research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 675-680

Crystal structures of coordination polymers from CaI2 and proline

aInstitute of Inorganic Chemistry, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 28 April 2015; accepted 19 May 2015; online 23 May 2015)

Completing our reports concerning the reaction products from calcium halides and the amino acid proline, two different solids were found for the reaction of L- and DL-proline with CaI2. The enanti­opure amino acid yields the one-dimensional coordination polymer catena-poly[[aqua-μ3-L-proline-tetra-μ2-L-proline-dicalcium] tetra­iodide 1.7-hydrate], {[Ca2(C5H9NO2)5(H2O)]I4·1.7H2O}n, (1), with two independent Ca2+ cations in characteristic seven- and eightfold coordination. Five symmetry-independent zwitterionic L-proline mol­ecules bridge the metal sites into a cationic polymer. Racemic proline forms with Ca2+ cations heterochiral chains of the one-dimensional polymer catena-poly[[di­aquadi-μ2-DL-proline-calcium] diiodide], {[Ca(C5H9NO2)2(H2O)2]I2}n, (2). The centrosymmetric structure is built by one Ca2+ cation that is bridged towards its symmetry equivalents by two zwitterionic proline mol­ecules. In both structures, the iodide ions remain non-coordinating and hydrogen bonds are formed between these counter-anions, the amino groups, coordinating and co-crystallized water mol­ecules. While the overall composition of (1) and (2) is in line with other structures from calcium halides and amino acids, the diversity of the carboxyl­ate coordination geometry is quite surprising.

1. Chemical context

The large field of crystal engineering benefits from the growing amount of structural data obtained by single-crystal diffraction. Amino acids are the building blocks of proteins and important mol­ecules for various applications in chemistry and life sciences. Their metal complexes have, however, been investigated less often than their availability suggests. Many of these studies address the amino acids in their deprotonated form in which it mostly acts as a N,O chelating ligand. (e.g. Ito et al., 1971[Ito, T., Marumo, F. & Saito, Y. (1971). Acta Cryst. B27, 1062-1066.]; Kato et al., 2008[Kato, M., Hayashi, M., Fujihara, T. & Nagasawa, A. (2008). Acta Cryst. E64, m684.]; Magill et al., 1993[Magill, C. P., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1993). Inorg. Chem. 32, 2729-2735.]; Marandi & Shahbakhsh, 2007[Marandi, F. & Shahbakhsh, N. (2007). J. Coord. Chem. 60, 2589-2595.]; Mathieson & Welsh, 1952[Mathieson, A. & Welsh, H. K. (1952). Acta Cryst. 5, 599-604.]; Mikhalyova et al., 2010[Mikhalyova, E. A., Kolotilov, S. V., Cador, O., Pointillart, F., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). Inorg. Chim. Acta, 363, 3453-3460.]; Oki & Yoneda, 1981[Oki, H. & Yoneda, H. (1981). Inorg. Chem. 20, 3875-3879.]). In contrast, the zwitterionic overall neutral amino acids show more analogy to carboxyl­ates; for these, a large variety of coordination modes has been established (Batten et al., 2008[Batten, S. R., Neville, S. M. & Turner, D. R. (2008). Coordination Polymers: Design, Analysis and Application, pp. 172-178, 202-212. London: Royal Society of Chemistry.]). While the protonated amino group is no longer nucleophilic, it may act as a hydrogen-bond donor. The pattern formed by these inter­actions also depends on the chirality of the enanti­opure or racemic amino acid. When both carboxyl­ate coordination and inter­molecular hydrogen bonds are taken into account, a large number of potentially competitive structures arises and subtle changes in the coordination chemistry may determine which product will be obtained. An overview of the crystal chemistry of amino acids has been published by Fleck & Petrosyan (2014[Fleck, M. & Petrosyan, A. M. (2014). Salts of amino acids: Crystallization, Structure and Properties. Switzerland: Springer International Publishing.]). We here complete our reports concerning the reaction products from calcium halides and the amino acid proline. In this context, we encountered coordination polymers, isoreticular coordination networks, and polymorphism (Lamberts et al., 2014b[Lamberts, K., Porsche, S., Hentschel, B., Kuhlen, T. & Englert, U. (2014b). CrystEngComm, 16, 3305-3311.]; Lamberts et al., 2015[Lamberts, K., Şerb, M.-D. & Englert, U. (2015). Acta Cryst. C71, 311-317.]). The two structures reported here are coordination polymers obtained from calcium iodide and proline: the scheme shows that compounds (1) and (2) form from enanti­opure L-proline and racemic proline, respectively.

[Scheme 1]

2. Structural commentary

Compound (1) crystallizes in the chiral ortho­rhom­bic space group P212121 with two calcium cations, five proline ligands, one coordinating water ligand, 1.7 non-coordinating water mol­ecules and four iodide anions in the asymmetric unit; all constituents are necessarily located in general positions (Fig. 1[link]).

[Figure 1]
Figure 1
The asymmetric unit of (1). Displacement ellipsoid are shown at the 80% probability level.

The five independent proline mol­ecules show three different coordination modes; in the following discussion, they are labelled according to their N atom. Proline 1 acts as a chelating ligand towards Ca1 and simultaneously as a bridge to Ca2 in a μ2-κ2:κ1 configuration. An analogous situation is found for proline 4, chelating Ca2 and bridging towards Ca1iii [(iii) = −x + 1, y + [{1\over 2}], −z + [{1\over 2}]]. Proline 3 connects three Ca positions in a μ3-κ2:κ2 coordination mode. The remaining proline ligands (2 and 5) do not chelate but only bridge two cations in a syn–syn configuration. Herein, proline 2 shows a more symmetric coordination, being located approximately in the middle of Ca1 and Ca2, whereas proline 5 is strongly dislocated towards Ca1.

In view of the strongly ionic nature of an inter­action between a carboxyl­ate and a calcium dication, the 3.040 (5) Å distance between Ca1 and O9i [(i) = −x + 1, y − [{1\over 2}], −z + [{1\over 2}]] represents an additional, energetically favourable contact which, however, is much longer than a classical coordinative bond and does not affect the topology of the compound.

We mentioned in our earlier direct comparison between coordination polymers based on Ca2+ and Mn2+ (Lamberts et al., 2014a[Lamberts, K., Möller, A. & Englert, U. (2014a). Acta Cryst. B70, 989-998.]) that the absence of crystal field effects is reflected in variable and often less regular coordination spheres about the alkaline earth cation. The two cations in (1) have significantly different coordination environments: Ca1 is seven-coordin­ated by carboxyl­ato O atoms, while Ca2 offers an additional coordination site towards the water ligand to complete an eightfold coordination environment. The atoms around Ca1 are provided by two oxygen atoms of the chelating part of proline 1, and five single oxygen atoms from different bridging proline mol­ecules. Ca2 is coordinated by two chelating carboxyl­ato groups. Only three additional Ca⋯O contacts are formed from neighbouring, bridging proline ligands, whereas the remaining coordination partner is the coordinating water mol­ecule. Each Ca2+ cation is coordinated by the independent syn–syn bridging proline ligands 2 and 5; they are arranged on opposite sides around Ca1 and next to each other around Ca2.

Overall, a one dimensional coordination polymer is formed (Fig. 2[link]). The chain extends along b; its projection on the bc plane is a sinusoidal curve, with alternating Ca1 and Ca2 positions. Each chain segment is triple bridged with two very similar independent Ca⋯Ca separations of 3.814 (2) and 3.832 (2) Å. The μ3-κ2:κ2 proline 3 coordinates within the sinusoidal plane in the concave parts, while proline 1 and the aqua ligand coordinate on the convex side. Selected distances are compiled in Table 1[link].

Table 1
Selected bond lengths (Å) for (1)[link]

Ca1—O3 2.319 (5) Ca2—O9 2.337 (5)
Ca1—O5 2.326 (5) Ca2—O4 2.368 (5)
Ca1—O6i 2.353 (5) Ca2—O11 2.378 (5)
Ca1—O8i 2.358 (5) Ca2—O1 2.378 (5)
Ca1—O10i 2.393 (5) Ca2—O5 2.442 (5)
Ca1—O2 2.477 (5) Ca2—O8 2.501 (5)
Ca1—O1 2.617 (5) Ca2—O7 2.572 (5)
Ca1—Ca2 3.8144 (18) Ca2—O6 2.820 (5)
Ca1—Ca2i 3.8315 (18)    
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The polymeric chain of (1). H atoms and C atoms of the proline ring have been omitted for clarity.

The iodide I4 shows positional disorder over two mutually exclusive sites, and three proline mol­ecules exhibit slight disorder of carbon atoms of the five-membered proline envelopes.

Coordination polymer (2) forms under similar conditions as (1) but from racemic proline. The compound crystallizes in space group P[\overline{1}] with one CaII cation, two proline ligands and two water ligands and two non-coordinating iodide anions in the asymmetric unit, all in general positions (Fig. 3[link]).

[Figure 3]
Figure 3
The asymmetric unit of (2). Displacement ellipsoid are shown at the 80% probability level.

One proline mol­ecule chelates the calcium cation with its carboxyl­ato group and additionally bridges towards a second calcium of the polymer chain (μ2-κ2:κ1). The other proline mol­ecule only bridges two adjacent calcium atoms in a syn–anti conformation (μ2-κ1:κ1).

Together with the two aqua ligands, this results in a sevenfold coordination of the Ca2+ cation. Since the inversion centres lie in between the calcium atoms, two different chain connections are obtained: one is built by two simultaneously bridging and chelating proline ligands [Ca⋯Ca = 4.032 (4) Å], the other one by two syn–anti bridging proline ligands [Ca⋯Ca = 4.829 (4) Å, parallelogram-shaped motif]. Overall, a zigzag-shaped polymer chain is formed which extends along the shortest unit-cell axis a (Fig. 4[link]). Selected distances are given in Table 2[link].

Table 2
Selected bond lengths (Å) for (2)[link]

Ca1—O1 2.621 (6) Ca1—O1ii 2.323 (5)
Ca1—O2 2.489 (6) Ca1—O3 2.252 (5)
Ca1—O4i 2.396 (5) Ca1—Ca1i 4.829 (4)
Ca1—O5 2.376 (5) Ca1—Ca1ii 4.032 (4)
Ca1—O6 2.365 (6)    
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y, -z.
[Figure 4]
Figure 4
The polymeric chain of (2). H atoms have been omitted for clarity.

3. Supra­molecular features

Since most hydrogen atoms in (1) have been constrained to calculated positions, their relevance should not be overestimated. The following points should, however, be mentioned: all hydrogen-bond donors find suitable acceptors. Most hydrogen bonds involve iodide and hence occur between different residues. However, only a few hydrogen bonds actually connect two neighbouring chains, resulting in an overall three-dimensional network (Fig. 5[link]). Inter­estingly, only one of the five proline mol­ecules contributes to an N—H⋯O hydrogen bond along the chain [N3—H3A⋯O2iii; (iii) = −x + 1, y + [{1\over 2}], −z + [{1\over 2}]].

[Figure 5]
Figure 5
Hydrogen-bond networks formed in (1) (left) and (2) (right). Hydrogen bonds are drawn as light-blue dashed lines.

