organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-amino-2,6-di­chloro­phenol

aDepartment of Science & Math, Massasoit Community College, 1 Massasoit Boulevard, Brockton, MA 02302, USA, and bDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by K. Fejfarova, Institute of Macromolecular Chemistry, AS CR, v.v.i, Czech Republic (Received 5 May 2015; accepted 13 May 2015; online 20 May 2015)

The title compound, C6H5Cl2NO, has a single planar mol­ecule in the asymmetric unit with the non-H atoms possessing a mean deviation from planarity of 0.020 Å. In the crystal, O—H⋯N hydrogen bonds lead to the formation of infinite chains along [101] which are further linked by N—H⋯O hydrogen bonds, forming (010) sheets.

1. Related literature

For the crystal structure of the parent p-amino­phenol, see: Brown (1951[Brown, C. J. (1951). Acta Cryst. 4, 100-103.]). For other related structures, see: Ermer & Eling (1994[Ermer, O. & Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 925-944.]); Dey et al. (2005[Dey, A., Kirchner, M. T., Vangala, V. R., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2005). J. Am. Chem. Soc. 127, 10545-10559.]); Bacchi et al. (2009[Bacchi, A., Carcelli, M., Chiodo, T., Cantoni, G., De Filippo, C. & Pipolo, S. (2009). CrystEngComm, 11, 1433-1441.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H5Cl2NO

  • Mr = 178.02

  • Monoclinic, P 21 /n

  • a = 4.6064 (5) Å

  • b = 11.7569 (12) Å

  • c = 13.2291 (13) Å

  • β = 96.760 (5)°

  • V = 711.47 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 7.59 mm−1

  • T = 120 K

  • 0.4 × 0.2 × 0.1 mm

2.2. Data collection

  • Bruker D8 Venture CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.425, Tmax = 0.754

  • 7481 measured reflections

  • 1402 independent reflections

  • 1273 reflections with I ≥ 2σ(I)

  • Rint = 0.043

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.05

  • 1402 reflections

  • 99 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.85 (2) 1.82 (2) 2.653 (2) 168 (2)
N1—H1a⋯O1ii 0.87 (1) 2.05 (1) 2.921 (2) 177 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2.refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The hydrogen bonding networks of amino­phenols have been explored as hy­droxy and amino groups are complementary hydrogen bonding donors and acceptors. This is exemplified in p-amino­phenol, which exhibits a supertetra­hedral hydrogen bonded architecture where all hydrogen bonding donors and acceptors are saturated (Brown, 1951; Ermer et al., 1994). The mono-substitution in 4-amino-2-methyl­phenol and 4-amino-3-methyl­phenol yields a square motif structure that again exhibits saturation among hydrogen bonding donors and acceptors (Dey et al., 2005). The more sterically encumbered substitution of 4-amino-2,6-di­phenyl­phenol prevents the saturation in hydrogen bonding, with only O–H···N and N–H···aryl inter­actions observed (Bacchi et al., 2009). The 2,6-di­chloro substitution of the title compound also prevents saturation in its hydrogen bonding network.

The molecular structure of the title compound demonstrates a planar molecule with a mean deviation from the plane of the non-hydrogen atoms of 0.020 Å. Inter­molecular hydrogen bonding between O1–H1···N1 results in infinite chains along [101] which combine with inter­molecular hydrogen bonding between N1–H1a···O1 to give (010) sheets. The packing for the title compound indicating hydrogen bonding is shown in Figure 2.

Experimental top

A commercial sample (Aldrich) was used for the crystallization. Crystals suitable for single crystal X-ray analysis were grown by slow evaporation of a methanol solution.

Refinement top

All non-hydrogen atoms were refined anisotropically (Olex2) by full matrix least squares on F2. Hydrogen atoms H1, H1a and H1b were found from a Fourier difference map. H1 was allowed to refine freely with an isotropic displacement parameter of 1.20 times Ueq of the parent O atom. H1a and H1b were refined with a fixed distance of 0.87 (0.005) Å and isotropic displacement parameters of 1.20 times Ueq of the parent N atom. The two remaining hydrogen atoms were placed in calculated positions and then refined with riding model with C–H lengths of 0.95 Å with isotropic displacement parameters set to 1.20 times Ueq of the parent C atom.

