organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o393-o394

Crystal structure of (4Z)-4-[(2E)-3-(4-chloro­phen­yl)-1-hy­dr­oxy­prop-2-en-1-yl­­idene]-5-methyl-2-phenyl-1H-pyrazol-5(4H)-one

aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 4 May 2015; accepted 6 May 2015; online 13 May 2015)

In the the asymmetric unit of the title compound, C19H15ClN2O2, there are two symmetry-independent mol­ecules, which adopt similar conformations. The largest difference is observed in the dihedral angles between the phenyl and the pyrazole fragments [17.00 (12) and 23.42 (10)°]. A strong intra­molecular O—H⋯O hydrogen bond with the S (6) motif is observed in both mol­ecules. Pairs of ππ stacking inter­actions between the phenyl groups [centroid–centroid distances = 3.6627 (13) and 3.7156 (14) Å] assemble the mol­ecules into two types of centrosymmetric dimers. Weak C—H⋯O inter­actions connect mol­ecules into chains along the b axis.

1. Related literature

For related structures and background, see: Chaudhry et al. (2012[Chaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044.]); Holzer et al. (1999[Holzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799-818.]); Malik et al. (2009[Malik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan (2009). Acta Cryst. E65, o3046.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C19H15ClN2O2

  • Mr = 338.78

  • Triclinic, [P \overline 1]

  • a = 11.3207 (6) Å

  • b = 11.4044 (6) Å

  • c = 15.2839 (9) Å

  • α = 70.567 (3)°

  • β = 70.925 (3)°

  • γ = 62.621 (2)°

  • V = 1616.40 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.35 × 0.28 × 0.16 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.919, Tmax = 0.963

  • 24363 measured reflections

  • 6925 independent reflections

  • 4587 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.155

  • S = 1.02

  • 6925 reflections

  • 437 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.82 1.78 2.542 (2) 153
C16—H16⋯O1i 0.93 2.47 3.239 (2) 140
O4—H4A⋯O3 0.82 1.78 2.540 (2) 153
C37—H37⋯O3ii 0.93 2.61 3.314 (3) 133
Symmetry codes: (i) x-1, y, z; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The crystal structures of 5-methyl-2-phenyl-4-((E)-3-phenyl-2-hydroxy- prop-2-enylidene)-1,2-dihydro-3H-pyrazol-3-one (Holzer et al., 1999), (4Z)-4-((2E)-1-hydroxy-3-(4-methoxyphenyl)prop-2-en-1- ylidene)-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one (Malik et al., 2009) and (4Z)-4-((2E)-1-hydroxy-3-(3-nitrophenyl)prop- 2-en-1-ylidene)-3-methyl-1-(4-methylphenyl)-1H-pyrazol-5(4H)-one (Chaudhry et al., 2012) have been published which are related to the title compound (I, Fig. 1). The title compound was synthesized for the biological studies as well as for the preparation of different metal complexes.

There are two symmetry independent molecules in the asymmetric unit. In one molecule, the benzene ring A (C1—C6), the 5-methyl-2,4-dihydro -3H-pyrazol-3-one moiety B (C7–C10/N1/N2/O1), prop-2-en-1-ol group C (C11/C12/C13/O2) and chlorobenzene group D (C14—C19/CL1) are planar with r. m. s. deviations of 0.0062, 0.0131, 0.0319 and 0.0050 Å, respectively. The dihedral angle between A/B, B/C, C/D and A/D is 23.21 (9), 6.20 (10), 18.48 (12) and 1.15 (12)°, respectively. In the second molecule, similar groups i.e. the benzene ring E (C20—C25), the 5-methyl-2,4- dihydro-3H-pyrazol-3-one moiety F (C26–C29/N3/N4/O3), prop-2-en-1-ol group G (C30/C31/C32/O4) and chlorobenzene group H (C33—C38/CL2) are planar with r. m. s. deviations of 0.0041, 0.0080, 0.0272 and 0.0144 Å, respectively. The dihedral angle between E/F, F/G, G/H and E/H is 16.74 (10), 5.66 (12), 13.81 (13) and 3.07 (13)°, respectively. There exist strong intramolecular hydrogen bond O—H····O (Table 1, Fig. 1) forming S(6) ring motif (Bernstein et al., 1995) in each molecule. The molecules are interlinked with each other due to C—H···O interactions (Table 1, Fig. 2). There exist ππ interactions with a distance of 3.6627 (13) Å between the centeroids of Cg2—Cg3i and Cg3—Cg2i [i = -x, -y, 1 - z], where Cg2 and Cg3 are the centroids of the benzene ring A (C1—C6) and the benzene ring D (C14–C19), respectively. Similarly, there exist ππ interactions with a distance of 3.7156 (14) Å between the centeroids of Cg5—Cg6ii and Cg6—Cg5ii [ii = 2 - x, -y, 1 - z], where Cg5 and Cg6 are the centroids of the benzene ring E (C20—C25) and the benzene ring H (C33–C38), respectively.

Related literature top

For related structures and background, see: Chaudhry et al. (2012); Holzer et al. (1999); Malik et al. (2009).

Experimental top

For the preparation of title compound, 4-acetyl-3-methyl-1-phenyl-5-hydroxy pyrazole (0.218 g, 1 mmoL), 4-chlorobenzaldehyde (0.211 g, 1.5 mmoL) in glacial acetic acid (10 ml) and concentrated sulfuric acid (0.2 ml) were stirred at 353–360 K for 5 h. The reaction mixture was diluted with distilled water (50 ml). The precipitate was filtered, washed with methanol and dried. The crude product was purified by column chromatography using n-hexane and ethyl acetate mixtures as eluents. The product was recrystallized using n-hexane to afford red plates (yield 53%; m.p. 483 K).

Refinement top

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å, O—H= 0.82 Å) and refined as riding with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl and hydroxy and x =1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The partial packing (PLATON; Spek, 2009) showing fragments of two chains via C—H···O interactions.
(4Z)-4-[(2E)-3-(4-Chlorophenyl)-1-hydroxyprop-2-en-1-ylidene]-5-methyl-2-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C19H15ClN2O2Z = 4
Mr = 338.78F(000) = 704
Triclinic, P1Dx = 1.392 Mg m3
a = 11.3207 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4044 (6) ÅCell parameters from 4689 reflections
c = 15.2839 (9) Åθ = 1.4–27.0°
α = 70.567 (3)°µ = 0.25 mm1
β = 70.925 (3)°T = 296 K
γ = 62.621 (2)°Plate, red
V = 1616.40 (16) Å30.35 × 0.28 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6925 independent reflections
Radiation source: fine-focus sealed tube4587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 1.4°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1414
Tmin = 0.919, Tmax = 0.963l = 1819
24363 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0798P)2 + 0.3075P]
where P = (Fo2 + 2Fc2)/3
6925 reflections(Δ/σ)max < 0.001
437 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C19H15ClN2O2γ = 62.621 (2)°
Mr = 338.78V = 1616.40 (16) Å3
Triclinic, P1Z = 4
a = 11.3207 (6) ÅMo Kα radiation
b = 11.4044 (6) ŵ = 0.25 mm1
c = 15.2839 (9) ÅT = 296 K
α = 70.567 (3)°0.35 × 0.28 × 0.16 mm
β = 70.925 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6925 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4587 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.963Rint = 0.038
24363 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
6925 reflectionsΔρmin = 0.32 e Å3
437 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.47686 (7)0.29735 (7)0.36338 (6)0.0759 (2)
O10.30105 (14)0.03074 (15)0.37120 (13)0.0633 (4)
O20.17939 (15)0.11029 (15)0.37314 (13)0.0627 (4)
H2A0.23970.08850.37180.094*
N10.15162 (16)0.25570 (17)0.37444 (12)0.0473 (4)
N20.01106 (16)0.33184 (17)0.38151 (13)0.0523 (5)
C10.2367 (2)0.3144 (2)0.37686 (14)0.0438 (5)
C20.3765 (2)0.2576 (2)0.34316 (15)0.0531 (5)
H20.41500.18270.31600.064*
C30.4570 (2)0.3133 (3)0.35038 (17)0.0601 (6)
H30.55060.27520.32830.072*
C40.4017 (3)0.4242 (3)0.38966 (18)0.0662 (7)
H40.45730.46010.39510.079*
C50.2636 (3)0.4815 (2)0.42084 (17)0.0640 (6)
H50.22550.55790.44610.077*
C60.1805 (2)0.4273 (2)0.41528 (15)0.0532 (5)
H60.08700.46640.43730.064*
C70.1839 (2)0.1261 (2)0.37349 (15)0.0476 (5)
C80.06103 (19)0.1169 (2)0.37778 (14)0.0446 (5)
C90.0411 (2)0.2509 (2)0.38279 (15)0.0476 (5)
C100.1907 (2)0.3019 (2)0.38925 (18)0.0619 (6)
H10A0.23250.39640.39020.093*
H10B0.22970.25270.44640.093*
H10C0.20600.28940.33540.093*
C110.0633 (2)0.0054 (2)0.37681 (15)0.0471 (5)
C120.0535 (2)0.0281 (2)0.37934 (15)0.0486 (5)
H120.13970.03940.39170.058*
C130.0426 (2)0.1408 (2)0.36480 (14)0.0470 (5)
H130.04520.20580.35270.056*
C140.15161 (19)0.17573 (19)0.36545 (13)0.0411 (4)
C150.2886 (2)0.1023 (2)0.40044 (15)0.0484 (5)
H150.31290.02790.42490.058*
C160.3879 (2)0.1390 (2)0.39903 (15)0.0504 (5)
H160.47890.08910.42190.061*
C170.3518 (2)0.2496 (2)0.36372 (15)0.0488 (5)
C180.2180 (2)0.3242 (2)0.32883 (15)0.0496 (5)
H180.19470.39840.30440.059*
C190.1191 (2)0.2870 (2)0.33063 (14)0.0469 (5)
H190.02840.33770.30790.056*
Cl21.30602 (7)0.98559 (7)0.13178 (6)0.0820 (2)
N30.75509 (18)0.35396 (17)0.12243 (13)0.0507 (4)
N40.68090 (19)0.49510 (17)0.10654 (14)0.0556 (5)
O30.97609 (16)0.20330 (14)0.14297 (13)0.0664 (5)
O41.11542 (15)0.32575 (15)0.14249 (13)0.0629 (4)
H4A1.09210.26490.14810.094*
C200.6945 (2)0.2690 (2)0.12269 (14)0.0480 (5)
C210.5784 (2)0.3249 (3)0.08691 (16)0.0592 (6)
H210.53970.41760.06300.071*
C220.5202 (3)0.2425 (3)0.08689 (19)0.0708 (7)
H220.44150.28030.06320.085*
C230.5763 (3)0.1058 (3)0.12117 (19)0.0739 (7)
H230.53690.05070.12000.089*
C240.6914 (3)0.0508 (3)0.15718 (17)0.0662 (7)
H240.72940.04200.18080.079*
C250.7512 (2)0.1304 (2)0.15898 (16)0.0578 (6)
H250.82880.09220.18410.069*
C260.8828 (2)0.3216 (2)0.13010 (15)0.0499 (5)
C270.8924 (2)0.4451 (2)0.12111 (15)0.0474 (5)
C280.7614 (2)0.5477 (2)0.10651 (15)0.0498 (5)
C290.7111 (3)0.6984 (2)0.09116 (18)0.0636 (6)
H29A0.61870.73970.08330.095*
H29B0.76690.73140.03530.095*
H29C0.71540.72060.14510.095*
C301.0133 (2)0.4430 (2)0.12793 (15)0.0498 (5)
C311.0370 (2)0.5599 (2)0.12068 (15)0.0508 (5)
H310.97180.64530.10220.061*
C321.1478 (2)0.5509 (2)0.13923 (14)0.0492 (5)
H321.21140.46370.15580.059*
C331.1824 (2)0.6600 (2)0.13693 (14)0.0444 (5)
C341.2924 (2)0.6291 (2)0.17330 (15)0.0513 (5)
H341.34280.53930.19820.062*
C351.3295 (2)0.7284 (2)0.17355 (16)0.0577 (6)
H351.40320.70610.19900.069*
C361.2560 (2)0.8606 (2)0.13566 (16)0.0538 (5)
C371.1451 (2)0.8952 (2)0.09963 (17)0.0586 (6)
H371.09560.98530.07470.070*
C381.1081 (2)0.7963 (2)0.10069 (16)0.0542 (6)
H381.03230.81990.07700.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0599 (4)0.0658 (4)0.1194 (6)0.0307 (3)0.0291 (4)0.0219 (4)
O10.0380 (8)0.0445 (8)0.1090 (13)0.0038 (7)0.0233 (8)0.0291 (8)
O20.0411 (8)0.0459 (9)0.1043 (13)0.0087 (7)0.0231 (8)0.0249 (8)
N10.0358 (9)0.0392 (9)0.0648 (11)0.0090 (7)0.0129 (8)0.0149 (8)
N20.0338 (9)0.0410 (9)0.0739 (12)0.0062 (8)0.0120 (8)0.0142 (9)
C10.0432 (11)0.0398 (10)0.0479 (11)0.0167 (9)0.0102 (9)0.0079 (9)
C20.0468 (12)0.0518 (13)0.0585 (13)0.0193 (10)0.0050 (10)0.0156 (10)
C30.0516 (13)0.0650 (15)0.0670 (15)0.0308 (12)0.0108 (11)0.0085 (12)
C40.0781 (18)0.0654 (16)0.0728 (16)0.0422 (14)0.0256 (14)0.0061 (13)
C50.0792 (18)0.0535 (14)0.0684 (16)0.0278 (13)0.0195 (13)0.0177 (12)
C60.0535 (13)0.0481 (12)0.0564 (13)0.0178 (10)0.0073 (10)0.0165 (10)
C70.0412 (11)0.0403 (11)0.0605 (13)0.0111 (9)0.0139 (9)0.0139 (9)
C80.0364 (10)0.0408 (11)0.0571 (12)0.0112 (9)0.0157 (9)0.0113 (9)
C90.0365 (11)0.0428 (11)0.0591 (13)0.0113 (9)0.0128 (9)0.0095 (10)
C100.0408 (12)0.0479 (13)0.0874 (17)0.0077 (10)0.0162 (11)0.0148 (12)
C110.0385 (11)0.0447 (12)0.0584 (13)0.0120 (9)0.0152 (9)0.0128 (9)
C120.0395 (11)0.0433 (11)0.0620 (13)0.0115 (9)0.0151 (9)0.0128 (10)
C130.0388 (11)0.0445 (12)0.0552 (12)0.0129 (9)0.0122 (9)0.0104 (9)
C140.0386 (10)0.0356 (10)0.0467 (11)0.0120 (8)0.0124 (8)0.0064 (8)
C150.0429 (11)0.0402 (11)0.0624 (13)0.0112 (9)0.0114 (9)0.0187 (10)
C160.0354 (11)0.0449 (12)0.0672 (14)0.0089 (9)0.0120 (10)0.0165 (10)
C170.0455 (12)0.0427 (11)0.0610 (13)0.0184 (10)0.0199 (10)0.0047 (10)
C180.0557 (13)0.0337 (10)0.0603 (13)0.0161 (10)0.0151 (10)0.0106 (9)
C190.0408 (11)0.0385 (11)0.0560 (12)0.0111 (9)0.0085 (9)0.0118 (9)
Cl20.0742 (5)0.0591 (4)0.1263 (6)0.0358 (3)0.0237 (4)0.0197 (4)
N30.0475 (10)0.0362 (9)0.0649 (11)0.0116 (8)0.0182 (8)0.0075 (8)
N40.0510 (11)0.0364 (9)0.0718 (12)0.0076 (8)0.0201 (9)0.0095 (8)
O30.0548 (10)0.0347 (8)0.1091 (13)0.0077 (7)0.0308 (9)0.0159 (8)
O40.0520 (9)0.0385 (8)0.0979 (12)0.0100 (7)0.0209 (8)0.0205 (8)
C200.0513 (12)0.0464 (12)0.0463 (12)0.0206 (10)0.0108 (9)0.0071 (9)
C210.0584 (14)0.0560 (14)0.0602 (14)0.0151 (11)0.0224 (11)0.0100 (11)
C220.0643 (16)0.083 (2)0.0764 (17)0.0264 (14)0.0289 (13)0.0207 (14)
C230.0816 (19)0.086 (2)0.0763 (18)0.0487 (17)0.0184 (14)0.0195 (15)
C240.0820 (18)0.0561 (14)0.0696 (16)0.0380 (13)0.0227 (13)0.0021 (12)
C250.0619 (14)0.0497 (13)0.0643 (14)0.0257 (11)0.0241 (11)0.0009 (11)
C260.0482 (12)0.0410 (11)0.0573 (13)0.0136 (10)0.0142 (10)0.0098 (9)
C270.0495 (12)0.0368 (10)0.0553 (12)0.0134 (9)0.0142 (9)0.0112 (9)
C280.0518 (13)0.0371 (11)0.0536 (13)0.0106 (10)0.0136 (10)0.0091 (9)
C290.0634 (15)0.0384 (12)0.0806 (17)0.0073 (11)0.0248 (13)0.0121 (11)
C300.0516 (13)0.0395 (11)0.0543 (13)0.0130 (10)0.0097 (10)0.0142 (9)
C310.0504 (13)0.0397 (11)0.0607 (13)0.0141 (10)0.0116 (10)0.0144 (10)
C320.0494 (12)0.0395 (11)0.0533 (12)0.0132 (9)0.0073 (10)0.0134 (9)
C330.0409 (11)0.0390 (10)0.0490 (12)0.0132 (9)0.0055 (9)0.0121 (9)
C340.0472 (12)0.0406 (11)0.0593 (13)0.0120 (9)0.0149 (10)0.0066 (10)
C350.0464 (13)0.0573 (14)0.0711 (15)0.0184 (11)0.0197 (11)0.0116 (11)
C360.0488 (13)0.0458 (12)0.0663 (14)0.0198 (10)0.0075 (10)0.0141 (10)
C370.0526 (13)0.0380 (11)0.0812 (16)0.0133 (10)0.0209 (12)0.0079 (11)
C380.0461 (12)0.0442 (12)0.0727 (15)0.0135 (10)0.0219 (11)0.0101 (11)
Geometric parameters (Å, º) top
Cl1—C171.736 (2)Cl2—C361.738 (2)
O1—C71.269 (2)N3—C261.354 (3)
O2—C111.309 (2)N3—N41.409 (2)
O2—H2A0.8200N3—C201.419 (3)
N1—C71.353 (3)N4—C281.301 (3)
N1—N21.406 (2)O3—C261.274 (2)
N1—C11.418 (2)O4—C301.312 (2)
N2—C91.298 (3)O4—H4A0.8200
C1—C61.383 (3)C20—C211.379 (3)
C1—C21.391 (3)C20—C251.391 (3)
C2—C31.376 (3)C21—C221.373 (3)
C2—H20.9300C21—H210.9300
C3—C41.372 (4)C22—C231.369 (4)
C3—H30.9300C22—H220.9300
C4—C51.371 (3)C23—C241.371 (4)
C4—H40.9300C23—H230.9300
C5—C61.377 (3)C24—C251.370 (3)
C5—H50.9300C24—H240.9300
C6—H60.9300C25—H250.9300
C7—C81.422 (3)C26—C271.419 (3)
C8—C111.388 (3)C27—C301.395 (3)
C8—C91.439 (3)C27—C281.436 (3)
C9—C101.496 (3)C28—C291.501 (3)
C10—H10A0.9600C29—H29A0.9600
C10—H10B0.9600C29—H29B0.9600
C10—H10C0.9600C29—H29C0.9600
C11—C121.447 (3)C30—C311.440 (3)
C12—C131.321 (3)C31—C321.326 (3)
C12—H120.9300C31—H310.9300
C13—C141.457 (3)C32—C331.454 (3)
C13—H130.9300C32—H320.9300
C14—C191.386 (3)C33—C341.379 (3)
C14—C151.398 (3)C33—C381.400 (3)
C15—C161.376 (3)C34—C351.378 (3)
C15—H150.9300C34—H340.9300
C16—C171.373 (3)C35—C361.371 (3)
C16—H160.9300C35—H350.9300
C17—C181.375 (3)C36—C371.373 (3)
C18—C191.378 (3)C37—C381.366 (3)
C18—H180.9300C37—H370.9300
C19—H190.9300C38—H380.9300
C11—O2—H2A109.5C26—N3—N4110.82 (17)
C7—N1—N2110.82 (16)C26—N3—C20129.58 (18)
C7—N1—C1128.74 (17)N4—N3—C20119.48 (17)
N2—N1—C1120.22 (16)C28—N4—N3106.55 (17)
C9—N2—N1106.60 (16)C30—O4—H4A109.5
C6—C1—C2119.7 (2)C21—C20—C25120.0 (2)
C6—C1—N1119.60 (18)C21—C20—N3119.53 (19)
C2—C1—N1120.64 (19)C25—C20—N3120.5 (2)
C3—C2—C1119.3 (2)C22—C21—C20119.4 (2)
C3—C2—H2120.4C22—C21—H21120.3
C1—C2—H2120.4C20—C21—H21120.3
C4—C3—C2121.1 (2)C23—C22—C21121.0 (2)
C4—C3—H3119.4C23—C22—H22119.5
C2—C3—H3119.4C21—C22—H22119.5
C5—C4—C3119.3 (2)C22—C23—C24119.3 (3)
C5—C4—H4120.3C22—C23—H23120.4
C3—C4—H4120.3C24—C23—H23120.4
C4—C5—C6120.9 (2)C25—C24—C23121.1 (2)
C4—C5—H5119.6C25—C24—H24119.4
C6—C5—H5119.6C23—C24—H24119.4
C5—C6—C1119.7 (2)C24—C25—C20119.1 (2)
C5—C6—H6120.2C24—C25—H25120.4
C1—C6—H6120.2C20—C25—H25120.4
O1—C7—N1126.47 (19)O3—C26—N3126.6 (2)
O1—C7—C8126.7 (2)O3—C26—C27126.8 (2)
N1—C7—C8106.78 (17)N3—C26—C27106.63 (18)
C11—C8—C7119.71 (18)C30—C27—C26119.56 (19)
C11—C8—C9136.05 (19)C30—C27—C28135.7 (2)
C7—C8—C9104.24 (18)C26—C27—C28104.70 (19)
N2—C9—C8111.55 (18)N4—C28—C27111.28 (19)
N2—C9—C10119.92 (18)N4—C28—C29119.4 (2)
C8—C9—C10128.53 (19)C27—C28—C29129.3 (2)
C9—C10—H10A109.5C28—C29—H29A109.5
C9—C10—H10B109.5C28—C29—H29B109.5
H10A—C10—H10B109.5H29A—C29—H29B109.5
C9—C10—H10C109.5C28—C29—H29C109.5
H10A—C10—H10C109.5H29A—C29—H29C109.5
H10B—C10—H10C109.5H29B—C29—H29C109.5
O2—C11—C8118.66 (18)O4—C30—C27118.5 (2)
O2—C11—C12115.98 (19)O4—C30—C31116.0 (2)
C8—C11—C12125.37 (19)C27—C30—C31125.50 (19)
C13—C12—C11122.6 (2)C32—C31—C30122.8 (2)
C13—C12—H12118.7C32—C31—H31118.6
C11—C12—H12118.7C30—C31—H31118.6
C12—C13—C14127.80 (19)C31—C32—C33128.2 (2)
C12—C13—H13116.1C31—C32—H32115.9
C14—C13—H13116.1C33—C32—H32115.9
C19—C14—C15118.03 (19)C34—C33—C38117.9 (2)
C19—C14—C13119.07 (18)C34—C33—C32118.95 (19)
C15—C14—C13122.90 (19)C38—C33—C32123.16 (19)
C16—C15—C14120.7 (2)C35—C34—C33121.5 (2)
C16—C15—H15119.7C35—C34—H34119.3
C14—C15—H15119.7C33—C34—H34119.3
C17—C16—C15119.63 (19)C36—C35—C34119.0 (2)
C17—C16—H16120.2C36—C35—H35120.5
C15—C16—H16120.2C34—C35—H35120.5
C16—C17—C18121.2 (2)C35—C36—C37121.1 (2)
C16—C17—Cl1119.67 (17)C35—C36—Cl2119.22 (19)
C18—C17—Cl1119.13 (17)C37—C36—Cl2119.69 (18)
C17—C18—C19118.8 (2)C38—C37—C36119.5 (2)
C17—C18—H18120.6C38—C37—H37120.2
C19—C18—H18120.6C36—C37—H37120.2
C18—C19—C14121.62 (19)C37—C38—C33121.0 (2)
C18—C19—H19119.2C37—C38—H38119.5
C14—C19—H19119.2C33—C38—H38119.5
C7—N1—N2—C91.3 (2)C26—N3—N4—C281.3 (2)
C1—N1—N2—C9176.40 (17)C20—N3—N4—C28177.68 (18)
C7—N1—C1—C6153.7 (2)C26—N3—C20—C21161.1 (2)
N2—N1—C1—C620.4 (3)N4—N3—C20—C2114.5 (3)
C7—N1—C1—C224.7 (3)C26—N3—C20—C2519.1 (3)
N2—N1—C1—C2161.22 (19)N4—N3—C20—C25165.3 (2)
C6—C1—C2—C31.3 (3)C25—C20—C21—C220.5 (3)
N1—C1—C2—C3177.10 (19)N3—C20—C21—C22179.8 (2)
C1—C2—C3—C40.4 (3)C20—C21—C22—C230.5 (4)
C2—C3—C4—C51.0 (4)C21—C22—C23—C240.9 (4)
C3—C4—C5—C61.6 (4)C22—C23—C24—C250.3 (4)
C4—C5—C6—C10.7 (3)C23—C24—C25—C200.6 (4)
C2—C1—C6—C50.8 (3)C21—C20—C25—C241.0 (3)
N1—C1—C6—C5177.64 (19)N3—C20—C25—C24179.2 (2)
N2—N1—C7—O1177.3 (2)N4—N3—C26—O3178.7 (2)
C1—N1—C7—O12.7 (4)C20—N3—C26—O32.8 (4)
N2—N1—C7—C81.4 (2)N4—N3—C26—C271.3 (2)
C1—N1—C7—C8175.97 (19)C20—N3—C26—C27177.25 (19)
O1—C7—C8—C112.0 (4)O3—C26—C27—C301.1 (4)
N1—C7—C8—C11179.28 (19)N3—C26—C27—C30178.85 (19)
O1—C7—C8—C9177.7 (2)O3—C26—C27—C28179.2 (2)
N1—C7—C8—C91.0 (2)N3—C26—C27—C280.9 (2)
N1—N2—C9—C80.7 (2)N3—N4—C28—C270.7 (2)
N1—N2—C9—C10179.56 (19)N3—N4—C28—C29179.97 (19)
C11—C8—C9—N2179.9 (2)C30—C27—C28—N4179.5 (2)
C7—C8—C9—N20.2 (2)C26—C27—C28—N40.1 (3)
C11—C8—C9—C100.1 (4)C30—C27—C28—C291.2 (4)
C7—C8—C9—C10179.6 (2)C26—C27—C28—C29179.2 (2)
C7—C8—C11—O20.8 (3)C26—C27—C30—O40.1 (3)
C9—C8—C11—O2178.8 (2)C28—C27—C30—O4179.7 (2)
C7—C8—C11—C12179.00 (19)C26—C27—C30—C31179.7 (2)
C9—C8—C11—C121.3 (4)C28—C27—C30—C310.1 (4)
O2—C11—C12—C139.7 (3)O4—C30—C31—C328.3 (3)
C8—C11—C12—C13170.2 (2)C27—C30—C31—C32171.5 (2)
C11—C12—C13—C14180.00 (19)C30—C31—C32—C33178.36 (19)
C12—C13—C14—C19167.5 (2)C31—C32—C33—C34169.7 (2)
C12—C13—C14—C1513.0 (3)C31—C32—C33—C389.3 (3)
C19—C14—C15—C160.8 (3)C38—C33—C34—C350.5 (3)
C13—C14—C15—C16179.66 (19)C32—C33—C34—C35179.59 (19)
C14—C15—C16—C170.6 (3)C33—C34—C35—C360.8 (3)
C15—C16—C17—C180.6 (3)C34—C35—C36—C371.4 (4)
C15—C16—C17—Cl1179.14 (16)C34—C35—C36—Cl2177.63 (17)
C16—C17—C18—C190.7 (3)C35—C36—C37—C380.6 (4)
Cl1—C17—C18—C19179.03 (15)Cl2—C36—C37—C38178.40 (18)
C17—C18—C19—C140.9 (3)C36—C37—C38—C330.8 (4)
C15—C14—C19—C180.9 (3)C34—C33—C38—C371.3 (3)
C13—C14—C19—C18179.52 (18)C32—C33—C38—C37179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.782.542 (2)153
C16—H16···O1i0.932.473.239 (2)140
O4—H4A···O30.821.782.540 (2)153
C37—H37···O3ii0.932.613.314 (3)133
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.782.542 (2)153
C16—H16···O1i0.932.473.239 (2)140
O4—H4A···O30.821.782.540 (2)153
C37—H37···O3ii0.932.613.314 (3)133
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhry, F., Tahir, M. N., Khan, M. A., Ather, A. Q. & Asif, N. (2012). Acta Cryst. E68, o2044.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHolzer, W., Mereiter, K. & Plagens, B. (1999). Heterocycles, 50, 799–818.  CrossRef CAS Google Scholar
First citationMalik, K. I., Munawar, M. A., Khan, M. A., Nadeem, S. & Mukhtar-ul-Hassan (2009). Acta Cryst. E65, o3046.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 71| Part 6| June 2015| Pages o393-o394
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds