3—C2—Cl1 | 119.15 (14) |
C2—C1—O1 | 119.75 (16) | C3—C2—C1 | 122.47 (16) |
C6—C1—O1 | 123.97 (17) | C2—C3—C4 | 119.44 (18) |
C6—C1—C2 | 116.26 (17) | H3—C3—C4 | 120.28 (11) |
C5—C4—N1 | 121.18 (17) | H3—C3—C2 | 120.28 (11) |
C3—C4—N1 | 118.87 (18) | C1—C6—Cl2 | 118.64 (14) |
C3—C4—C5 | 119.85 (17) | C5—C6—Cl2 | 118.79 (14) |
H5—C5—C4 | 120.34 (10) | C5—C6—C1 | 122.57 (17) |
Cl1—C2—C3—C4 | −178.98 (14) | C4—C5—C6—Cl2 | −179.43 (14) |
O1—C1—C2—Cl1 | −0.1 (2) | C4—C5—C6—C1 | 1.0 (3) |
O1—C1—C2—C3 | −178.74 (17) | C5—C4—C3—C2 | −1.7 (3) |
O1—C1—C6—Cl2 | −1.1 (3) | C2—C1—C6—Cl2 | 177.57 (13) |
O1—C1—C6—C5 | 178.43 (17) | C2—C1—C6—C5 | −2.9 (3) |
N1—C4—C5—C6 | 177.70 (17) | C3—C4—C5—C6 | 1.3 (3) |
N1—C4—C3—C2 | −178.14 (17) | C6—C1—C2—Cl1 | −178.80 (13) |
C1—C2—C3—C4 | −0.3 (3) | C6—C1—C2—C3 | 2.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.85 (2) | 1.82 (2) | 2.653 (2) | 168 (2) |
N1—H1a···O1ii | 0.87 (1) | 2.05 (1) | 2.921 (2) | 177 (2) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1i | 0.85 (2) | 1.82 (2) | 2.653 (2) | 168 (2) |
N1—H1a···O1ii | 0.870 (5) | 2.052 (6) | 2.921 (2) | 177 (2) |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, z−1/2. |
Acknowledgements
We greatly acknowledge support from the National Science Foundation (CHE-1429086).
References
Bacchi, A., Carcelli, M., Chiodo, T., Cantoni, G., De Filippo, C. & Pipolo, S. (2009). CrystEngComm, 11, 1433–1441. Web of Science CSD CrossRef CAS Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brown, C. J. (1951). Acta Cryst. 4, 100–103. CSD CrossRef IUCr Journals Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dey, A., Kirchner, M. T., Vangala, V. R., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2005). J. Am. Chem. Soc. 127, 10545–10559. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ermer, O. & Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 925–944. CSD CrossRef Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.