Related literature top

For the crystal structure of the parent p-aminophenol, see: Brown (1951). For other related structures, see: Ermer & Eling (1994); Dey et al. (2005); Bacchi et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and olex2.refine (Bourhis et al., 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
4-Amino-2,6-dichlorophenol top
Crystal data top
C6H5Cl2NOF(000) = 363.7579
Mr = 178.02Dx = 1.662 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 5198 reflections
a = 4.6064 (5) Åθ = 5.1–72.2°
b = 11.7569 (12) ŵ = 7.59 mm1
c = 13.2291 (13) ÅT = 120 K
β = 96.760 (5)°Plate, colourless
V = 711.47 (13) Å30.4 × 0.2 × 0.1 mm
Z = 4
Data collection top
Bruker D8 Venture CMOS
diffractometer
1402 independent reflections
Radiation source: microfocus Cu1273 reflections with I 2σ(I)
HELIOS MX monochromatorRint = 0.043
Detector resolution: 102.4 pixels mm-1θmax = 72.2°, θmin = 5.1°
ϕ and ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1414
Tmin = 0.425, Tmax = 0.754l = 1216
7481 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: full7 constraints
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0618P)2 + 0.1912P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1402 reflectionsΔρmax = 0.33 e Å3
99 parametersΔρmin = 0.35 e Å3
Crystal data top
C6H5Cl2NOV = 711.47 (13) Å3
Mr = 178.02Z = 4
Monoclinic, P21/nCu Kα radiation
a = 4.6064 (5) ŵ = 7.59 mm1
b = 11.7569 (12) ÅT = 120 K
c = 13.2291 (13) Å0.4 × 0.2 × 0.1 mm
β = 96.760 (5)°
Data collection top
Bruker D8 Venture CMOS
diffractometer
1402 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
1273 reflections with I 2σ(I)
Tmin = 0.425, Tmax = 0.754Rint = 0.043
7481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
1402 reflectionsΔρmin = 0.35 e Å3
99 parameters
Special details top

Experimental. Absorption correction: SADABS-2014/4 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.1370 before and 0.0641 after correction. The Ratio of minimum to maximum transmission is 0.5642. The λ/2 correction factor is 0.00150.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.10618 (10)0.09750 (4)0.70434 (3)0.02213 (17)
Cl20.79187 (11)0.44532 (4)0.61176 (4)0.02666 (18)
O10.4519 (3)0.30303 (12)0.74687 (10)0.0214 (3)
N10.4522 (4)0.13356 (14)0.35171 (12)0.0199 (4)
C10.4563 (4)0.26523 (16)0.65055 (14)0.0176 (4)
C40.4607 (4)0.17796 (16)0.45234 (13)0.0176 (4)
C50.6112 (4)0.27756 (16)0.48060 (14)0.0196 (4)
H50.7170 (4)0.31620 (16)0.43359 (14)0.0235 (5)*
C20.3011 (4)0.16753 (16)0.61822 (14)0.0171 (4)
C30.3014 (4)0.12337 (16)0.52110 (14)0.0182 (4)
H30.1938 (4)0.05638 (16)0.50165 (14)0.0219 (5)*
C60.6052 (4)0.31990 (16)0.57788 (14)0.0179 (4)
H10.615 (5)0.329 (2)0.7732 (18)0.0215 (5)*
H1a0.601 (3)0.1551 (19)0.3217 (15)0.0215 (5)*
H1b0.451 (5)0.0598 (4)0.3523 (17)0.0215 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0232 (3)0.0246 (3)0.0204 (3)0.00409 (16)0.00988 (19)0.00083 (17)
Cl20.0334 (3)0.0245 (3)0.0225 (3)0.01014 (19)0.0052 (2)0.00026 (18)
O10.0193 (6)0.0298 (7)0.0156 (7)0.0039 (6)0.0046 (5)0.0042 (6)
N10.0206 (8)0.0247 (9)0.0151 (8)0.0013 (6)0.0057 (6)0.0009 (6)
C10.0146 (8)0.0225 (9)0.0159 (9)0.0027 (7)0.0023 (7)0.0008 (7)
C40.0138 (8)0.0248 (9)0.0142 (9)0.0050 (7)0.0009 (7)0.0005 (7)
C50.0177 (9)0.0244 (10)0.0173 (9)0.0005 (7)0.0048 (7)0.0054 (7)
C20.0144 (8)0.0215 (9)0.0163 (9)0.0011 (7)0.0051 (7)0.0035 (7)
C30.0148 (8)0.0217 (9)0.0185 (10)0.0005 (7)0.0029 (7)0.0007 (7)
C60.0158 (8)0.0188 (9)0.0194 (9)0.0007 (7)0.0026 (7)0.0016 (7)
Geometric parameters (Å, º) top
Cl1—C21.7387 (18)C1—C61.401 (3)
Cl2—C61.7389 (19)C4—C51.389 (3)
O1—C11.352 (2)C4—C31.391 (3)
O1—H10.85 (2)C5—H50.9500
N1—C41.426 (2)C5—C61.383 (3)
N1—H1a0.870 (5)C2—C31.386 (3)
N1—H1b0.867 (5)C3—H30.9500
C1—C21.393 (3)
H1—O1—C1113.3 (16)C6—C5—C4119.33 (17)
H1a—N1—C4112.6 (15)C6—C5—H5120.34 (11)
H1b—N1—C4110.9 (15)C1—C2—Cl1118.37 (14)
H1b—N1—H1a108 (2)C3—C2—Cl1119.15 (14)
C2—C1—O1119.75 (16)C3—C2—C1122.47 (16)
C6—C1—O1123.97 (17)C2—C3—C4119.44 (18)
C6—C1—C2116.26 (17)H3—C3—C4120.28 (11)
C5—C4—N1121.18 (17)H3—C3—C2120.28 (11)
C3—C4—N1118.87 (18)C1—C6—Cl2118.64 (14)
C3—C4—C5119.85 (17)C5—C6—Cl2118.79 (14)
H5—C5—C4120.34 (10)C5—C6—C1122.57 (17)
Cl1—C2—C3—C4178.98 (14)C4—C5—C6—Cl2179.43 (14)
O1—C1—C2—Cl10.1 (2)C4—C5—C6—C11.0 (3)
O1—C1—C2—C3178.74 (17)C5—C4—C3—C21.7 (3)
O1—C1—C6—Cl21.1 (3)C2—C1—C6—Cl2177.57 (13)
O1—C1—C6—C5178.43 (17)C2—C1—C6—C52.9 (3)
N1—C4—C5—C6177.70 (17)C3—C4—C5—C61.3 (3)
N1—C4—C3—C2178.14 (17)C6—C1—C2—Cl1178.80 (13)
C1—C2—C3—C40.3 (3)C6—C1—C2—C32.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.85 (2)1.82 (2)2.653 (2)168 (2)
N1—H1a···O1ii0.87 (1)2.05 (1)2.921 (2)177 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.85 (2)1.82 (2)2.653 (2)168 (2)
N1—H1a···O1ii0.870 (5)2.052 (6)2.921 (2)177 (2)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We greatly acknowledge support from the National Science Foundation (CHE-1429086).

References

First citationBacchi, A., Carcelli, M., Chiodo, T., Cantoni, G., De Filippo, C. & Pipolo, S. (2009). CrystEngComm, 11, 1433–1441.  Web of Science CSD CrossRef CAS Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrown, C. J. (1951). Acta Cryst. 4, 100–103.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDey, A., Kirchner, M. T., Vangala, V. R., Desiraju, G. R., Mondal, R. & Howard, J. A. K. (2005). J. Am. Chem. Soc. 127, 10545–10559.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErmer, O. & Eling, A. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 925–944.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds