organic compounds
of dibenzyldimethylsilane
aFakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
In the title compound, C16H20Si, a geometry different from an ideal tetrahedron can be observed at the Si atom. The bonds from Si to the benzylic C atoms [Si—C = 1.884 (1) and 1.883 (1) Å] are slightly elongated compared to the Si—Cmethyl bonds [Si—C = 1.856 (1) and 1.853 (1) Å]. The Cbenzyl—Si—Cbenzyl bond angle [C—Si—C = 107.60 (6)°] is decreased from the ideal tetrahedral angle by 1.9°. These distortions can be explained easily by Bent's rule. In the crystal, molecules interact only by van der Waals forces.
Keywords: crystal structure; dibenzyldimethylsilane; Bent's rule.
CCDC reference: 1063257
1. Related literature
The chemistry of silicon exhibits several differences compared to carbon, its lighter congener. Being a representative of the third period, the silicon atom provides deviant reactivity and structural features including the formation of pentavalent intermediates (Chuit et al., 1993; Cypryk & Apeloig, 2002) as well as silicon-specific effects like the α- or β-effect (Whitmore & Sommer, 1946; Sommer & Whitmore, 1946). For the correlation of bond lengths and angles with the of substituents, see: Bent (1961) and for the same effect in the related compound MePh2SiBn, see: Koller et al. (2015). For the reaction of silyllithium reagents to benzylsilanes, see: Strohmann et al. (2004). For the α-lithiation of methylsilanes, see: Däschlein et al. (2010). For the structure and reactivity of α-lithiated benzylsilanes, see: Ott et al. (2008), Strohmann et al. (2002).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.
Supporting information
CCDC reference: 1063257
10.1107/S2056989015008713/fk2087sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S2056989015008713/fk2087Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015008713/fk2087Isup3.cml
The chemistry of silicon exhibits several differences compared to carbon, its lighter congener. Being a representative of the third period, the silicon atom provides deviant reactivity and structural features. Among others, the formation of pentavalent intermediates (Chuit et al., 1993; Cypryk & Apeloig, 2002) as well as silicon-specific effects like the α- or β-effect (Whitmore & Sommer, 1946; Sommer & Whitmore, 1946) can be listed. Last but not least, the low of silicon compared to carbon is a feature that has to be considered.
In the title compound, two different types of Si–C bonds can be observed. Comparing the Si–Cmethyl bonds Si1–C1 [1.856 (1) Å] and Si1–C2 [1.853 (1) Å] to the Si–Cbenzyl bonds Si1–C3 [1.884 (1) Å] and Si1–C10 [1.883 (1) Å], a difference of 0.03 Å becomes obvious. This divergence can be explained by Bent's rule (Bent, 1961): atomic s-character is concentrated in orbitals forming bonds with electropositive substituents. In return, the orbitals of bonds with electronegative substituents are featured by a high p-character, thus leading to elongated bond lengths and bond angles shifted towards 90°. In the title compound, the carbon atoms directly bonded to the silicon center exhibit unequal electronegativities. Due to the ability of benzylic carbon atoms to stabilize a negative charge, they are of higher
than carbon atoms of methyl groups. According to Bent's rule, atomic p-character is concentrated in the orbitals forming the Si–Cbenzyl bonds to a higher level than in the Si–Cmethyl bonds. This assumption is furthermore affirmed by the C—Si—C bond angles observed in the title compound. The bond angle between the methyl carbon atoms is very close to the ideal tetrahedral angle [C1–Si1–C2 109.89 (7)°], the angle between the benzyl carbon atoms is slightly smaller [C3–Si1–C10 107.60 (6)°], as it would be expected for bonds formed by orbitals with increased p-character.The same effect can be observed in the related compound MePh2SiBn (Koller et al., 2015). According to the title compound, the Si–Cmethyl bond is the shortest [1.853 (1) Å], and the Si–Cbenzyl bond is the longest [1.876 (2) Å]. The Si–Cphenyl bonds are settled in between at 1.873 (1) Å and 1.869 (1) Å, respectively.
Crystal data, data collection and structure
details are summarized in Table 1.Hydrogen atoms were located from difference Fourier maps, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(-CH3) and C–H = 0.95-0.99 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip.
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Fig. 1. Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at 50% probability level. |
C16H20Si | F(000) = 520 |
Mr = 240.41 | Dx = 1.124 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 6.1045 (2) Å | Cell parameters from 10295 reflections |
b = 19.8512 (6) Å | θ = 2.7–29.2° |
c = 11.8396 (3) Å | µ = 0.14 mm−1 |
β = 98.069 (3)° | T = 173 K |
V = 1420.54 (7) Å3 | Block, colourless |
Z = 4 | 0.2 × 0.1 × 0.1 mm |
Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 2800 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2280 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 16.0560 pixels mm-1 | θmax = 26.0°, θmin = 2.7° |
ω scans | h = −7→7 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −24→24 |
Tmin = 0.940, Tmax = 1.000 | l = −14→14 |
21539 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.033 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0485P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2800 reflections | Δρmax = 0.29 e Å−3 |
156 parameters | Δρmin = −0.24 e Å−3 |
C16H20Si | V = 1420.54 (7) Å3 |
Mr = 240.41 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.1045 (2) Å | µ = 0.14 mm−1 |
b = 19.8512 (6) Å | T = 173 K |
c = 11.8396 (3) Å | 0.2 × 0.1 × 0.1 mm |
β = 98.069 (3)° |
Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 2800 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2280 reflections with I > 2σ(I) |
Tmin = 0.940, Tmax = 1.000 | Rint = 0.035 |
21539 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.088 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.29 e Å−3 |
2800 reflections | Δρmin = −0.24 e Å−3 |
156 parameters |
Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05-01-2010 CrysAlis171 .NET) (compiled Jan 5 2010,16:28:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.13789 (6) | 0.14013 (2) | 0.03688 (3) | 0.01945 (12) | |
C11 | 0.1208 (2) | 0.10937 (7) | −0.19747 (11) | 0.0221 (3) | |
C9 | 0.4409 (2) | 0.16077 (7) | 0.32428 (12) | 0.0286 (3) | |
H9 | 0.5690 | 0.1513 | 0.2898 | 0.034* | |
C12 | −0.0953 (2) | 0.10519 (8) | −0.25332 (12) | 0.0301 (3) | |
H12 | −0.2001 | 0.1387 | −0.2402 | 0.036* | |
C16 | 0.2691 (2) | 0.05980 (7) | −0.22010 (12) | 0.0299 (3) | |
H16 | 0.4177 | 0.0616 | −0.1833 | 0.036* | |
C5 | 0.0758 (2) | 0.20416 (7) | 0.31346 (12) | 0.0284 (3) | |
H5 | −0.0500 | 0.2252 | 0.2716 | 0.034* | |
C3 | 0.2631 (2) | 0.20813 (7) | 0.13668 (11) | 0.0243 (3) | |
H3A | 0.4179 | 0.2157 | 0.1238 | 0.029* | |
H3B | 0.1805 | 0.2506 | 0.1185 | 0.029* | |
C10 | 0.1896 (2) | 0.16338 (7) | −0.11131 (11) | 0.0243 (3) | |
H10A | 0.1076 | 0.2052 | −0.1350 | 0.029* | |
H10B | 0.3493 | 0.1727 | −0.1100 | 0.029* | |
C4 | 0.2605 (2) | 0.19144 (7) | 0.26040 (11) | 0.0220 (3) | |
C8 | 0.4376 (3) | 0.14376 (8) | 0.43742 (13) | 0.0368 (4) | |
H8 | 0.5636 | 0.1233 | 0.4800 | 0.044* | |
C2 | 0.2653 (2) | 0.05739 (7) | 0.07812 (12) | 0.0263 (3) | |
H2A | 0.2290 | 0.0443 | 0.1531 | 0.039* | |
H2B | 0.4263 | 0.0607 | 0.0816 | 0.039* | |
H2C | 0.2081 | 0.0234 | 0.0215 | 0.039* | |
C1 | −0.1645 (2) | 0.13650 (8) | 0.04158 (13) | 0.0306 (3) | |
H1A | −0.2328 | 0.1042 | −0.0153 | 0.046* | |
H1B | −0.2293 | 0.1812 | 0.0248 | 0.046* | |
H1C | −0.1912 | 0.1222 | 0.1177 | 0.046* | |
C6 | 0.0720 (3) | 0.18677 (8) | 0.42632 (13) | 0.0356 (4) | |
H6 | −0.0561 | 0.1959 | 0.4610 | 0.043* | |
C13 | −0.1588 (3) | 0.05285 (9) | −0.32761 (12) | 0.0401 (4) | |
H13 | −0.3072 | 0.0506 | −0.3646 | 0.048* | |
C14 | −0.0101 (3) | 0.00404 (9) | −0.34877 (12) | 0.0444 (5) | |
H14 | −0.0549 | −0.0320 | −0.3997 | 0.053* | |
C7 | 0.2521 (3) | 0.15639 (8) | 0.48868 (13) | 0.0378 (4) | |
H7 | 0.2489 | 0.1442 | 0.5660 | 0.045* | |
C15 | 0.2045 (3) | 0.00808 (8) | −0.29506 (13) | 0.0414 (4) | |
H15 | 0.3090 | −0.0251 | −0.3098 | 0.050* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0205 (2) | 0.0177 (2) | 0.0207 (2) | −0.00025 (15) | 0.00477 (14) | −0.00023 (15) |
C11 | 0.0291 (7) | 0.0214 (7) | 0.0167 (6) | −0.0014 (6) | 0.0054 (5) | 0.0054 (5) |
C9 | 0.0277 (8) | 0.0259 (8) | 0.0318 (8) | −0.0007 (6) | 0.0030 (6) | −0.0024 (6) |
C12 | 0.0329 (8) | 0.0329 (9) | 0.0239 (7) | 0.0003 (7) | 0.0021 (6) | 0.0089 (6) |
C16 | 0.0351 (8) | 0.0315 (8) | 0.0240 (7) | 0.0050 (7) | 0.0076 (6) | 0.0017 (6) |
C5 | 0.0306 (8) | 0.0268 (8) | 0.0281 (7) | 0.0025 (6) | 0.0051 (6) | −0.0074 (6) |
C3 | 0.0268 (7) | 0.0211 (7) | 0.0251 (7) | −0.0015 (6) | 0.0047 (6) | −0.0010 (6) |
C10 | 0.0288 (8) | 0.0201 (7) | 0.0245 (7) | −0.0011 (6) | 0.0054 (6) | 0.0024 (6) |
C4 | 0.0264 (7) | 0.0162 (7) | 0.0233 (7) | −0.0040 (5) | 0.0032 (6) | −0.0054 (5) |
C8 | 0.0434 (9) | 0.0314 (9) | 0.0324 (8) | −0.0012 (7) | −0.0063 (7) | 0.0023 (7) |
C2 | 0.0294 (8) | 0.0221 (8) | 0.0277 (7) | 0.0009 (6) | 0.0054 (6) | 0.0026 (6) |
C1 | 0.0244 (7) | 0.0329 (9) | 0.0352 (8) | 0.0005 (6) | 0.0062 (6) | −0.0046 (7) |
C6 | 0.0447 (9) | 0.0331 (9) | 0.0320 (8) | −0.0048 (7) | 0.0156 (7) | −0.0109 (7) |
C13 | 0.0446 (9) | 0.0497 (11) | 0.0230 (8) | −0.0177 (8) | −0.0053 (7) | 0.0082 (7) |
C14 | 0.0786 (13) | 0.0339 (9) | 0.0212 (7) | −0.0190 (9) | 0.0084 (8) | −0.0050 (7) |
C7 | 0.0630 (11) | 0.0301 (9) | 0.0206 (7) | −0.0107 (8) | 0.0067 (7) | −0.0029 (6) |
C15 | 0.0659 (12) | 0.0296 (9) | 0.0318 (8) | 0.0052 (8) | 0.0175 (8) | −0.0025 (7) |
Si1—C3 | 1.8838 (14) | C3—C4 | 1.5040 (18) |
Si1—C10 | 1.8832 (13) | C10—H10A | 0.9900 |
Si1—C2 | 1.8534 (14) | C10—H10B | 0.9900 |
Si1—C1 | 1.8563 (14) | C8—H8 | 0.9500 |
C11—C12 | 1.3928 (19) | C8—C7 | 1.381 (2) |
C11—C16 | 1.3887 (19) | C2—H2A | 0.9800 |
C11—C10 | 1.4988 (19) | C2—H2B | 0.9800 |
C9—H9 | 0.9500 | C2—H2C | 0.9800 |
C9—C4 | 1.3861 (19) | C1—H1A | 0.9800 |
C9—C8 | 1.384 (2) | C1—H1B | 0.9800 |
C12—H12 | 0.9500 | C1—H1C | 0.9800 |
C12—C13 | 1.381 (2) | C6—H6 | 0.9500 |
C16—H16 | 0.9500 | C6—C7 | 1.375 (2) |
C16—C15 | 1.378 (2) | C13—H13 | 0.9500 |
C5—H5 | 0.9500 | C13—C14 | 1.375 (2) |
C5—C4 | 1.3888 (19) | C14—H14 | 0.9500 |
C5—C6 | 1.383 (2) | C14—C15 | 1.376 (2) |
C3—H3A | 0.9900 | C7—H7 | 0.9500 |
C3—H3B | 0.9900 | C15—H15 | 0.9500 |
C10—Si1—C3 | 107.60 (6) | C9—C4—C5 | 117.79 (13) |
C2—Si1—C3 | 110.57 (6) | C9—C4—C3 | 120.81 (12) |
C2—Si1—C10 | 110.09 (6) | C5—C4—C3 | 121.37 (12) |
C2—Si1—C1 | 109.89 (7) | C9—C8—H8 | 119.8 |
C1—Si1—C3 | 109.07 (6) | C7—C8—C9 | 120.35 (15) |
C1—Si1—C10 | 109.58 (6) | C7—C8—H8 | 119.8 |
C12—C11—C10 | 121.48 (13) | Si1—C2—H2A | 109.5 |
C16—C11—C12 | 117.78 (13) | Si1—C2—H2B | 109.5 |
C16—C11—C10 | 120.68 (12) | Si1—C2—H2C | 109.5 |
C4—C9—H9 | 119.4 | H2A—C2—H2B | 109.5 |
C8—C9—H9 | 119.4 | H2A—C2—H2C | 109.5 |
C8—C9—C4 | 121.11 (14) | H2B—C2—H2C | 109.5 |
C11—C12—H12 | 119.7 | Si1—C1—H1A | 109.5 |
C13—C12—C11 | 120.64 (15) | Si1—C1—H1B | 109.5 |
C13—C12—H12 | 119.7 | Si1—C1—H1C | 109.5 |
C11—C16—H16 | 119.4 | H1A—C1—H1B | 109.5 |
C15—C16—C11 | 121.11 (14) | H1A—C1—H1C | 109.5 |
C15—C16—H16 | 119.4 | H1B—C1—H1C | 109.5 |
C4—C5—H5 | 119.5 | C5—C6—H6 | 119.7 |
C6—C5—H5 | 119.5 | C7—C6—C5 | 120.51 (15) |
C6—C5—C4 | 121.09 (14) | C7—C6—H6 | 119.7 |
Si1—C3—H3A | 108.9 | C12—C13—H13 | 119.6 |
Si1—C3—H3B | 108.9 | C14—C13—C12 | 120.86 (15) |
H3A—C3—H3B | 107.7 | C14—C13—H13 | 119.6 |
C4—C3—Si1 | 113.22 (9) | C13—C14—H14 | 120.5 |
C4—C3—H3A | 108.9 | C13—C14—C15 | 119.01 (15) |
C4—C3—H3B | 108.9 | C15—C14—H14 | 120.5 |
Si1—C10—H10A | 109.0 | C8—C7—H7 | 120.4 |
Si1—C10—H10B | 109.0 | C6—C7—C8 | 119.14 (14) |
C11—C10—Si1 | 113.02 (9) | C6—C7—H7 | 120.4 |
C11—C10—H10A | 109.0 | C16—C15—H15 | 119.7 |
C11—C10—H10B | 109.0 | C14—C15—C16 | 120.60 (15) |
H10A—C10—H10B | 107.8 | C14—C15—H15 | 119.7 |
Si1—C3—C4—C9 | 93.41 (13) | C10—C11—C12—C13 | −176.30 (13) |
Si1—C3—C4—C5 | −84.53 (15) | C10—C11—C16—C15 | 176.82 (13) |
C11—C12—C13—C14 | −0.5 (2) | C4—C9—C8—C7 | 0.8 (2) |
C11—C16—C15—C14 | −0.5 (2) | C4—C5—C6—C7 | 0.0 (2) |
C9—C8—C7—C6 | −0.8 (2) | C8—C9—C4—C5 | −0.4 (2) |
C12—C11—C16—C15 | −0.2 (2) | C8—C9—C4—C3 | −178.39 (13) |
C12—C11—C10—Si1 | 86.49 (14) | C2—Si1—C3—C4 | −52.05 (11) |
C12—C13—C14—C15 | −0.3 (2) | C2—Si1—C10—C11 | 52.86 (11) |
C16—C11—C12—C13 | 0.7 (2) | C1—Si1—C3—C4 | 68.89 (11) |
C16—C11—C10—Si1 | −90.42 (14) | C1—Si1—C10—C11 | −68.10 (11) |
C5—C6—C7—C8 | 0.4 (2) | C6—C5—C4—C9 | 0.0 (2) |
C3—Si1—C10—C11 | 173.44 (9) | C6—C5—C4—C3 | 177.97 (13) |
C10—Si1—C3—C4 | −172.32 (9) | C13—C14—C15—C16 | 0.8 (2) |
Experimental details
Crystal data | |
Chemical formula | C16H20Si |
Mr | 240.41 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 173 |
a, b, c (Å) | 6.1045 (2), 19.8512 (6), 11.8396 (3) |
β (°) | 98.069 (3) |
V (Å3) | 1420.54 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.2 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur, Sapphire3 diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.940, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21539, 2800, 2280 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.088, 1.06 |
No. of reflections | 2800 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.24 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).
Acknowledgements
We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.
References
Bent, H. A. (1961). Chem. Rev. 61, 275–311. CrossRef CAS Web of Science Google Scholar
Chuit, C., Corriu, R. J. P., Reye, C. & Young, J. C. (1993). Chem. Rev. 93, 1371–1448. CrossRef CAS Web of Science Google Scholar
Cypryk, M. & Apeloig, Y. (2002). Organometallics, 21, 2165–2175. Web of Science CrossRef CAS Google Scholar
Däschlein, C., Gessner, V. H. & Strohmann, C. (2010). Chem. Eur. J. 16, 4048–4062. Web of Science PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Koller, S. G., Kroesen, U. & Strohmann, C. (2015). Chem. Eur. J. 21, 641–647. Web of Science CSD CrossRef CAS PubMed Google Scholar
Ott, H., Däschlein, C., Leusser, D., Schildbach, D., Seibel, T., Stalke, D. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 11901–11911. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sommer, L. H. & Whitmore, F. C. (1946). J. Am. Chem. Soc. 68, 485–487. CrossRef CAS PubMed Web of Science Google Scholar
Strohmann, C., Bindl, M., Fraass, V. C. & Hörnig, J. (2004). Angew. Chem. Int. Ed. 43, 1011–1014. Web of Science CSD CrossRef CAS Google Scholar
Strohmann, C., Lehmen, K., Wild, K. & Schildbach, D. (2002). Organometallics, 21, 3079–3081. Web of Science CSD CrossRef CAS Google Scholar
Whitmore, F. C. & Sommer, L. H. (1946). J. Am. Chem. Soc. 68, 481–484. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.