Each of the two independent aqua ligands in (2) donates hydrogen bonds towards two iodides. The amino group associated with N2 on the one hand also forms a hydrogen bond towards iodide, on the other hand directly connects two neighbouring chains by finding a coordinating water mol­ecule as acceptor. N1 also inter­acts with an iodide counter-anion. This second NH donor can, however, not be unambiguously assigned to a hydrogen-bond acceptor: Two iodide anions are situated in its vicinity and may be regarded as acceptors for a bifurcated hydrogen bond with H⋯I distances of 3.24 (5) and 3.33 (8) Å. Overall, a two-dimensional framework is formed in the ab plane (Fig. 5[link]). A complete overview of hydrogen-bond geometries is given in Tables 3[link] and 4[link].

Table 3
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I3ii 0.99 2.60 3.526 (7) 155
N1—H1B⋯O11 0.99 2.10 2.996 (9) 150
N2—H2A⋯I1 0.99 2.75 3.603 (5) 145
N2—H2B⋯I4A 0.99 2.53 3.400 (6) 146
N3—H3A⋯O2iii 0.99 1.94 2.829 (7) 147
N3—H3B⋯I2 0.99 2.61 3.447 (5) 143
N4—H4A⋯O12 0.99 1.80 2.750 (8) 159
N4—H4B⋯I3ii 0.99 2.92 3.674 (6) 133
N5—H5A⋯I1 0.99 2.74 3.627 (6) 149
N5—H5B⋯I3 0.99 2.62 3.478 (6) 146
O11—H11A⋯I1 0.84 (6) 2.56 (6) 3.389 (5) 171 (7)
O11—H11B⋯I2iii 0.83 (7) 2.71 (7) 3.524 (6) 168 (5)
O12—H12A⋯O10ii 0.83 (4) 2.06 (5) 2.732 (7) 137 (4)
O12—H12B⋯O2iv 0.83 (3) 2.54 (4) 3.339 (8) 162 (7)
O13—H13A⋯I4Aiii 0.85 (11) 2.90 (11) 3.703 (11) 159 (10)
O13—H13B⋯I4Av 0.85 (8) 2.76 (8) 3.598 (11) 172 (10)
Symmetry codes: (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}].

Table 4
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I2 0.85 (7) 2.67 (7) 3.459 (8) 154 (7)
N1—H1B⋯I1 0.86 (7) 3.33 (7) 3.809 (7) 118 (6)
N1—H1B⋯I2iii 0.86 (7) 3.24 (7) 3.695 (7) 116 (5)
N2—H2A⋯I1iv 0.85 (6) 2.88 (6) 3.700 (8) 161 (7)
N2—H2B)⋯O5v 0.86 (6) 2.13 (7) 2.904 (9) 151 (7)
O5—H1W⋯I1 0.84 (7) 2.68 (7) 3.486 (6) 163 (6)
O5—H2W⋯I1vi 0.83 (3) 2.77 (6) 3.491 (6) 147 (7)
O6—H3W⋯I1vii 0.87 (6) 2.65 (6) 3.509 (7) 167 (5)
O6—H4W⋯I2vii 0.84 (5) 2.77 (4) 3.543 (6) 155 (7)
Symmetry codes: (iii) -x+1, -y+1, -z+1; (iv) x+1, y-1, z; (v) x, y-1, z; (vi) -x+1, -y+1, -z; (vii) x+1, y, z.

4. Database survey

Database searches (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) were performed using the Cambridge Crystallographic Database (CSD, Version 5.36, including updates until November 2014). All searches were restricted to error-free entries for which 3D coordinates were available. A search for structures containing calcium and proline or derivatives in any protonation state comes up with eight hits. Six of them correspond to the aforementioned structures published by our group (Lamberts et al., 2014a[Lamberts, K., Möller, A. & Englert, U. (2014a). Acta Cryst. B70, 989-998.],b[Lamberts, K., Porsche, S., Hentschel, B., Kuhlen, T. & Englert, U. (2014b). CrystEngComm, 16, 3305-3311.], 2015[Lamberts, K., Şerb, M.-D. & Englert, U. (2015). Acta Cryst. C71, 311-317.]). These are coordination polymers and networks based on calcium chloride and bromide with both L-proline and DL-proline. The other two structures are a mol­ecular complex with deprotonated N,O-chelating hy­droxy­proline (Kim et al., 1985[Kim, E. E., Sicignano, A. & Eriks, K. (1985). J. Am. Chem. Soc. 107, 6042-6046.]), and a coordination network of calcium pyroglutamate (Schmidbaur et al., 1991[Schmidbaur, H., Kiprof, P., Kumberger, O. & Riede, J. (1991). Chem. Ber. 124, 1083-1087.]).

5. Synthesis and crystallization

Single crystals of (1) were obtained by dissolving 92 mg (0.8 mmol) L-proline in 1 ml of aqueous 0.4 molar CaI2 solution. The solvent was evaporated under controlled conditions (Lamberts et al., 2014b[Lamberts, K., Porsche, S., Hentschel, B., Kuhlen, T. & Englert, U. (2014b). CrystEngComm, 16, 3305-3311.]) at 313 K. Suitable crystals were obtained after 5 d as yellow blocks. Crystals of (2) were obtained by using DL-proline under the same conditions and grew after 5 d as yellow plates.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Non-hydrogen atoms were refined with anisotropic displacement parameters where possible. H atoms connected to carbon were placed in idealized positions and treated as riding, with Uiso(H) = 1.2Ueq(C).

Table 5
Experimental details

  (1) (2)
Crystal data
Chemical formula [Ca2(C5H9NO2)5(H2O)]I4·1.7H2O [Ca(C5H9NO2)2(H2O)2]I2
Mr 1212.21 560.17
Crystal system, space group Orthorhombic, P212121 Triclinic, P[\overline{1}]
Temperature (K) 100 100
a, b, c (Å) 11.5276 (9), 12.7878 (10), 28.285 (2) 7.958 (7), 9.080 (8), 13.591 (11)
α, β, γ (°) 90, 90, 90 105.757 (10), 104.501 (11), 97.911 (12)
V3) 4169.6 (5) 892.5 (13)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.29 3.84
Crystal size (mm) 0.22 × 0.20 × 0.10 0.22 × 0.13 × 0.05
 
Data collection
Diffractometer Bruker D8 with APEX CCD area detector and Incoatec microsource Bruker D8 with APEX CCD area detector and Incoatec microsource
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.563, 0.746 0.447, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 58117, 10475, 9862 8805, 3533, 2603
Rint 0.053 0.079
(sin θ/λ)max−1) 0.669 0.620
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 1.10 0.047, 0.116, 1.02
No. of reflections 10475 3533
No. of parameters 455 214
No. of restraints 10 29
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.93, −0.66 1.05, −2.20
Absolute structure Flack x determined using 4114 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons & Flack, 2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.])
Absolute structure parameter 0.023 (8)
Computer programs: SMART and SAINT-Plus (Bruker, 2008[Bruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

In (1), significant residual density maxima indicated disorder. An alternative position for I4 was assigned and refined with an isotropic displacement parameter to a refined occupancy of 0.134 (7) (total occupancy of I4 over both positions constrained to 1). Atoms C4 and C5, C18 and C19, and C14 were also refined as split over two positions. They were given a common isotropic displacement parameter and their occupancy was refined. The occupancy of the alternative positions refined to 0.519 (12) for C4 and C5, 0.218 (12) for C18 and C19, and 0.270 (12) for C14; the occupancy sum of the alternative sites for each atom was constrained to unity. Carbon atoms connected to disordered neighbours were given two alternative geometries of calculated hydrogen positions. The occupancy of the non-coordinating water mol­ecule associated with O13 refined to 0.707 (17); tentative refinement with full occupancy resulted in an unusually large displacement parameter. Given the limited data quality, H atoms connected to nitro­gen atoms were not refined but treated as riding in idealized positions, with N—H = 0.99 Å and Uiso(H) = 1.2Ueq(N). The hydrogen atoms of the three water mol­ecules were modelled as oriented towards the closest acceptor and restrained to O—H distances of 0.84 Å. Further distance restraints were applied to ensure stable refinement of a reasonable hydrogen-bond geometry.

In (2), no disorder was encountered. Hydrogen atoms attached to non-carbon atoms were located in a difference Fourier map and treated as riding, with Uiso(H) = 1.2Ueq(non-H). N—H distances were refined with similarity restraints whereas O—H distances were restrained to 0.84 Å. H3W was assigned a distance restraint towards a neighbouring I1 anion to ensure suitable hydrogen-bond geometry. Reflection 0[\overline{1}]1 was omitted from the final refinement because it was obstructed by the beamstop.

Supporting information


Chemical context top

The large field of crystal engineering benefits from the growing amount of structural data obtained by single-crystal diffraction. Amino acids are the building blocks of proteins and important molecules for various applications in chemistry and life sciences. Their metal complexes have, however, been investigated less often than their availability suggests. Many of these studies address the amino acids in their deprotonated form in which it mostly acts as a N,O chelating ligand. (e.g. Ito et al., 1971; Kato et al., 2008; Magill et al., 1993; Marandi & Shahbakhsh, 2007; Mathieson et al., 1952; Mikhalyova et al., 2010; Oki & Yoneda, 1981). In contrast, the zwitterionic overall neutral amino acid show more analogy to carboxyl­ates; for these, a large variety of coordination modes has been established (Batten et al., 2008). While the protonated amino group is no longer nucleophilic, it may act as a hydrogen-bond donor. The pattern formed by these inter­actions also depends on the chirality of the enanti­opure or racemic amino acid. When both carboxyl­ate coordination and inter­molecular hydrogen bonds are taken into account, a large number of potentially competitive structures arises and subtle changes in the coordination chemistry may determine which product will be obtained. An overview of the crystal chemistry of amino acids has been published by Fleck & Petrosyan (2014). We here complete our reports concerning the reaction products from calcium halides and the amino acid proline. In this context, we encountered coordination polymers, isoreticular coordination networks, and polymorphism (Lamberts et al., 2014b; Lamberts et al., 2015). The two structures reported here are coordination polymers obtained from calcium iodide and proline: she scheme shows that compounds (1) and (2) form from enanti­opure L-proline and racemic proline, respectively.

Structural commentary top

Compound (1) crystallizes in the chiral orthorhombic space group P212121 with two calcium cations, five proline ligands, one coordinating water ligand, 1.707 uncoordinated water molecules and four iodide anions in the asymmetric unit; all constituents are necessarily located in general positions (Fig. 1).

The five independent proline molecules show three different coordination modes; in the following discussion, they are labelled according to their N atom. Proline 1 acts as a chelating ligand towards Ca1 and simultaneously as a bridge to Ca2 in a µ2-η2:η1 configuration. An analogous situation is found for proline 4, chelating Ca2 and bridging towards Ca1iii [(iii) = -x+1, y+1/2, -z+1/2]. Proline 3 connects three Ca positions in a µ3-η2:η2 coordination mode. The remaining proline ligands (2 and 5) do not chelate but only bridge two cations in a syn–syn configuration. Herein, proline 2 shows a more symmetric coordination, being located approximately in the middle of Ca1 and Ca2, whereas proline 5 is strongly dislocated towards Ca1.

In view of the strongly ionic nature of an inter­action between a carboxyl­ate and a calcium dication, the 3.040 (5) Å distance between Ca1 and O9i [(i) = -x + 1, y - 1/2, -z + 1/2] represents an additional, energetically favourable contact which, however, is much longer than a classical coordinative bond and does not affect the topology of the compound.

We mentioned in our earlier direct comparison between coordination polymers based on Ca2+ and Mn2+ (Lamberts et al., 2014a) that the absence of crystal field effects is reflected in variable and often less regular coordination sphere about the alkaline earth cation. The two cations in (1) have significantly different coordination environments: Ca1 is seven-coordinated by carboxyl­ato O atoms, while Ca2 offers an additional coordination site towards the water ligand to complete an eightfold coordination environment. The atoms around Ca1 are provided by two oxygens of the chelating part of proline 1, and five single oxygen atoms from different bridging proline molecules. Ca2 is coordinated by two chelating carboxyl­ato groups. Only three additional Ca···O contacts are formed from neighbouring, bridging proline ligands, whereas the remaining coordination partner is the coordinated water molecule. Each Ca cation is coordinated by the independent syn–syn bridging proline ligands 2 and 5; they are arranged on opposite sides around Ca1 and next to each other around Ca2.

Overall, a one dimensional coordination polymer is formed (Fig. 2). The chain extends along b; its projection on the bc plane is a sinusoidal curve, with alternating Ca1 and Ca2 positions. Each chain segment is triple bridged with two very similar independent Ca···Ca separations of 3.814 (2) and 3.832 (2) Å. The µ3-η2:η2 proline 3 coordinates within the sinusoidal plane in the concave parts, while proline 1 and the aqua ligand coordinate on the convex side. Selected distances are compiled in Table 1.

The iodide I4 shows positional disorder over two mutually exclusive sites, and three proline molecules exhibit slight disorder of carbon atoms of the five-membered proline envelopes.

Coordination polymer (2) forms under similar conditions as (1) but from racemic proline. The compound crystallizes in space group P1 with one CaII cation, two proline ligands and two water ligands and two non-coordinating iodide anions in the asymmetric unit, all in general positions (Fig. 3).

One proline molecule chelates the calcium centre with its carboxyl­ato group and additionally bridges towards a second calcium of the polymer chain (µ2-η2:η1). The other proline molecule only bridges two adjacent calcium atoms in a syn–anti conformation (µ2-η1:η1).

Together with the two aqua ligands, this results in a sevenfold coordination of the Ca cation. Since the inversion centres lie in between the calcium atoms, two different chain connections are obtained: one is built by two simultaneously bridging and chelating proline ligands [Ca···Ca = 4.032 (4) Å], the other one by two syn–anti bridging proline ligands [Ca···Ca = 4.829 (4) Å, parallelogram-shaped motif]. Overall, a zigzag-shaped polymer chain is formed which extends along the shortest unit-cell axis a (Fig. 4). Selected distances are given in Table 2.

Supra­molecular features top

Since most hydrogen atoms in (1) have been constrained to calculated positions, their relevance should not be overestimated. The following points should, however, be mentioned: all hydrogen-bond donors find suitable acceptors. Most hydrogen bonds involve iodide and hence occur between different residues. However, only a few hydrogen bonds actually connect two neighbouring chains, resulting in an overall three-dimensional network (Fig. 5). Inter­estingly, only one of the five proline molecules contributes to an N—H···O hydrogen bond along the chain [N3—H3A···O2iii; (iii) = -x + 1, y + 1/2, -z + 1/2]).

Each of the two independent aqua ligands in (2) donates hydrogen bonds towards two iodides. The amino group associated with N2 on the one hand also forms a hydrogen bond towards iodide, on the other hand directly connects two neighbouring chains by finding a coordinating water molecule as acceptor. N1 also inter­acts with an iodide counter-anion. This second NH donor can, however, not be unambiguously assigned to a hydrogen-bond acceptor: Two iodide anions are situated in its vicinity and may be regarded as acceptors for a bifurcated hydrogen bond with H···I distances of 3.24 (5) and 3.33 (8) Å. Overall, two-dimensional layers are formed in the ab plane (Fig. 5). A complete overview of hydrogen-bond geometries is given in Tables 2 and 3.

Database survey top

Database searches (Groom & Allen, 2014) were performed using the Cambridge Crystallographic Database (CSD, Version 5.36, including updates until November 2014). All searches were restricted to error-free entries for which 3D coordinates were available. A search for structures containing calcium and proline or derivatives in any protonation state comes up with eight hits. Six of them correspond to the aforementioned structures published by our group (Lamberts et al., 2014a,b, 2015). These are coordination polymers and networks based on calcium chloride and bromide with both L-proline and DL-proline. The other two structures are a molecular complex with deprotonated N,O-chelating hy­droxy­proline (Kim et al., 1985), and a coordination network of calcium pyroglutamate (Schmidbaur et al., 1991).

Synthesis and crystallization top

Single crystals of (1) were obtained by dissolving 92 mg (0.8 mmol) L-proline in 1 ml of aqueous 0.4 molar CaI2 solution. The solvent was evaporated under controlled conditions (Lamberts et al., 2014b) at 313 K. Suitable crystals were obtained after 5 d as yellow blocks. Crystals of (2) were obtained by using DL-proline under the same conditions and grew after 5 d as yellow plates.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 5. Non-hydrogen atoms were refined with anisotropic displacement parameters where possible. H atoms connected to carbon were placed in idealized positions and treated as riding, with Uiso(H) = 1.2Ueq(C).

In (1), significant residual density maxima indicated disorder. An alternative position for I4 was assigned and refined with an isotropic displacement parameter to a refined occupancy of 0.134 (7) (total occupancy of I4 over both positions constrained to 1). Atoms C4 and C5, C18 and C19, and C14 were also refined as split over two positions. They were given a common isotropic displacement parameter and their occupancy was refined. The occupancy of the alternative positions refined to 0.519 (12) for C4 and C5, 0.218 (12) for C18 and C19, and 0.270 (12) for C14; the occupancy sum of the alternative sites for each atom was constrained to unity. Carbon atoms connected to disordered neighbours were given two alternative geometries of calculated hydrogen positions. The occupancy of the uncoordinated water molecule associated with O13 refined to 0.707 (17); tentative refinement with full occupancy resulted in an unusually large displacement parameter. Given the limited data quality, H atoms connected to nitro­gen were not refined but treated as riding in idealized positions, with N—H = 0.99 Å and Uiso(H)=1.2Ueq(N). The hydrogen atoms of the three water molecules were modelled as oriented towards the closest acceptor and restrained to O—H distances of 0.84 Å. Further distance restraints were applied to ensure stable refinement of a reasonable hydrogen-bond geometry.

In (2), no disorder was encountered. Hydrogen atoms attached to non-carbon atoms were located in a difference Fourier map and treated as riding, with Uiso(H)=1.2Ueq(non-H). N—H distances were refined with similarity restraints whereas O—H distances were restrained to 0.84 Å. H3W was assigned a distance restraint towards a neighbouring I1 anion to ensure suitable hydrogen-bond geometry. Reflection 011 was omitted from the final refinement because it was obstructed by the beamstop.

Related literature top

For related literature, see: Batten et al. (2008); Fleck & Petrosyan (2014); Groom & Allen (2014); Ito et al. (1971); Kato et al. (2008); Kim et al. (1985); Lamberts et al. (2014a, 2014b, 2015); Magill et al. (1993); Marandi & Shahbakhsh (2007); Mathieson et al. (1952); Mikhalyova et al. (2010); Oki & Yoneda (1981); Schmidbaur et al. (1991).

Computing details top

For both compounds, data collection: SMART (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (1). Displacement ellipsoid are shown at the 80% probability level.
[Figure 2] Fig. 2. The polymeric chain of (1). H atoms and C atoms of the proline ring have been omitted for clarity.
[Figure 3] Fig. 3. The asymmetric unit of (2). Displacement ellipsoid are shown at the 80% probability level.
[Figure 4] Fig. 4. The polymeric chain of (2). H atoms have been omitted for clarity.
[Figure 5] Fig. 5. Hydrogen-bond networks formed in (1) (left) and (2) (right). Hydrogen bonds are drawn as light-blue dashed lines.
(1) catena-poly[[aqua-µ3-L-proline-tetra-µ2-L-proline-dicalcium] tetraiodide 1.7-hydrate] top
Crystal data top
[Ca2(C5H9NO2)5(H2O)]I4·1.7H2ODx = 1.931 Mg m3
Mr = 1212.21Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9906 reflections
a = 11.5276 (9) Åθ = 2.4–26.3°
b = 12.7878 (10) ŵ = 3.29 mm1
c = 28.285 (2) ÅT = 100 K
V = 4169.6 (5) Å3Block, yellow
Z = 40.22 × 0.20 × 0.10 mm
F(000) = 2356
Data collection top
Bruker D8 with APEX CCD area detector and Incoatec microsource
diffractometer
9862 reflections with I > 2σ(I)
ω scansRint = 0.053
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 28.4°, θmin = 1.9°
Tmin = 0.563, Tmax = 0.746h = 1515
58117 measured reflectionsk = 1717
10475 independent reflectionsl = 3737
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.005P)2 + 7.P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.93 e Å3
10475 reflectionsΔρmin = 0.66 e Å3
455 parametersAbsolute structure: Flack x determined using 4114 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
10 restraintsAbsolute structure parameter: 0.023 (8)
Crystal data top
[Ca2(C5H9NO2)5(H2O)]I4·1.7H2OV = 4169.6 (5) Å3
Mr = 1212.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.5276 (9) ŵ = 3.29 mm1
b = 12.7878 (10) ÅT = 100 K
c = 28.285 (2) Å0.22 × 0.20 × 0.10 mm
Data collection top
Bruker D8 with APEX CCD area detector and Incoatec microsource
diffractometer
10475 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
9862 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 0.746Rint = 0.053
58117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072Δρmax = 0.93 e Å3
S = 1.10Δρmin = 0.66 e Å3
10475 reflectionsAbsolute structure: Flack x determined using 4114 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
455 parametersAbsolute structure parameter: 0.023 (8)
10 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.50063 (4)0.78534 (4)0.46773 (2)0.02285 (11)
I20.09876 (4)0.41042 (4)0.14734 (2)0.02416 (11)
I30.11459 (5)0.59585 (4)0.30876 (2)0.03516 (14)
I4A0.56556 (15)0.30647 (9)0.51264 (3)0.0380 (4)0.866 (7)
I4B0.6104 (12)0.3290 (8)0.5192 (3)0.063 (3)*0.134 (7)
Ca10.53455 (11)0.37203 (10)0.27820 (5)0.0131 (3)
Ca20.55317 (12)0.66087 (10)0.31101 (5)0.0138 (3)
O10.6580 (4)0.5048 (4)0.32742 (16)0.0182 (10)
O20.7001 (5)0.3367 (4)0.33170 (18)0.0239 (12)
O30.4226 (4)0.4116 (4)0.34390 (16)0.0247 (11)
O40.4391 (4)0.5772 (4)0.36946 (16)0.0236 (11)
O50.4838 (4)0.5378 (4)0.25134 (16)0.0183 (10)
O60.4223 (5)0.6927 (4)0.22803 (16)0.0223 (11)
O70.7622 (4)0.6802 (4)0.28044 (16)0.0183 (10)
O80.6321 (4)0.7962 (4)0.25585 (16)0.0204 (10)
O90.4242 (4)0.7994 (4)0.32275 (16)0.0213 (11)
O100.3145 (4)0.9020 (4)0.27825 (16)0.0216 (10)
O110.6681 (5)0.7372 (4)0.37170 (18)0.0226 (11)
H11B0.716 (6)0.783 (5)0.364 (3)0.027*
H11A0.632 (6)0.755 (6)0.3963 (18)0.027*
O121.0987 (5)0.9338 (4)0.24099 (19)0.0306 (13)
H12A1.141 (4)0.928 (7)0.2647 (10)0.037*
H12B1.154 (3)0.924 (6)0.2225 (8)0.037*
O130.6478 (10)0.6644 (9)0.0612 (4)0.059 (4)0.707 (17)
H13B0.712 (6)0.670 (13)0.047 (4)0.070*0.707 (17)
H13A0.612 (10)0.691 (12)0.038 (3)0.070*0.707 (17)
N10.8513 (6)0.5710 (5)0.3712 (2)0.0291 (15)
H1A0.90930.59190.34720.035*
H1B0.77790.60770.36390.035*
N20.4256 (6)0.5121 (4)0.4621 (2)0.0242 (14)
H2A0.45390.57900.44880.029*
H2B0.49220.47510.47650.029*
N30.2892 (5)0.6171 (4)0.1571 (2)0.0192 (13)
H3A0.28750.68550.17350.023*
H3B0.21140.58490.15980.023*
N40.9412 (5)0.7729 (5)0.2348 (2)0.0218 (13)
H4A0.98490.83730.24250.026*
H4B0.94020.72760.26320.026*
N50.2588 (5)0.7619 (5)0.3864 (2)0.0222 (14)
H5A0.34090.76070.39670.027*
H5B0.23960.69340.37210.027*
C10.7208 (6)0.4304 (5)0.3402 (2)0.0171 (14)
C20.8318 (6)0.4551 (5)0.3680 (2)0.0174 (14)
H20.89960.42190.35190.021*
C3A0.8275 (8)0.4183 (7)0.4196 (3)0.035 (2)0.481 (12)
H3A10.89860.37950.42850.042*0.481 (12)
H3A20.75860.37420.42580.042*0.481 (12)
C4A0.8195 (15)0.5273 (13)0.4458 (6)0.0263 (10)*0.481 (12)
H4A10.73780.55090.44790.032*0.481 (12)
H4A20.85160.52210.47820.032*0.481 (12)
C5A0.8904 (16)0.6024 (14)0.4161 (6)0.0263 (10)*0.481 (12)
H5A10.87100.67630.42290.032*0.481 (12)
H5A20.97480.59120.42010.032*0.481 (12)
C3B0.8275 (8)0.4183 (7)0.4196 (3)0.035 (2)0.519 (12)
H3B10.74660.41910.43130.042*0.519 (12)
H3B20.85770.34600.42210.042*0.519 (12)
C4B0.8989 (14)0.4893 (11)0.4475 (5)0.0263 (10)*0.519 (12)
H4B10.98270.47840.44180.032*0.519 (12)
H4B20.88230.48380.48170.032*0.519 (12)
C5B0.8564 (15)0.5922 (14)0.4269 (5)0.0263 (10)*0.519 (12)
H5B10.91100.64970.43430.032*0.519 (12)
H5B20.77880.61030.43940.032*0.519 (12)
C60.4157 (6)0.4818 (5)0.3747 (2)0.0199 (15)
C70.3731 (7)0.4458 (6)0.4233 (2)0.0235 (16)
H70.39530.37100.42830.028*
C80.2421 (7)0.4584 (7)0.4310 (3)0.0323 (19)
H8A0.19900.39700.41880.039*
H8B0.21260.52240.41540.039*
C90.2318 (8)0.4665 (7)0.4850 (3)0.035 (2)
H9A0.15780.50010.49420.042*
H9B0.23620.39650.49990.042*
C100.3337 (8)0.5329 (6)0.4991 (3)0.0308 (19)
H10A0.36200.51300.53090.037*
H10B0.31210.60780.49950.037*
C110.4304 (6)0.5976 (5)0.2230 (2)0.0145 (13)
C120.3783 (6)0.5474 (5)0.1796 (2)0.0174 (14)
H120.34220.47900.18830.021*
C13A0.4678 (7)0.5310 (7)0.1402 (3)0.0322 (19)0.730 (12)
H13C0.50220.46010.14180.039*0.730 (12)
H13D0.53050.58370.14190.039*0.730 (12)
C14A0.3950 (10)0.5447 (8)0.0946 (4)0.0263 (10)*0.730 (12)
H14A0.44510.56080.06720.032*0.730 (12)
H14B0.34920.48100.08770.032*0.730 (12)
C15A0.3196 (8)0.6325 (6)0.1059 (3)0.0274 (18)0.730 (12)
H15A0.24910.63160.08590.033*0.730 (12)
H15B0.36050.69980.10110.033*0.730 (12)
C13B0.4678 (7)0.5310 (7)0.1402 (3)0.0322 (19)0.270 (12)
H13E0.45280.46470.12310.039*0.270 (12)
H13F0.54740.52900.15330.039*0.270 (12)
C14B0.452 (3)0.627 (2)0.1061 (10)0.0263 (10)*0.270 (12)
H14C0.48770.69160.11930.032*0.270 (12)
H14D0.48440.61340.07430.032*0.270 (12)
C15B0.3196 (8)0.6325 (6)0.1059 (3)0.0274 (18)0.270 (12)
H15C0.29210.70120.09430.033*0.270 (12)
H15D0.28600.57650.08600.033*0.270 (12)
C160.7340 (6)0.7567 (5)0.2558 (2)0.0162 (14)
C17A0.8181 (6)0.8005 (6)0.2205 (2)0.0214 (15)0.782 (12)
H17A0.80820.87770.21670.026*0.782 (12)
C18A0.8031 (10)0.7417 (9)0.1718 (4)0.0263 (10)*0.782 (12)
H18A0.77910.66820.17660.032*0.782 (12)
H18B0.74510.77720.15150.032*0.782 (12)
C19A0.9234 (8)0.7480 (8)0.1502 (3)0.0263 (10)*0.782 (12)
H19A0.94170.81930.13890.032*0.782 (12)
H19B0.93350.69740.12410.032*0.782 (12)
C20A0.9976 (7)0.7173 (7)0.1949 (3)0.0341 (18)0.782 (12)
H20A0.99630.64070.20000.041*0.782 (12)
H20B1.07910.74030.19110.041*0.782 (12)
C17B0.8181 (6)0.8005 (6)0.2205 (2)0.0214 (15)0.218 (12)
H17B0.81270.87810.22420.026*0.218 (12)
C18B0.812 (3)0.784 (3)0.1740 (13)0.0263 (10)*0.218 (12)
H18C0.84510.84310.15610.032*0.218 (12)
H18D0.73050.77290.16390.032*0.218 (12)
C19B0.884 (3)0.684 (3)0.1670 (12)0.0263 (10)*0.218 (12)
H19C0.90060.66980.13320.032*0.218 (12)
H19D0.84680.62170.18140.032*0.218 (12)
C20B0.9976 (7)0.7173 (7)0.1949 (3)0.0341 (18)0.218 (12)
H20C1.04320.65610.20570.041*0.218 (12)
H20D1.04770.76430.17600.041*0.218 (12)
C210.3319 (6)0.8491 (5)0.3143 (2)0.0142 (13)
C220.2389 (6)0.8479 (5)0.3520 (2)0.0178 (14)
H220.16250.83560.33620.021*
C230.2274 (7)0.9435 (6)0.3836 (3)0.033 (2)
H23A0.17250.99460.36980.040*
H23B0.30360.97800.38800.040*
C240.1817 (8)0.9015 (9)0.4305 (3)0.046 (3)
H24A0.23250.92420.45680.055*
H24B0.10240.92820.43650.055*
C250.1804 (7)0.7848 (8)0.4272 (3)0.039 (2)
H25A0.21000.75260.45660.047*
H25B0.10100.75860.42110.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0253 (2)0.0261 (2)0.01717 (19)0.0004 (2)0.0012 (2)0.00403 (18)
I20.0162 (2)0.0236 (2)0.0327 (2)0.0018 (2)0.0035 (2)0.0007 (2)
I30.0306 (3)0.0202 (2)0.0547 (3)0.0013 (2)0.0197 (3)0.0077 (2)
I4A0.0449 (7)0.0271 (5)0.0421 (4)0.0087 (4)0.0073 (4)0.0069 (3)
Ca10.0131 (7)0.0115 (6)0.0148 (6)0.0007 (5)0.0016 (5)0.0011 (5)
Ca20.0152 (7)0.0120 (6)0.0143 (6)0.0013 (5)0.0007 (5)0.0003 (5)
O10.020 (3)0.014 (2)0.021 (2)0.003 (2)0.006 (2)0.0020 (19)
O20.028 (3)0.013 (2)0.030 (3)0.003 (2)0.009 (2)0.002 (2)
O30.031 (3)0.024 (3)0.020 (2)0.010 (2)0.010 (2)0.008 (2)
O40.032 (3)0.023 (3)0.016 (2)0.005 (2)0.005 (2)0.001 (2)
O50.019 (3)0.019 (2)0.016 (2)0.000 (2)0.007 (2)0.0007 (18)
O60.031 (3)0.011 (2)0.025 (3)0.001 (2)0.009 (2)0.0040 (19)
O70.017 (3)0.017 (2)0.022 (2)0.003 (2)0.001 (2)0.0052 (19)
O80.009 (2)0.028 (3)0.024 (2)0.002 (2)0.0005 (19)0.010 (2)
O90.014 (3)0.022 (3)0.028 (3)0.003 (2)0.002 (2)0.001 (2)
O100.021 (3)0.023 (3)0.020 (2)0.004 (2)0.002 (2)0.001 (2)
O110.018 (3)0.026 (3)0.024 (3)0.009 (2)0.007 (2)0.005 (2)
O120.020 (3)0.035 (3)0.036 (3)0.002 (3)0.002 (2)0.005 (3)
O130.054 (7)0.055 (7)0.067 (8)0.001 (6)0.007 (6)0.022 (6)
N10.029 (4)0.022 (4)0.036 (4)0.007 (3)0.013 (3)0.000 (3)
N20.040 (4)0.015 (3)0.018 (3)0.000 (3)0.007 (3)0.002 (2)
N30.015 (3)0.016 (3)0.026 (3)0.000 (2)0.010 (2)0.001 (2)
N40.014 (3)0.027 (3)0.025 (3)0.002 (3)0.005 (2)0.001 (3)
N50.019 (3)0.029 (4)0.019 (3)0.004 (3)0.002 (2)0.001 (3)
C10.017 (3)0.017 (4)0.017 (3)0.003 (3)0.001 (3)0.002 (3)
C20.019 (4)0.010 (3)0.023 (3)0.005 (3)0.010 (3)0.000 (3)
C3A0.042 (5)0.039 (5)0.026 (4)0.009 (4)0.009 (4)0.007 (4)
C3B0.042 (5)0.039 (5)0.026 (4)0.009 (4)0.009 (4)0.007 (4)
C60.021 (4)0.020 (3)0.018 (3)0.001 (3)0.001 (3)0.003 (3)
C70.034 (5)0.021 (4)0.016 (3)0.008 (3)0.002 (3)0.004 (3)
C80.028 (5)0.047 (5)0.023 (4)0.009 (4)0.006 (3)0.001 (4)
C90.041 (5)0.039 (5)0.026 (4)0.014 (4)0.017 (4)0.003 (4)
C100.045 (5)0.031 (4)0.016 (4)0.001 (4)0.011 (3)0.003 (3)
C110.015 (3)0.014 (3)0.014 (3)0.000 (3)0.001 (2)0.003 (3)
C120.022 (4)0.013 (3)0.017 (3)0.003 (3)0.008 (3)0.001 (2)
C13A0.029 (5)0.046 (5)0.021 (4)0.015 (4)0.002 (3)0.002 (3)
C15A0.039 (5)0.020 (4)0.023 (4)0.004 (3)0.011 (3)0.001 (3)
C13B0.029 (5)0.046 (5)0.021 (4)0.015 (4)0.002 (3)0.002 (3)
C15B0.039 (5)0.020 (4)0.023 (4)0.004 (3)0.011 (3)0.001 (3)
C160.015 (4)0.016 (3)0.018 (3)0.003 (3)0.000 (3)0.001 (3)
C17A0.012 (3)0.025 (4)0.027 (4)0.003 (3)0.005 (3)0.010 (3)
C20A0.022 (4)0.046 (5)0.034 (4)0.010 (4)0.010 (4)0.004 (4)
C17B0.012 (3)0.025 (4)0.027 (4)0.003 (3)0.005 (3)0.010 (3)
C20B0.022 (4)0.046 (5)0.034 (4)0.010 (4)0.010 (4)0.004 (4)
C210.012 (3)0.013 (3)0.018 (3)0.002 (3)0.000 (3)0.006 (3)
C220.016 (3)0.018 (3)0.020 (3)0.004 (3)0.006 (3)0.001 (3)
C230.024 (4)0.028 (4)0.047 (5)0.006 (3)0.018 (4)0.015 (4)
C240.036 (5)0.077 (7)0.024 (4)0.021 (5)0.004 (4)0.024 (5)
C250.022 (4)0.076 (7)0.019 (4)0.005 (5)0.008 (3)0.001 (4)
Geometric parameters (Å, º) top
Ca1—O32.319 (5)C3A—H3A10.9900
Ca1—O52.326 (5)C3A—H3A20.9900
Ca1—O6i2.353 (5)C4A—C5A1.51 (2)
Ca1—O8i2.358 (5)C4A—H4A10.9900
Ca1—O10i2.393 (5)C4A—H4A20.9900
Ca1—O22.477 (5)C5A—H5A10.9900
Ca1—O12.617 (5)C5A—H5A20.9900
Ca1—Ca23.8144 (18)C4B—C5B1.52 (2)
Ca1—Ca2i3.8315 (18)C4B—H4B10.9900
Ca2—O92.337 (5)C4B—H4B20.9900
Ca2—O42.368 (5)C5B—H5B10.9900
Ca2—O112.378 (5)C5B—H5B20.9900
Ca2—O12.378 (5)C6—C71.531 (9)
Ca2—O52.442 (5)C7—C81.534 (11)
Ca2—O82.501 (5)C7—H71.0000
Ca2—O72.572 (5)C8—C91.536 (11)
Ca2—O62.820 (5)C8—H8A0.9900
Ca1—C12.871 (7)C8—H8B0.9900
Ca1—C21i3.049 (7)C9—C101.504 (12)
Ca2—C112.976 (6)C9—H9A0.9900
O1—C11.249 (8)C9—H9B0.9900
O2—C11.245 (8)C10—H10A0.9900
O3—C61.254 (8)C10—H10B0.9900
O4—C61.258 (8)C11—C121.510 (9)
O5—C111.267 (8)C12—C13A1.534 (10)
O6—C111.229 (8)C12—H121.0000
O6—Ca1ii2.353 (5)C13A—C14A1.547 (13)
O7—C161.245 (8)C13A—H13C0.9900
O8—C161.278 (8)C13A—H13D0.9900
O8—Ca1ii2.358 (5)C14A—C15A1.455 (12)
O9—C211.262 (8)C14A—H14A0.9900
O9—Ca1ii3.040 (5)C14A—H14B0.9900
O10—C211.240 (8)C15A—H15A0.9900
O10—Ca1ii2.393 (5)C15A—H15B0.9900
O11—H11B0.83 (3)C14B—H14C0.9900
O11—H11A0.84 (3)C14B—H14D0.9900
O12—H12A0.84 (3)C16—C17A1.501 (9)
O12—H12B0.84 (2)C17A—C18A1.579 (13)
O13—H13B0.84 (3)C17A—H17A1.0000
O13—H13A0.84 (3)C18A—C19A1.517 (15)
N1—C5A1.406 (18)C18A—H18A0.9900
N1—C21.502 (9)C18A—H18B0.9900
N1—C5B1.599 (17)C19A—C20A1.575 (12)
N1—H1A0.9900C19A—H19A0.9900
N1—H1B0.9900C19A—H19B0.9900
N2—C71.511 (9)C20A—H20A0.9900
N2—C101.514 (9)C20A—H20B0.9900
N2—H2A0.9900C18B—C19B1.54 (5)
N2—H2B0.9900C18B—H18C0.9900
N3—C121.501 (8)C18B—H18D0.9900
N3—C15A1.505 (9)C19B—H19C0.9900
N3—H3A0.9900C19B—H19D0.9900
N3—H3B0.9900C21—C221.512 (9)
N4—C20A1.485 (9)C21—Ca1ii3.049 (7)
N4—C17A1.517 (9)C22—C231.522 (10)
N4—H4A0.9900C22—H221.0000
N4—H4B0.9900C23—C241.526 (12)
N5—C221.487 (9)C23—H23A0.9900
N5—C251.495 (9)C23—H23B0.9900
N5—H5A0.9900C24—C251.496 (14)
N5—H5B0.9900C24—H24A0.9900
C1—C21.535 (9)C24—H24B0.9900
C2—C3A1.533 (10)C25—H25A0.9900
C2—H21.0000C25—H25B0.9900
C3A—C4A1.582 (18)
O3—Ca1—O585.58 (18)C20A—N4—C17A108.5 (6)
O3—Ca1—O6i112.99 (18)C20A—N4—H4A110.0
O5—Ca1—O6i156.43 (17)C17A—N4—H4A110.0
O3—Ca1—O8i87.92 (17)C20A—N4—H4B110.0
O5—Ca1—O8i92.09 (18)C17A—N4—H4B110.0
O6i—Ca1—O8i74.98 (18)H4A—N4—H4B108.4
O3—Ca1—O10i154.78 (18)C22—N5—C25105.5 (6)
O5—Ca1—O10i79.57 (18)C22—N5—H5A110.6
O6i—Ca1—O10i87.28 (18)C25—N5—H5A110.6
O8i—Ca1—O10i112.72 (17)C22—N5—H5B110.6
O3—Ca1—O288.79 (18)C25—N5—H5B110.6
O5—Ca1—O2124.01 (17)H5A—N5—H5B108.8
O6i—Ca1—O272.86 (17)O2—C1—O1124.5 (6)
O8i—Ca1—O2143.35 (18)O2—C1—C2117.2 (6)
O10i—Ca1—O282.90 (18)O1—C1—C2118.3 (6)
O3—Ca1—O174.61 (17)O2—C1—Ca159.2 (4)
O5—Ca1—O173.69 (16)O1—C1—Ca165.7 (4)
O6i—Ca1—O1123.88 (17)C2—C1—Ca1171.9 (5)
O8i—Ca1—O1158.03 (17)N1—C2—C3A104.6 (6)
O10i—Ca1—O181.68 (17)N1—C2—C1111.0 (5)
O2—Ca1—O151.27 (15)C3A—C2—C1113.4 (6)
O3—Ca1—C182.51 (19)N1—C2—H2109.2
O5—Ca1—C198.66 (18)C3A—C2—H2109.2
O6i—Ca1—C198.12 (19)C1—C2—H2109.2
O8i—Ca1—C1164.98 (19)C2—C3A—C4A100.2 (8)
O10i—Ca1—C179.75 (18)C2—C3A—H3A1111.7
O2—Ca1—C125.59 (17)C4A—C3A—H3A1111.7
O1—Ca1—C125.78 (16)C2—C3A—H3A2111.7
O3—Ca1—O9i155.05 (17)C4A—C3A—H3A2111.7
O5—Ca1—O9i90.62 (15)H3A1—C3A—H3A2109.5
O6i—Ca1—O9i66.36 (15)C5A—C4A—C3A105.5 (12)
O8i—Ca1—O9i67.56 (14)C5A—C4A—H4A1110.6
O10i—Ca1—O9i46.25 (15)C3A—C4A—H4A1110.6
O2—Ca1—O9i113.43 (16)C5A—C4A—H4A2110.6
O1—Ca1—O9i127.79 (15)C3A—C4A—H4A2110.6
C1—Ca1—O9i122.43 (17)H4A1—C4A—H4A2108.8
O3—Ca1—C21i171.73 (18)N1—C5A—C4A98.5 (13)
O5—Ca1—C21i86.23 (17)N1—C5A—H5A1112.1
O6i—Ca1—C21i74.66 (17)C4A—C5A—H5A1112.1
O8i—Ca1—C21i91.22 (17)N1—C5A—H5A2112.1
O10i—Ca1—C21i22.46 (17)C4A—C5A—H5A2112.1
O2—Ca1—C21i96.76 (18)H5A1—C5A—H5A2109.7
O1—Ca1—C21i104.14 (17)C5B—C4B—H4B1112.0
C1—Ca1—C21i99.89 (19)C5B—C4B—H4B2112.0
O9i—Ca1—C21i23.91 (15)H4B1—C4B—H4B2109.7
O3—Ca1—Ca267.96 (13)C4B—C5B—N1104.0 (12)
O5—Ca1—Ca237.94 (11)C4B—C5B—H5B1110.9
O6i—Ca1—Ca2161.81 (13)N1—C5B—H5B1110.9
O8i—Ca1—Ca2122.92 (13)C4B—C5B—H5B2110.9
O10i—Ca1—Ca288.06 (13)N1—C5B—H5B2110.9
O2—Ca1—Ca289.12 (12)H5B1—C5B—H5B2109.0
O1—Ca1—Ca237.96 (11)O3—C6—O4126.7 (6)
C1—Ca1—Ca263.74 (14)O3—C6—C7115.4 (6)
O9i—Ca1—Ca2121.02 (10)O4—C6—C7117.9 (6)
C21i—Ca1—Ca2105.87 (13)N2—C7—C6110.7 (6)
O3—Ca1—Ca2i122.34 (13)N2—C7—C8103.5 (6)
O5—Ca1—Ca2i111.14 (12)C6—C7—C8114.3 (6)
O6i—Ca1—Ca2i47.13 (12)N2—C7—H7109.4
O8i—Ca1—Ca2i39.30 (12)C6—C7—H7109.4
O10i—Ca1—Ca2i82.27 (13)C8—C7—H7109.4
O2—Ca1—Ca2i118.50 (12)C7—C8—C9102.9 (7)
O1—Ca1—Ca2i162.03 (12)C7—C8—H8A111.2
C1—Ca1—Ca2i141.53 (14)C9—C8—H8A111.2
O9i—Ca1—Ca2i37.58 (9)C7—C8—H8B111.2
C21i—Ca1—Ca2i60.03 (13)C9—C8—H8B111.2
Ca2—Ca1—Ca2i149.04 (4)H8A—C8—H8B109.1
O9—Ca2—O483.70 (18)C10—C9—C8104.0 (6)
O9—Ca2—O1186.60 (18)C10—C9—H9A111.0
O4—Ca2—O1189.47 (17)C8—C9—H9A111.0
O9—Ca2—O1158.70 (18)C10—C9—H9B111.0
O4—Ca2—O176.51 (17)C8—C9—H9B111.0
O11—Ca2—O185.43 (18)H9A—C9—H9B109.0
O9—Ca2—O5112.25 (17)C9—C10—N2105.3 (6)
O4—Ca2—O590.55 (16)C9—C10—H10A110.7
O11—Ca2—O5161.04 (19)N2—C10—H10A110.7
O1—Ca2—O576.15 (16)C9—C10—H10B110.7
O9—Ca2—O878.20 (17)N2—C10—H10B110.7
O4—Ca2—O8161.84 (18)H10A—C10—H10B108.8
O11—Ca2—O887.91 (17)O6—C11—O5124.1 (6)
O1—Ca2—O8121.14 (17)O6—C11—C12119.0 (6)
O5—Ca2—O897.70 (16)O5—C11—C12116.8 (6)
O9—Ca2—O7124.82 (17)O6—C11—Ca270.7 (4)
O4—Ca2—O7142.96 (17)O5—C11—Ca253.4 (3)
O11—Ca2—O771.41 (17)C12—C11—Ca2170.1 (5)
O1—Ca2—O770.74 (16)N3—C12—C11111.4 (5)
O5—Ca2—O797.83 (17)N3—C12—C13A103.5 (5)
O8—Ca2—O751.90 (15)C11—C12—C13A112.5 (6)
O9—Ca2—O670.63 (15)N3—C12—H12109.8
O4—Ca2—O6110.47 (17)C11—C12—H12109.8
O11—Ca2—O6147.10 (17)C13A—C12—H12109.8
O1—Ca2—O6123.75 (15)C12—C13A—C14A103.0 (7)
O5—Ca2—O648.91 (14)C12—C13A—H13C111.2
O8—Ca2—O664.88 (15)C14A—C13A—H13C111.2
O7—Ca2—O6101.97 (16)C12—C13A—H13D111.2
O9—Ca2—C16102.41 (19)C14A—C13A—H13D111.2
O4—Ca2—C16166.73 (19)H13C—C13A—H13D109.1
O11—Ca2—C1679.26 (19)C15A—C14A—C13A103.3 (7)
O1—Ca2—C1695.45 (19)C15A—C14A—H14A111.1
O5—Ca2—C1697.83 (18)C13A—C14A—H14A111.1
O8—Ca2—C1626.30 (17)C15A—C14A—H14B111.1
O7—Ca2—C1625.62 (16)C13A—C14A—H14B111.1
O6—Ca2—C1682.76 (17)H14A—C14A—H14B109.1
O9—Ca2—C1191.29 (18)C14A—C15A—N3104.4 (6)
O4—Ca2—C11101.37 (18)C14A—C15A—H15A110.9
O11—Ca2—C11168.68 (18)N3—C15A—H15A110.9
O1—Ca2—C11100.18 (18)C14A—C15A—H15B110.9
O5—Ca2—C1124.62 (17)N3—C15A—H15B110.9
O8—Ca2—C1180.77 (17)H15A—C15A—H15B108.9
O7—Ca2—C11100.99 (16)H14C—C14B—H14D109.7
O6—Ca2—C1124.29 (15)O7—C16—O8123.4 (6)
C16—Ca2—C1190.36 (18)O7—C16—C17A119.8 (6)
O9—Ca2—Ca1137.14 (13)O8—C16—C17A116.6 (6)
O4—Ca2—Ca172.60 (12)O7—C16—Ca263.3 (4)
O11—Ca2—Ca1127.19 (14)O8—C16—Ca260.2 (3)
O1—Ca2—Ca142.59 (11)C17A—C16—Ca2171.1 (5)
O5—Ca2—Ca135.85 (11)C16—C17A—N4109.8 (6)
O8—Ca2—Ca1122.59 (13)C16—C17A—C18A109.4 (7)
O7—Ca2—Ca193.67 (11)N4—C17A—C18A103.0 (6)
O6—Ca2—Ca184.68 (10)C16—C17A—H17A111.4
C16—Ca2—Ca1108.72 (14)N4—C17A—H17A111.4
C11—Ca2—Ca160.42 (13)C18A—C17A—H17A111.4
O9—Ca2—Ca1ii52.50 (12)C19A—C18A—C17A103.0 (8)
O4—Ca2—Ca1ii129.19 (14)C19A—C18A—H18A111.2
O11—Ca2—Ca1ii109.46 (14)C17A—C18A—H18A111.2
O1—Ca2—Ca1ii148.63 (13)C19A—C18A—H18B111.2
O5—Ca2—Ca1ii84.99 (11)C17A—C18A—H18B111.2
O8—Ca2—Ca1ii36.66 (11)H18A—C18A—H18B109.1
O7—Ca2—Ca1ii87.60 (11)C18A—C19A—C20A99.3 (8)
O6—Ca2—Ca1ii37.70 (10)C18A—C19A—H19A111.9
C16—Ca2—Ca1ii62.21 (14)C20A—C19A—H19A111.9
C11—Ca2—Ca1ii61.01 (13)C18A—C19A—H19B111.9
Ca1—Ca2—Ca1ii120.49 (4)C20A—C19A—H19B111.9
C1—O1—Ca2171.9 (4)H19A—C19A—H19B109.6
C1—O1—Ca188.5 (4)N4—C20A—C19A104.6 (6)
Ca2—O1—Ca199.45 (17)N4—C20A—H20A110.8
C1—O2—Ca195.2 (4)C19A—C20A—H20A110.8
C6—O3—Ca1138.5 (5)N4—C20A—H20B110.8
C6—O4—Ca2129.8 (4)C19A—C20A—H20B110.8
C11—O5—Ca1151.4 (4)H20A—C20A—H20B108.9
C11—O5—Ca2102.0 (4)C19B—C18B—H18C111.1
Ca1—O5—Ca2106.21 (18)C19B—C18B—H18D111.1
C11—O6—Ca1ii160.2 (5)H18C—C18B—H18D109.1
C11—O6—Ca285.0 (4)C18B—C19B—H19C112.0
Ca1ii—O6—Ca295.17 (16)C18B—C19B—H19D112.0
C16—O7—Ca291.1 (4)H19C—C19B—H19D109.6
C16—O8—Ca1ii155.6 (4)O10—C21—O9124.6 (6)
C16—O8—Ca293.5 (4)O10—C21—C22118.0 (6)
Ca1ii—O8—Ca2104.04 (17)O9—C21—C22117.3 (6)
C21—O9—Ca2153.0 (4)O10—C21—Ca1ii47.5 (3)
C21—O9—Ca1ii78.5 (4)O9—C21—Ca1ii77.6 (4)
Ca2—O9—Ca1ii89.92 (15)C22—C21—Ca1ii164.5 (5)
C21—O10—Ca1ii110.1 (4)N5—C22—C21111.1 (5)
Ca2—O11—H11B117 (5)N5—C22—C23102.9 (6)
Ca2—O11—H11A115 (6)C21—C22—C23117.9 (6)
H11B—O11—H11A111 (8)N5—C22—H22108.2
H12A—O12—H12B92 (3)C21—C22—H22108.2
H13B—O13—H13A91 (4)C23—C22—H22108.2
C5A—N1—C2112.5 (9)C22—C23—C24105.0 (7)
C2—N1—C5B103.4 (8)C22—C23—H23A110.7
C5A—N1—H1A109.1C24—C23—H23A110.7
C2—N1—H1A109.1C22—C23—H23B110.7
C5A—N1—H1B109.1C24—C23—H23B110.7
C2—N1—H1B109.1H23A—C23—H23B108.8
H1A—N1—H1B107.8C25—C24—C23107.4 (6)
C7—N2—C10108.6 (6)C25—C24—H24A110.2
C7—N2—H2A110.0C23—C24—H24A110.2
C10—N2—H2A110.0C25—C24—H24B110.2
C7—N2—H2B110.0C23—C24—H24B110.2
C10—N2—H2B110.0H24A—C24—H24B108.5
H2A—N2—H2B108.3N5—C25—C24103.8 (7)
C12—N3—C15A109.0 (5)N5—C25—H25A111.0
C12—N3—H3A109.9C24—C25—H25A111.0
C15A—N3—H3A109.9N5—C25—H25B111.0
C12—N3—H3B109.9C24—C25—H25B111.0
C15A—N3—H3B109.9H25A—C25—H25B109.0
H3A—N3—H3B108.3
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I3iii0.992.603.526 (7)155
N1—H1B···O110.992.102.996 (9)150
N2—H2A···I10.992.753.603 (5)145
N2—H2B···I4A0.992.533.400 (6)146
N3—H3A···O2ii0.991.942.829 (7)147
N3—H3B···I20.992.613.447 (5)143
N4—H4A···O120.991.802.750 (8)159
N4—H4B···I3iii0.992.923.674 (6)133
N5—H5A···I10.992.743.627 (6)149
N5—H5B···I30.992.623.478 (6)146
O11—H11A···I10.84 (6)2.56 (6)3.389 (5)171 (7)
O11—H11B···I2ii0.83 (7)2.71 (7)3.524 (6)168 (5)
O12—H12A···O10iii0.83 (4)2.06 (5)2.732 (7)137 (4)
O12—H12B···O2iv0.83 (3)2.54 (4)3.339 (8)162 (7)
O13—H13A···I4Aii0.85 (11)2.90 (11)3.703 (11)159 (10)
O13—H13B···I4Av0.85 (8)2.76 (8)3.598 (11)172 (10)
Symmetry codes: (ii) x+1, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x+2, y+1/2, z+1/2; (v) x+3/2, y+1, z1/2.
(2) catena-Poly[[diaquadi-m2-DL-proline-calcium] diiodide] top
Crystal data top
[Ca(C5H9NO2)2(H2O)2]I2Z = 2
Mr = 560.17F(000) = 540
Triclinic, P1Dx = 2.084 Mg m3
a = 7.958 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.080 (8) ÅCell parameters from 1555 reflections
c = 13.591 (11) Åθ = 2.4–23.8°
α = 105.757 (10)°µ = 3.84 mm1
β = 104.501 (11)°T = 100 K
γ = 97.911 (12)°Plate, yellow
V = 892.5 (13) Å30.22 × 0.13 × 0.05 mm
Data collection top
Bruker D8 with APEX CCD area detector and Incoatec microsource
diffractometer
2603 reflections with I > 2σ(I)
ω scansRint = 0.079
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 26.1°, θmin = 2.4°
Tmin = 0.447, Tmax = 0.745h = 99
8805 measured reflectionsk = 1111
3533 independent reflectionsl = 1616
Refinement top
Refinement on F229 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.020P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3533 reflectionsΔρmax = 1.05 e Å3
214 parametersΔρmin = 2.20 e Å3
Crystal data top
[Ca(C5H9NO2)2(H2O)2]I2γ = 97.911 (12)°
Mr = 560.17V = 892.5 (13) Å3
Triclinic, P1Z = 2
a = 7.958 (7) ÅMo Kα radiation
b = 9.080 (8) ŵ = 3.84 mm1
c = 13.591 (11) ÅT = 100 K
α = 105.757 (10)°0.22 × 0.13 × 0.05 mm
β = 104.501 (11)°
Data collection top
Bruker D8 with APEX CCD area detector and Incoatec microsource
diffractometer
3533 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2603 reflections with I > 2σ(I)
Tmin = 0.447, Tmax = 0.745Rint = 0.079
8805 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04729 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 1.05 e Å3
3533 reflectionsΔρmin = 2.20 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ca10.7566 (2)0.11114 (16)0.03989 (10)0.0214 (3)
O10.4901 (7)0.0237 (6)0.1072 (4)0.0294 (12)
O20.7073 (7)0.2219 (6)0.2165 (4)0.0302 (12)
O50.6524 (7)0.3423 (6)0.0331 (4)0.0248 (12)
H1W0.576 (8)0.367 (9)0.063 (6)0.030*
H2W0.625 (10)0.331 (9)0.032 (2)0.030*
O61.0260 (8)0.2610 (7)0.1713 (4)0.0360 (14)
H3W1.125 (6)0.313 (7)0.169 (6)0.043*
H4W1.028 (12)0.256 (10)0.232 (3)0.043*
O30.8632 (7)0.1067 (6)0.0374 (4)0.0303 (13)
O41.0911 (7)0.2226 (6)0.0632 (4)0.0305 (13)
N20.9542 (9)0.4002 (8)0.1626 (5)0.0257 (15)
H2A1.053 (7)0.415 (9)0.153 (6)0.031*
H2B0.896 (10)0.491 (6)0.120 (5)0.031*
N10.5637 (9)0.2912 (7)0.3744 (5)0.0250 (14)
H1A0.480 (8)0.329 (9)0.393 (6)0.030*
H1B0.625 (9)0.362 (7)0.358 (6)0.030*
C100.8593 (11)0.1694 (9)0.2437 (6)0.0308 (18)
H80.88940.05860.24630.037*
H90.74230.19000.25630.037*
C91.0000 (12)0.2034 (10)0.3254 (6)0.038 (2)
H100.97760.17600.39590.045*
H111.11930.14370.33360.045*
C80.9858 (11)0.3790 (9)0.2807 (5)0.0312 (19)
H121.09700.40910.31190.037*
H130.88480.44020.29330.037*
C70.8560 (10)0.2808 (8)0.1353 (5)0.0246 (16)
H140.73020.33320.09140.030*
C60.9462 (10)0.1969 (8)0.0726 (5)0.0240 (16)
C50.4773 (11)0.0135 (9)0.3293 (6)0.0292 (18)
H10.38040.00090.36170.035*
H20.47130.08660.27490.035*
C40.6589 (12)0.0713 (9)0.4148 (6)0.034 (2)
H30.66700.01520.46830.041*
H40.75600.05670.38210.041*
C30.6678 (11)0.2433 (9)0.4655 (5)0.0287 (18)
H50.79260.30410.49430.034*
H60.61290.25940.52430.034*
C20.4668 (11)0.1463 (8)0.2801 (5)0.0251 (15)
H70.34020.15090.24970.030*
C10.5620 (10)0.1303 (8)0.1964 (5)0.0211 (12)
I10.40641 (6)0.52553 (5)0.18903 (3)0.02488 (16)
I20.18089 (7)0.31320 (6)0.44926 (3)0.02940 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca10.0248 (8)0.0207 (7)0.0185 (6)0.0044 (6)0.0025 (6)0.0100 (5)
O10.034 (3)0.032 (2)0.0183 (17)0.007 (2)0.0011 (17)0.0083 (16)
O20.029 (2)0.034 (3)0.025 (2)0.0015 (19)0.0045 (18)0.0125 (19)
O50.033 (3)0.025 (3)0.019 (2)0.010 (2)0.008 (2)0.011 (2)
O60.034 (4)0.046 (4)0.023 (2)0.003 (3)0.006 (2)0.011 (2)
O30.037 (3)0.026 (3)0.034 (3)0.014 (3)0.009 (2)0.018 (2)
O40.032 (3)0.040 (3)0.032 (3)0.013 (3)0.013 (2)0.023 (2)
N20.032 (4)0.026 (3)0.020 (3)0.012 (3)0.005 (3)0.009 (2)
N10.032 (4)0.022 (3)0.023 (3)0.007 (3)0.008 (3)0.010 (2)
C100.041 (5)0.026 (4)0.032 (4)0.010 (4)0.017 (4)0.012 (3)
C90.039 (5)0.048 (5)0.018 (3)0.001 (4)0.002 (3)0.010 (3)
C80.038 (5)0.034 (4)0.025 (3)0.011 (4)0.008 (3)0.016 (3)
C70.027 (4)0.024 (4)0.026 (3)0.007 (3)0.006 (3)0.014 (3)
C60.026 (4)0.020 (4)0.021 (3)0.004 (3)0.005 (3)0.002 (3)
C50.031 (5)0.027 (4)0.028 (4)0.002 (4)0.010 (3)0.009 (3)
C40.042 (5)0.035 (5)0.028 (4)0.009 (4)0.006 (3)0.017 (3)
C30.030 (5)0.038 (5)0.019 (3)0.012 (4)0.005 (3)0.011 (3)
C20.033 (4)0.018 (4)0.024 (2)0.002 (3)0.008 (3)0.008 (2)
C10.025 (2)0.023 (3)0.0176 (18)0.0091 (18)0.0015 (16)0.0138 (16)
I10.0270 (3)0.0256 (3)0.0244 (2)0.0070 (2)0.00549 (19)0.01326 (19)
I20.0328 (3)0.0318 (3)0.0246 (2)0.0078 (2)0.0083 (2)0.0107 (2)
Geometric parameters (Å, º) top
Ca1—O12.621 (6)N1—C31.512 (8)
Ca1—O22.489 (6)N1—H1A0.86 (4)
Ca1—O4i2.396 (5)N1—H1B0.86 (4)
Ca1—O52.376 (5)C10—C91.496 (10)
Ca1—O62.365 (6)C10—C71.536 (10)
Ca1—O1ii2.323 (5)C10—H80.9900
Ca1—O32.252 (5)C10—H90.9900
Ca1—Ca1i4.829 (4)C9—C81.521 (11)
Ca1—Ca1ii4.032 (4)C9—H100.9900
Ca1—C12.911 (8)C9—H110.9900
Ca1—C6i3.238 (8)C8—H120.9900
O1—C11.263 (8)C8—H130.9900
O1—Ca1ii2.323 (5)C7—C61.527 (10)
O2—C11.248 (9)C7—H141.0000
O5—H1W0.83 (2)C6—Ca1i3.238 (8)
O5—H2W0.83 (2)C5—C41.527 (10)
O6—H3W0.876 (17)C5—C21.531 (10)
O6—H4W0.84 (2)C5—H10.9900
O3—C61.241 (8)C5—H20.9900
O4—C61.237 (9)C4—C31.510 (11)
O4—Ca1i2.396 (5)C4—H30.9900
N2—C71.493 (9)C4—H40.9900
N2—C81.515 (9)C3—H50.9900
N2—H2A0.85 (4)C3—H60.9900
N2—H2B0.85 (4)C2—C11.505 (10)
N1—C21.509 (9)C2—H71.0000
O3—Ca1—O1ii92.68 (19)H3W—O6—H4W114 (8)
O3—Ca1—O688.9 (2)C6—O3—Ca1158.2 (5)
O1ii—Ca1—O6171.4 (2)C6—O4—Ca1i122.8 (4)
O3—Ca1—O5176.2 (2)C7—N2—C8108.4 (6)
O1ii—Ca1—O586.69 (18)C7—N2—H2A127 (6)
O6—Ca1—O591.2 (2)C8—N2—H2A103 (5)
O3—Ca1—O4i102.3 (2)C7—N2—H2B109 (5)
O1ii—Ca1—O4i93.50 (19)C8—N2—H2B115 (5)
O6—Ca1—O4i77.94 (19)H2A—N2—H2B94 (7)
O5—Ca1—O4i73.95 (19)C2—N1—C3109.3 (5)
O3—Ca1—O2109.18 (18)C2—N1—H1A104 (5)
O1ii—Ca1—O2118.14 (19)C3—N1—H1A108 (5)
O6—Ca1—O269.1 (2)C2—N1—H1B114 (5)
O5—Ca1—O274.40 (17)C3—N1—H1B114 (5)
O4i—Ca1—O2133.12 (19)H1A—N1—H1B107 (7)
O3—Ca1—O194.58 (19)C9—C10—C7105.1 (6)
O1ii—Ca1—O170.85 (19)C9—C10—H8110.7
O6—Ca1—O1117.43 (18)C7—C10—H8110.7
O5—Ca1—O188.80 (18)C9—C10—H9110.7
O4i—Ca1—O1157.57 (16)C7—C10—H9110.7
O2—Ca1—O150.92 (16)H8—C10—H9108.8
O3—Ca1—C1103.14 (19)C10—C9—C8104.3 (6)
O1ii—Ca1—C194.8 (2)C10—C9—H10110.9
O6—Ca1—C193.0 (2)C8—C9—H10110.9
O5—Ca1—C180.70 (18)C10—C9—H11110.9
O4i—Ca1—C1152.77 (19)C8—C9—H11110.9
O2—Ca1—C125.20 (17)H10—C9—H11108.9
O1—Ca1—C125.71 (17)N2—C8—C9101.0 (6)
O3—Ca1—C6i85.3 (2)N2—C8—H12111.6
O1ii—Ca1—C6i102.18 (19)C9—C8—H12111.6
O6—Ca1—C6i69.55 (19)N2—C8—H13111.6
O5—Ca1—C6i91.14 (19)C9—C8—H13111.6
O4i—Ca1—C6i18.73 (16)H12—C8—H13109.4
O2—Ca1—C6i135.61 (18)N2—C7—C6110.1 (6)
O1—Ca1—C6i173.02 (16)N2—C7—C10105.0 (5)
C1—Ca1—C6i160.72 (19)C6—C7—C10112.6 (6)
O3—Ca1—Ca1ii94.52 (16)N2—C7—H14109.7
O1ii—Ca1—Ca1ii37.88 (14)C6—C7—H14109.7
O6—Ca1—Ca1ii150.35 (15)C10—C7—H14109.7
O5—Ca1—Ca1ii87.31 (15)O4—C6—O3127.2 (7)
O4i—Ca1—Ca1ii129.49 (14)O4—C6—C7118.5 (6)
O2—Ca1—Ca1ii82.06 (14)O3—C6—C7114.2 (7)
O1—Ca1—Ca1ii32.97 (10)O4—C6—Ca1i38.4 (3)
C1—Ca1—Ca1ii57.49 (15)O3—C6—Ca1i88.8 (5)
C6i—Ca1—Ca1ii140.06 (13)C7—C6—Ca1i156.9 (5)
O3—Ca1—H2W159.2 (9)C4—C5—C2102.8 (6)
O1ii—Ca1—H2W74.4 (14)C4—C5—H1111.2
O6—Ca1—H2W101.6 (15)C2—C5—H1111.2
O5—Ca1—H2W17.6 (9)C4—C5—H2111.2
O4i—Ca1—H2W63.2 (15)C2—C5—H2111.2
O2—Ca1—H2W91.5 (10)H1—C5—H2109.1
O1—Ca1—H2W96.4 (16)C3—C4—C5103.7 (6)
C1—Ca1—H2W94.3 (13)C3—C4—H3111.0
C6i—Ca1—H2W81.7 (15)C5—C4—H3111.0
Ca1ii—Ca1—H2W85.2 (17)C3—C4—H4111.0
O3—Ca1—H4W85.8 (18)C5—C4—H4111.0
O1ii—Ca1—H4W172.4 (12)H3—C4—H4109.0
O6—Ca1—H4W16.2 (12)C4—C3—N1103.9 (5)
O5—Ca1—H4W95.3 (18)C4—C3—H5111.0
O4i—Ca1—H4W94.1 (12)N1—C3—H5111.0
O2—Ca1—H4W55.7 (15)C4—C3—H6111.0
O1—Ca1—H4W101.8 (12)N1—C3—H6111.0
C1—Ca1—H4W78.3 (13)H5—C3—H6109.0
C6i—Ca1—H4W85.2 (12)C1—C2—N1109.3 (6)
Ca1ii—Ca1—H4W134.7 (12)C1—C2—C5111.5 (6)
H2W—Ca1—H4W109 (2)N1—C2—C5103.2 (5)
C1—O1—Ca1ii150.9 (5)C1—C2—H7110.9
C1—O1—Ca190.1 (5)N1—C2—H7110.9
Ca1ii—O1—Ca1109.15 (19)C5—C2—H7110.9
C1—O2—Ca196.7 (4)O2—C1—O1122.3 (7)
Ca1—O5—H1W120 (6)O2—C1—C2119.6 (6)
Ca1—O5—H2W102 (5)O1—C1—C2118.1 (7)
H1W—O5—H2W115 (8)O2—C1—Ca158.1 (4)
Ca1—O6—H3W134 (5)O1—C1—Ca164.2 (4)
Ca1—O6—H4W112 (6)C2—C1—Ca1177.7 (5)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I20.85 (7)2.67 (7)3.459 (8)154 (7)
N1—H1B···I10.86 (7)3.33 (7)3.809 (7)118 (6)
N1—H1B···I2iii0.86 (7)3.24 (7)3.695 (7)116 (5)
N2—H2A···I1iv0.85 (6)2.88 (6)3.700 (8)161 (7)
N2—H2B)···O5v0.86 (6)2.13 (7)2.904 (9)151 (7)
O5—H1W···I10.84 (7)2.68 (7)3.486 (6)163 (6)
O5—H2W···I1vi0.83 (3)2.77 (6)3.491 (6)147 (7)
O6—H3W···I1vii0.87 (6)2.65 (6)3.509 (7)167 (5)
O6—H4W···I2vii0.84 (5)2.77 (4)3.543 (6)155 (7)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y1, z; (v) x, y1, z; (vi) x+1, y+1, z; (vii) x+1, y, z.
Selected bond lengths (Å) for (1) top
Ca1—O32.319 (5)Ca2—O92.337 (5)
Ca1—O52.326 (5)Ca2—O42.368 (5)
Ca1—O6i2.353 (5)Ca2—O112.378 (5)
Ca1—O8i2.358 (5)Ca2—O12.378 (5)
Ca1—O10i2.393 (5)Ca2—O52.442 (5)
Ca1—O22.477 (5)Ca2—O82.501 (5)
Ca1—O12.617 (5)Ca2—O72.572 (5)
Ca1—Ca23.8144 (18)Ca2—O62.820 (5)
Ca1—Ca2i3.8315 (18)
Symmetry code: (i) x+1, y1/2, z+1/2.
Selected bond lengths (Å) for (2) top
Ca1—O12.621 (6)Ca1—O1ii2.323 (5)
Ca1—O22.489 (6)Ca1—O32.252 (5)
Ca1—O4i2.396 (5)Ca1—Ca1i4.829 (4)
Ca1—O52.376 (5)Ca1—Ca1ii4.032 (4)
Ca1—O62.365 (6)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I3ii0.992.603.526 (7)155
N1—H1B···O110.992.102.996 (9)150
N2—H2A···I10.992.753.603 (5)145
N2—H2B···I4A0.992.533.400 (6)146
N3—H3A···O2iii0.991.942.829 (7)147
N3—H3B···I20.992.613.447 (5)143
N4—H4A···O120.991.802.750 (8)159
N4—H4B···I3ii0.992.923.674 (6)133
N5—H5A···I10.992.743.627 (6)149
N5—H5B···I30.992.623.478 (6)146
O11—H11A···I10.84 (6)2.56 (6)3.389 (5)171 (7)
O11—H11B···I2iii0.83 (7)2.71 (7)3.524 (6)168 (5)
O12—H12A···O10ii0.83 (4)2.06 (5)2.732 (7)137 (4)
O12—H12B···O2iv0.83 (3)2.54 (4)3.339 (8)162 (7)
O13—H13A···I4Aiii0.85 (11)2.90 (11)3.703 (11)159 (10)
O13—H13B···I4Av0.85 (8)2.76 (8)3.598 (11)172 (10)
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x+3/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I20.85 (7)2.67 (7)3.459 (8)154 (7)
N1—H1B···I10.86 (7)3.33 (7)3.809 (7)118 (6)
N1—H1B···I2iii0.86 (7)3.24 (7)3.695 (7)116 (5)
N2—H2A···I1iv0.85 (6)2.88 (6)3.700 (8)161 (7)
N2—H2B)···O5v0.86 (6)2.13 (7)2.904 (9)151 (7)
O5—H1W···I10.84 (7)2.68 (7)3.486 (6)163 (6)
O5—H2W···I1vi0.83 (3)2.77 (6)3.491 (6)147 (7)
O6—H3W···I1vii0.87 (6)2.65 (6)3.509 (7)167 (5)
O6—H4W···I2vii0.84 (5)2.77 (4)3.543 (6)155 (7)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y1, z; (v) x, y1, z; (vi) x+1, y+1, z; (vii) x+1, y, z.

Experimental details

(1)(2)
Crystal data
Chemical formula[Ca2(C5H9NO2)5(H2O)]I4·1.7H2O[Ca(C5H9NO2)2(H2O)2]I2
Mr1212.21560.17
Crystal system, space groupOrthorhombic, P212121Triclinic, P1
Temperature (K)100100
a, b, c (Å)11.5276 (9), 12.7878 (10), 28.285 (2)7.958 (7), 9.080 (8), 13.591 (11)
α, β, γ (°)90, 90, 90105.757 (10), 104.501 (11), 97.911 (12)
V3)4169.6 (5)892.5 (13)
Z42
Radiation typeMo KαMo Kα
µ (mm1)3.293.84
Crystal size (mm)0.22 × 0.20 × 0.100.22 × 0.13 × 0.05
Data collection
DiffractometerBruker D8 with APEX CCD area detector and Incoatec microsource
diffractometer
Bruker D8 with APEX CCD area detector and Incoatec microsource
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.563, 0.7460.447, 0.745
No. of measured, independent and
observed [I > 2σ(I)] reflections
58117, 10475, 9862 8805, 3533, 2603
Rint0.0530.079
(sin θ/λ)max1)0.6690.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.072, 1.10 0.047, 0.116, 1.02
No. of reflections104753533
No. of parameters455214
No. of restraints1029
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.661.05, 2.20
Absolute structureFlack x determined using 4114 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)?
Absolute structure parameter0.023 (8)?

Computer programs: SMART (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors thank Evonik Industries for providing proline.

References

First citationBatten, S. R., Neville, S. M. & Turner, D. R. (2008). Coordination Polymers: Design, Analysis and Application, pp. 172–178, 202–212. London: Royal Society of Chemistry.  Google Scholar
First citationBruker (2008). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFleck, M. & Petrosyan, A. M. (2014). Salts of amino acids: Crystallization, Structure and Properties. Switzerland: Springer International Publishing.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationIto, T., Marumo, F. & Saito, Y. (1971). Acta Cryst. B27, 1062–1066.  CSD CrossRef IUCr Journals Google Scholar
First citationKato, M., Hayashi, M., Fujihara, T. & Nagasawa, A. (2008). Acta Cryst. E64, m684.  CSD CrossRef IUCr Journals Google Scholar
First citationKim, E. E., Sicignano, A. & Eriks, K. (1985). J. Am. Chem. Soc. 107, 6042–6046.  CSD CrossRef CAS Google Scholar
First citationLamberts, K., Möller, A. & Englert, U. (2014a). Acta Cryst. B70, 989–998.  CSD CrossRef IUCr Journals Google Scholar
First citationLamberts, K., Porsche, S., Hentschel, B., Kuhlen, T. & Englert, U. (2014b). CrystEngComm, 16, 3305–3311.  CSD CrossRef CAS Google Scholar
First citationLamberts, K., Şerb, M.-D. & Englert, U. (2015). Acta Cryst. C71, 311–317.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMagill, C. P., Floriani, C., Chiesi-Villa, A. & Rizzoli, C. (1993). Inorg. Chem. 32, 2729–2735.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarandi, F. & Shahbakhsh, N. (2007). J. Coord. Chem. 60, 2589–2595.  CSD CrossRef CAS Google Scholar
First citationMathieson, A. & Welsh, H. K. (1952). Acta Cryst. 5, 599–604.  CSD CrossRef IUCr Journals Google Scholar
First citationMikhalyova, E. A., Kolotilov, S. V., Cador, O., Pointillart, F., Golhen, S., Ouahab, L. & Pavlishchuk, V. V. (2010). Inorg. Chim. Acta, 363, 3453–3460.  CSD CrossRef CAS Google Scholar
First citationOki, H. & Yoneda, H. (1981). Inorg. Chem. 20, 3875–3879.  CSD CrossRef CAS Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSchmidbaur, H., Kiprof, P., Kumberger, O. & Riede, J. (1991). Chem. Ber. 124, 1083–1087.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages 675-680
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds