organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o391-o392

Crystal structure of di­benzyl­di­methyl­silane

aFakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by U. Flörke, University of Paderborn, Germany (Received 29 April 2015; accepted 5 May 2015; online 9 May 2015)

In the title compound, C16H20Si, a geometry different from an ideal tetra­hedron can be observed at the Si atom. The bonds from Si to the benzylic C atoms [Si—C = 1.884 (1) and 1.883 (1) Å] are slightly elongated compared to the Si—Cmeth­yl bonds [Si—C = 1.856 (1) and 1.853 (1) Å]. The Cbenz­yl—Si—Cbenz­yl bond angle [C—Si—C = 107.60 (6)°] is decreased from the ideal tetra­hedral angle by 1.9°. These distortions can be explained easily by Bent's rule. In the crystal, mol­ecules inter­act only by van der Waals forces.

1. Related literature

The chemistry of silicon exhibits several differences compared to carbon, its lighter congener. Being a representative of the third period, the silicon atom provides deviant reactivity and structural features including the formation of penta­valent inter­mediates (Chuit et al., 1993[Chuit, C., Corriu, R. J. P., Reye, C. & Young, J. C. (1993). Chem. Rev. 93, 1371-1448.]; Cypryk & Apeloig, 2002[Cypryk, M. & Apeloig, Y. (2002). Organometallics, 21, 2165-2175.]) as well as silicon-specific effects like the α- or β-effect (Whitmore & Sommer, 1946[Whitmore, F. C. & Sommer, L. H. (1946). J. Am. Chem. Soc. 68, 481-484.]; Sommer & Whitmore, 1946[Sommer, L. H. & Whitmore, F. C. (1946). J. Am. Chem. Soc. 68, 485-487.]). For the correlation of bond lengths and angles with the electronegativity of substituents, see: Bent (1961[Bent, H. A. (1961). Chem. Rev. 61, 275-311.]) and for the same effect in the related compound MePh2SiBn, see: Koller et al. (2015[Koller, S. G., Kroesen, U. & Strohmann, C. (2015). Chem. Eur. J. 21, 641-647.]). For the reaction of silyllithium reagents to benzyl­silanes, see: Strohmann et al. (2004[Strohmann, C., Bindl, M., Fraass, V. C. & Hörnig, J. (2004). Angew. Chem. Int. Ed. 43, 1011-1014.]). For the α-li­thia­tion of methyl­silanes, see: Däschlein et al. (2010[Däschlein, C., Gessner, V. H. & Strohmann, C. (2010). Chem. Eur. J. 16, 4048-4062.]). For the structure and reactivity of α-li­thia­ted benzyl­silanes, see: Ott et al. (2008[Ott, H., Däschlein, C., Leusser, D., Schildbach, D., Seibel, T., Stalke, D. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 11901-11911.]), Strohmann et al. (2002[Strohmann, C., Lehmen, K., Wild, K. & Schildbach, D. (2002). Organometallics, 21, 3079-3081.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H20Si

  • Mr = 240.41

  • Monoclinic, P 21 /n

  • a = 6.1045 (2) Å

  • b = 19.8512 (6) Å

  • c = 11.8396 (3) Å

  • β = 98.069 (3)°

  • V = 1420.54 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 173 K

  • 0.2 × 0.1 × 0.1 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur, Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.940, Tmax = 1.000

  • 21539 measured reflections

  • 2800 independent reflections

  • 2280 reflections with I > 2σ(I)

  • Rint = 0.035

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.06

  • 2800 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Structural commentary top

The chemistry of silicon exhibits several differences compared to carbon, its lighter congener. Being a representative of the third period, the silicon atom provides deviant reactivity and structural features. Among others, the formation of penta­valent inter­mediates (Chuit et al., 1993; Cypryk & Apeloig, 2002) as well as silicon-specific effects like the α- or β-effect (Whitmore & Sommer, 1946; Sommer & Whitmore, 1946) can be listed. Last but not least, the low electronegativity of silicon compared to carbon is a feature that has to be considered.

In the title compound, two different types of Si–C bonds can be observed. Comparing the Si–Cmethyl bonds Si1–C1 [1.856 (1) Å] and Si1–C2 [1.853 (1) Å] to the Si–Cbenzyl bonds Si1–C3 [1.884 (1) Å] and Si1–C10 [1.883 (1) Å], a difference of 0.03 Å becomes obvious. This divergence can be explained by Bent's rule (Bent, 1961): atomic s-character is concentrated in orbitals forming bonds with electropositive substituents. In return, the orbitals of bonds with electronegative substituents are featured by a high p-character, thus leading to elongated bond lengths and bond angles shifted towards 90°. In the title compound, the carbon atoms directly bonded to the silicon center exhibit unequal electronegativities. Due to the ability of benzylic carbon atoms to stabilize a negative charge, they are of higher electronegativity than carbon atoms of methyl groups. According to Bent's rule, atomic p-character is concentrated in the orbitals forming the Si–Cbenzyl bonds to a higher level than in the Si–Cmethyl bonds. This assumption is furthermore affirmed by the C—Si—C bond angles observed in the title compound. The bond angle between the methyl carbon atoms is very close to the ideal tetra­hedral angle [C1–Si1–C2 109.89 (7)°], the angle between the benzyl carbon atoms is slightly smaller [C3–Si1–C10 107.60 (6)°], as it would be expected for bonds formed by orbitals with increased p-character.

The same effect can be observed in the related compound MePh2SiBn (Koller et al., 2015). According to the title compound, the Si–Cmethyl bond is the shortest [1.853 (1) Å], and the Si–Cbenzyl bond is the longest [1.876 (2) Å]. The Si–Cphenyl bonds are settled in between at 1.873 (1) Å and 1.869 (1) Å, respectively.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Hydrogen atoms were located from difference Fourier maps, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2Ueq(C) or 1.5Ueq(-CH3) and C–H = 0.95-0.99 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip.

Related literature top

The chemistry of silicon exhibits several differences compared to carbon, its lighter congener. Being a representative of the third period, the silicon atom provides deviant reactivity and structural features including the formation of pentavalent intermediates (Chuit et al., 1993; Cypryk & Apeloig, 2002) as well as silicon-specific effects like the α- or β-effect (Whitmore & Sommer, 1946; Sommer & Whitmore, 1946). For the correlation of bond lengths and angles with the electronegativity of substituents, see: Bent (1961) and for the same effect in the related compound MePh2SiBn, see: Koller et al. (2015). For the reaction of silyllithium reagents to benzylsilanes, see: Strohmann et al. (2004). For the α-lithiation of methylsilanes, see: Däschlein et al. (2010). For the structure and reactivity of α-lithiated benzylsilanes, see: Ott et al. (2008), Strohmann et al. (2002).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at 50% probability level.
Dibenzyldimethylsilane top
Crystal data top
C16H20SiF(000) = 520
Mr = 240.41Dx = 1.124 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1045 (2) ÅCell parameters from 10295 reflections
b = 19.8512 (6) Åθ = 2.7–29.2°
c = 11.8396 (3) ŵ = 0.14 mm1
β = 98.069 (3)°T = 173 K
V = 1420.54 (7) Å3Block, colourless
Z = 40.2 × 0.1 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
2800 independent reflections
Radiation source: Enhance (Mo) X-ray Source2280 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 16.0560 pixels mm-1θmax = 26.0°, θmin = 2.7°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2424
Tmin = 0.940, Tmax = 1.000l = 1414
21539 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0485P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2800 reflectionsΔρmax = 0.29 e Å3
156 parametersΔρmin = 0.24 e Å3
Crystal data top
C16H20SiV = 1420.54 (7) Å3
Mr = 240.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.1045 (2) ŵ = 0.14 mm1
b = 19.8512 (6) ÅT = 173 K
c = 11.8396 (3) Å0.2 × 0.1 × 0.1 mm
β = 98.069 (3)°
Data collection top
Oxford Diffraction Xcalibur, Sapphire3
diffractometer
2800 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2280 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 1.000Rint = 0.035
21539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.29 e Å3
2800 reflectionsΔρmin = 0.24 e Å3
156 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.55 (release 05-01-2010 CrysAlis171 .NET) (compiled Jan 5 2010,16:28:46) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.13789 (6)0.14013 (2)0.03688 (3)0.01945 (12)
C110.1208 (2)0.10937 (7)0.19747 (11)0.0221 (3)
C90.4409 (2)0.16077 (7)0.32428 (12)0.0286 (3)
H90.56900.15130.28980.034*
C120.0953 (2)0.10519 (8)0.25332 (12)0.0301 (3)
H120.20010.13870.24020.036*
C160.2691 (2)0.05980 (7)0.22010 (12)0.0299 (3)
H160.41770.06160.18330.036*
C50.0758 (2)0.20416 (7)0.31346 (12)0.0284 (3)
H50.05000.22520.27160.034*
C30.2631 (2)0.20813 (7)0.13668 (11)0.0243 (3)
H3A0.41790.21570.12380.029*
H3B0.18050.25060.11850.029*
C100.1896 (2)0.16338 (7)0.11131 (11)0.0243 (3)
H10A0.10760.20520.13500.029*
H10B0.34930.17270.11000.029*
C40.2605 (2)0.19144 (7)0.26040 (11)0.0220 (3)
C80.4376 (3)0.14376 (8)0.43742 (13)0.0368 (4)
H80.56360.12330.48000.044*
C20.2653 (2)0.05739 (7)0.07812 (12)0.0263 (3)
H2A0.22900.04430.15310.039*
H2B0.42630.06070.08160.039*
H2C0.20810.02340.02150.039*
C10.1645 (2)0.13650 (8)0.04158 (13)0.0306 (3)
H1A0.23280.10420.01530.046*
H1B0.22930.18120.02480.046*
H1C0.19120.12220.11770.046*
C60.0720 (3)0.18677 (8)0.42632 (13)0.0356 (4)
H60.05610.19590.46100.043*
C130.1588 (3)0.05285 (9)0.32761 (12)0.0401 (4)
H130.30720.05060.36460.048*
C140.0101 (3)0.00404 (9)0.34877 (12)0.0444 (5)
H140.05490.03200.39970.053*
C70.2521 (3)0.15639 (8)0.48868 (13)0.0378 (4)
H70.24890.14420.56600.045*
C150.2045 (3)0.00808 (8)0.29506 (13)0.0414 (4)
H150.30900.02510.30980.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0205 (2)0.0177 (2)0.0207 (2)0.00025 (15)0.00477 (14)0.00023 (15)
C110.0291 (7)0.0214 (7)0.0167 (6)0.0014 (6)0.0054 (5)0.0054 (5)
C90.0277 (8)0.0259 (8)0.0318 (8)0.0007 (6)0.0030 (6)0.0024 (6)
C120.0329 (8)0.0329 (9)0.0239 (7)0.0003 (7)0.0021 (6)0.0089 (6)
C160.0351 (8)0.0315 (8)0.0240 (7)0.0050 (7)0.0076 (6)0.0017 (6)
C50.0306 (8)0.0268 (8)0.0281 (7)0.0025 (6)0.0051 (6)0.0074 (6)
C30.0268 (7)0.0211 (7)0.0251 (7)0.0015 (6)0.0047 (6)0.0010 (6)
C100.0288 (8)0.0201 (7)0.0245 (7)0.0011 (6)0.0054 (6)0.0024 (6)
C40.0264 (7)0.0162 (7)0.0233 (7)0.0040 (5)0.0032 (6)0.0054 (5)
C80.0434 (9)0.0314 (9)0.0324 (8)0.0012 (7)0.0063 (7)0.0023 (7)
C20.0294 (8)0.0221 (8)0.0277 (7)0.0009 (6)0.0054 (6)0.0026 (6)
C10.0244 (7)0.0329 (9)0.0352 (8)0.0005 (6)0.0062 (6)0.0046 (7)
C60.0447 (9)0.0331 (9)0.0320 (8)0.0048 (7)0.0156 (7)0.0109 (7)
C130.0446 (9)0.0497 (11)0.0230 (8)0.0177 (8)0.0053 (7)0.0082 (7)
C140.0786 (13)0.0339 (9)0.0212 (7)0.0190 (9)0.0084 (8)0.0050 (7)
C70.0630 (11)0.0301 (9)0.0206 (7)0.0107 (8)0.0067 (7)0.0029 (6)
C150.0659 (12)0.0296 (9)0.0318 (8)0.0052 (8)0.0175 (8)0.0025 (7)
Geometric parameters (Å, º) top
Si1—C31.8838 (14)C3—C41.5040 (18)
Si1—C101.8832 (13)C10—H10A0.9900
Si1—C21.8534 (14)C10—H10B0.9900
Si1—C11.8563 (14)C8—H80.9500
C11—C121.3928 (19)C8—C71.381 (2)
C11—C161.3887 (19)C2—H2A0.9800
C11—C101.4988 (19)C2—H2B0.9800
C9—H90.9500C2—H2C0.9800
C9—C41.3861 (19)C1—H1A0.9800
C9—C81.384 (2)C1—H1B0.9800
C12—H120.9500C1—H1C0.9800
C12—C131.381 (2)C6—H60.9500
C16—H160.9500C6—C71.375 (2)
C16—C151.378 (2)C13—H130.9500
C5—H50.9500C13—C141.375 (2)
C5—C41.3888 (19)C14—H140.9500
C5—C61.383 (2)C14—C151.376 (2)
C3—H3A0.9900C7—H70.9500
C3—H3B0.9900C15—H150.9500
C10—Si1—C3107.60 (6)C9—C4—C5117.79 (13)
C2—Si1—C3110.57 (6)C9—C4—C3120.81 (12)
C2—Si1—C10110.09 (6)C5—C4—C3121.37 (12)
C2—Si1—C1109.89 (7)C9—C8—H8119.8
C1—Si1—C3109.07 (6)C7—C8—C9120.35 (15)
C1—Si1—C10109.58 (6)C7—C8—H8119.8
C12—C11—C10121.48 (13)Si1—C2—H2A109.5
C16—C11—C12117.78 (13)Si1—C2—H2B109.5
C16—C11—C10120.68 (12)Si1—C2—H2C109.5
C4—C9—H9119.4H2A—C2—H2B109.5
C8—C9—H9119.4H2A—C2—H2C109.5
C8—C9—C4121.11 (14)H2B—C2—H2C109.5
C11—C12—H12119.7Si1—C1—H1A109.5
C13—C12—C11120.64 (15)Si1—C1—H1B109.5
C13—C12—H12119.7Si1—C1—H1C109.5
C11—C16—H16119.4H1A—C1—H1B109.5
C15—C16—C11121.11 (14)H1A—C1—H1C109.5
C15—C16—H16119.4H1B—C1—H1C109.5
C4—C5—H5119.5C5—C6—H6119.7
C6—C5—H5119.5C7—C6—C5120.51 (15)
C6—C5—C4121.09 (14)C7—C6—H6119.7
Si1—C3—H3A108.9C12—C13—H13119.6
Si1—C3—H3B108.9C14—C13—C12120.86 (15)
H3A—C3—H3B107.7C14—C13—H13119.6
C4—C3—Si1113.22 (9)C13—C14—H14120.5
C4—C3—H3A108.9C13—C14—C15119.01 (15)
C4—C3—H3B108.9C15—C14—H14120.5
Si1—C10—H10A109.0C8—C7—H7120.4
Si1—C10—H10B109.0C6—C7—C8119.14 (14)
C11—C10—Si1113.02 (9)C6—C7—H7120.4
C11—C10—H10A109.0C16—C15—H15119.7
C11—C10—H10B109.0C14—C15—C16120.60 (15)
H10A—C10—H10B107.8C14—C15—H15119.7
Si1—C3—C4—C993.41 (13)C10—C11—C12—C13176.30 (13)
Si1—C3—C4—C584.53 (15)C10—C11—C16—C15176.82 (13)
C11—C12—C13—C140.5 (2)C4—C9—C8—C70.8 (2)
C11—C16—C15—C140.5 (2)C4—C5—C6—C70.0 (2)
C9—C8—C7—C60.8 (2)C8—C9—C4—C50.4 (2)
C12—C11—C16—C150.2 (2)C8—C9—C4—C3178.39 (13)
C12—C11—C10—Si186.49 (14)C2—Si1—C3—C452.05 (11)
C12—C13—C14—C150.3 (2)C2—Si1—C10—C1152.86 (11)
C16—C11—C12—C130.7 (2)C1—Si1—C3—C468.89 (11)
C16—C11—C10—Si190.42 (14)C1—Si1—C10—C1168.10 (11)
C5—C6—C7—C80.4 (2)C6—C5—C4—C90.0 (2)
C3—Si1—C10—C11173.44 (9)C6—C5—C4—C3177.97 (13)
C10—Si1—C3—C4172.32 (9)C13—C14—C15—C160.8 (2)

Experimental details

Crystal data
Chemical formulaC16H20Si
Mr240.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)6.1045 (2), 19.8512 (6), 11.8396 (3)
β (°) 98.069 (3)
V3)1420.54 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.2 × 0.1 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur, Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.940, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
21539, 2800, 2280
Rint0.035
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.06
No. of reflections2800
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support.

References

First citationBent, H. A. (1961). Chem. Rev. 61, 275–311.  CrossRef CAS Web of Science Google Scholar
First citationChuit, C., Corriu, R. J. P., Reye, C. & Young, J. C. (1993). Chem. Rev. 93, 1371–1448.  CrossRef CAS Web of Science Google Scholar
First citationCypryk, M. & Apeloig, Y. (2002). Organometallics, 21, 2165–2175.  Web of Science CrossRef CAS Google Scholar
First citationDäschlein, C., Gessner, V. H. & Strohmann, C. (2010). Chem. Eur. J. 16, 4048–4062.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKoller, S. G., Kroesen, U. & Strohmann, C. (2015). Chem. Eur. J. 21, 641–647.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOtt, H., Däschlein, C., Leusser, D., Schildbach, D., Seibel, T., Stalke, D. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 11901–11911.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSommer, L. H. & Whitmore, F. C. (1946). J. Am. Chem. Soc. 68, 485–487.  CrossRef CAS PubMed Web of Science Google Scholar
First citationStrohmann, C., Bindl, M., Fraass, V. C. & Hörnig, J. (2004). Angew. Chem. Int. Ed. 43, 1011–1014.  Web of Science CSD CrossRef CAS Google Scholar
First citationStrohmann, C., Lehmen, K., Wild, K. & Schildbach, D. (2002). Organometallics, 21, 3079–3081.  Web of Science CSD CrossRef CAS Google Scholar
First citationWhitmore, F. C. & Sommer, L. H. (1946). J. Am. Chem. Soc. 68, 481–484.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o391-o392
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds