organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-(3,4-di­methyl­anilino)-2-benzo­furan-1(3H)-one

aDepartment of Chemistry, University of the Punjab, Lahore, Punjab, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 9 May 2015; accepted 15 May 2015; online 20 May 2015)

In the title compound, C16H15NO2, the 2-benzo­furan-1(3H)-one and 3,4-di­methyl­aniline fragments are oriented with a dihedral angle of 89.12 (5)°. N—H⋯O hydrogen-bond inter­actions join mol­ecules into C(6) chains propagating along the a axis. In addition, there are ππ stacking inter­actions between the 2-benzo­furan­one benzene rings [centroid–centroid dis­tance = 3.7870 (13) Å] and C—H⋯π inter­actions between one of the methyl groups and the 3,4-di­methyl­aniline benzene ring.

1. Related literature

For related crystal structures, see: Li et al. (2009[Li, W., Yin, H., Wen, L., Li, K. & Fan, W. (2009). Acta Cryst. E65, o2579.]); Odabaşoğlu & Büyükgüngör (2006a[Odabaşoğlu, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o2943-o2944.],b[Odabaşoğlu, M. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o4140-o4141.], 2007a[Odabaşoğlu, M. & Büyükgüngör, O. (2007a). Acta Cryst. E63, o1999-o2001.],b[Odabaşoğlu, M. & Büyükgüngör, O. (2007b). Acta Cryst. E63, o2159-o2161.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C16H15NO2

  • Mr = 253.29

  • Orthorhombic, P b c a

  • a = 7.3386 (7) Å

  • b = 14.9133 (11) Å

  • c = 24.3322 (18) Å

  • V = 2663.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.38 × 0.23 × 0.16 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.988

  • 20839 measured reflections

  • 2906 independent reflections

  • 1660 reflections with I > 2σ(I)

  • Rint = 0.042

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.144

  • S = 1.02

  • 2906 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C9—C14

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.31 3.025 (2) 141
C15—H15BCg3ii 0.96 2.88 3.661 (3) 139
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The crystal structures of 3-anilinoisobenzofuran-1(3H)-one (Odabaşoğlu & Büyükgüngör, 2006a), 3-(2,6-dimethylanilino)isobenzofuran-1(3H) -one (Odabaşoğlu & Büyükgüngör, 2006b), 3-(4-methylanilino)isobenzo furan-1(3H)-one (Odabaşoğlu & Büyükgüngör, 2007a), 3-(2- (hydroxymethyl)anilino)isobenzofuran-1(3H)-one (Odabaşoğlu & Büyükgüngör, 2007b), and 3-((3-oxo-1,3-dihydroisobenzofuran-1-yl)amino) benzoic acid Li et al., 2009) have been published which are related to the title compound (I, Fig. 1). The title compound was synthesized for the biological studies and for the preparation of further derivitives.

The benzofuran ring A (C1–C8/O1/O2) and the 3,4-dmethylaniline group B (C9–C16/N1) are planar with r. m. s. deviation of 0.0209 and 0.0101 Å, respectively. The dihedral angle between A/B fragments is 89.12 (5)°. Intermolecular hydrogen bond of N—H···O type generates C (6) chains (Bernstein et al., 1995) along the crystallographic a axis (Table 1, Fig. 2). The ππ interactions are observed between the 2-benzofuranone fragments [ Cg1—Cg2i 3.6204 (12) Å; Cg1—Cg1i 3.8138 (13) Å; Cg2—Cg2i 3.7870 (13) Å, Cg1 - centroid of C1/C2/C7/C8/O1, Cg2 - centroid of C2–C7); i = - 1/2 + x, y, 1/2 - z ]. In addition there are also C—H···π interactions (Table 1).

Related literature top

For literature on related crystal structures, see: Li et al. (2009); Odabaşoğlu & Büyükgüngör (2006a,b, 2007a,b). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

Equimolar quantities of 3,4-dimethylaniline (0.605 g. 5 mmol) and 2-formylbenzoic acid (0.751 g, 5 mmol) were stirred in methanol for 2 h. The solution was kept at room temperature for crystallization which afforded light brown needles after 48 h.

Refinement top

The H atoms were positioned geometrically (C–H = 0.93–0.96 Å, N—H= 0.86 Å) and refined as riding on their carriers with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl and x =1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The chains of molecules along the a axis via N—H···O hydrogen bond (PLATON; Spek, 2009).
3-(3,4-Dimethylanilino)-2-benzofuran-1(3H)-one top
Crystal data top
C16H15NO2Dx = 1.264 Mg m3
Mr = 253.29Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4689 reflections
a = 7.3386 (7) Åθ = 1.4–27.0°
b = 14.9133 (11) ŵ = 0.08 mm1
c = 24.3322 (18) ÅT = 296 K
V = 2663.0 (4) Å3Needle, light brown
Z = 80.38 × 0.23 × 0.16 mm
F(000) = 1072
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2906 independent reflections
Radiation source: fine-focus sealed tube1660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 2.7°
ω scansh = 59
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1918
Tmin = 0.970, Tmax = 0.988l = 3131
20839 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.3907P]
where P = (Fo2 + 2Fc2)/3
2906 reflections(Δ/σ)max < 0.001
174 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H15NO2V = 2663.0 (4) Å3
Mr = 253.29Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.3386 (7) ŵ = 0.08 mm1
b = 14.9133 (11) ÅT = 296 K
c = 24.3322 (18) Å0.38 × 0.23 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2906 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1660 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.988Rint = 0.042
20839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.02Δρmax = 0.27 e Å3
2906 reflectionsΔρmin = 0.25 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.80336 (19)0.14473 (8)0.23068 (5)0.0528 (4)
O20.8396 (2)0.16231 (9)0.32129 (5)0.0614 (4)
N10.9466 (2)0.15132 (10)0.14175 (6)0.0533 (5)
H11.05720.16880.13710.064*
C10.8541 (3)0.19202 (12)0.27513 (7)0.0457 (5)
C20.9241 (3)0.27938 (11)0.25746 (7)0.0424 (5)
C30.9848 (3)0.35141 (12)0.28845 (8)0.0523 (5)
H30.98710.34880.32660.063*
C41.0416 (3)0.42698 (13)0.26083 (9)0.0610 (6)
H41.08270.47650.28050.073*
C51.0381 (3)0.42990 (13)0.20393 (10)0.0651 (6)
H51.07750.48150.18600.078*
C60.9774 (3)0.35782 (12)0.17306 (8)0.0575 (6)
H60.97610.36020.13490.069*
C70.9189 (3)0.28247 (11)0.20076 (7)0.0443 (5)
C80.8370 (3)0.19769 (12)0.17912 (7)0.0472 (5)
H80.71990.21150.16170.057*
C90.8834 (3)0.07697 (11)0.11132 (7)0.0463 (5)
C101.0086 (3)0.01250 (12)0.09499 (7)0.0521 (5)
H101.12990.01890.10540.062*
C110.9584 (4)0.06119 (12)0.06359 (7)0.0572 (6)
C120.7769 (4)0.07110 (13)0.04754 (7)0.0618 (6)
C130.6529 (3)0.00635 (14)0.06404 (8)0.0632 (6)
H130.53170.01240.05350.076*
C140.7027 (3)0.06721 (13)0.09569 (7)0.0553 (6)
H140.61610.10930.10630.066*
C151.1015 (4)0.12910 (15)0.04791 (10)0.0846 (8)
H15A1.21470.11400.06540.127*
H15B1.11750.12890.00870.127*
H15C1.06350.18770.05960.127*
C160.7133 (4)0.15104 (15)0.01424 (10)0.0953 (9)
H16A0.58470.14620.00760.143*
H16B0.73780.20520.03420.143*
H16C0.77690.15240.02020.143*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0623 (10)0.0370 (7)0.0592 (8)0.0047 (6)0.0027 (7)0.0033 (6)
O20.0646 (11)0.0614 (9)0.0581 (8)0.0045 (7)0.0074 (7)0.0143 (7)
N10.0515 (11)0.0518 (9)0.0566 (9)0.0076 (8)0.0071 (8)0.0179 (7)
C10.0457 (12)0.0391 (10)0.0524 (11)0.0075 (9)0.0045 (9)0.0000 (9)
C20.0434 (12)0.0356 (9)0.0481 (10)0.0067 (9)0.0002 (9)0.0037 (8)
C30.0577 (14)0.0450 (11)0.0542 (10)0.0084 (10)0.0029 (10)0.0122 (9)
C40.0638 (16)0.0385 (11)0.0809 (15)0.0005 (10)0.0047 (12)0.0147 (10)
C50.0725 (17)0.0377 (11)0.0851 (15)0.0050 (11)0.0028 (13)0.0061 (10)
C60.0714 (16)0.0458 (11)0.0552 (11)0.0007 (11)0.0001 (11)0.0060 (9)
C70.0481 (12)0.0355 (9)0.0493 (10)0.0038 (9)0.0016 (9)0.0025 (8)
C80.0524 (13)0.0405 (9)0.0487 (10)0.0021 (9)0.0026 (9)0.0040 (8)
C90.0561 (14)0.0444 (10)0.0385 (9)0.0047 (10)0.0014 (9)0.0042 (8)
C100.0591 (14)0.0495 (11)0.0476 (10)0.0010 (11)0.0013 (10)0.0049 (9)
C110.0845 (18)0.0456 (11)0.0417 (10)0.0002 (12)0.0104 (11)0.0029 (8)
C120.0906 (19)0.0489 (12)0.0460 (10)0.0145 (13)0.0064 (12)0.0084 (9)
C130.0706 (17)0.0646 (13)0.0543 (11)0.0185 (13)0.0032 (11)0.0076 (10)
C140.0604 (15)0.0512 (11)0.0542 (11)0.0034 (11)0.0041 (10)0.0084 (9)
C150.119 (2)0.0601 (13)0.0749 (14)0.0175 (14)0.0172 (16)0.0143 (12)
C160.135 (3)0.0685 (15)0.0821 (15)0.0301 (16)0.0022 (17)0.0282 (13)
Geometric parameters (Å, º) top
O1—C11.344 (2)C8—H80.9800
O1—C81.503 (2)C9—C141.387 (3)
O2—C11.212 (2)C9—C101.388 (3)
N1—C81.397 (2)C10—C111.388 (3)
N1—C91.412 (2)C10—H100.9300
N1—H10.8600C11—C121.395 (3)
C1—C21.465 (3)C11—C151.509 (3)
C2—C71.381 (2)C12—C131.386 (3)
C2—C31.386 (2)C12—C161.515 (3)
C3—C41.377 (3)C13—C141.389 (3)
C3—H30.9300C13—H130.9300
C4—C51.385 (3)C14—H140.9300
C4—H40.9300C15—H15A0.9600
C5—C61.385 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C6—C71.379 (2)C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—C81.496 (2)C16—H16C0.9600
C1—O1—C8110.53 (13)C14—C9—C10118.79 (17)
C8—N1—C9122.76 (17)C14—C9—N1122.70 (17)
C8—N1—H1118.6C10—C9—N1118.48 (19)
C9—N1—H1118.6C9—C10—C11122.0 (2)
O2—C1—O1121.98 (17)C9—C10—H10119.0
O2—C1—C2128.89 (17)C11—C10—H10119.0
O1—C1—C2109.12 (15)C10—C11—C12119.4 (2)
C7—C2—C3121.78 (16)C10—C11—C15119.1 (2)
C7—C2—C1108.25 (15)C12—C11—C15121.5 (2)
C3—C2—C1129.96 (17)C13—C12—C11118.15 (18)
C4—C3—C2117.78 (18)C13—C12—C16120.0 (2)
C4—C3—H3121.1C11—C12—C16121.8 (2)
C2—C3—H3121.1C12—C13—C14122.5 (2)
C3—C4—C5120.53 (18)C12—C13—H13118.7
C3—C4—H4119.7C14—C13—H13118.7
C5—C4—H4119.7C9—C14—C13119.1 (2)
C6—C5—C4121.57 (19)C9—C14—H14120.4
C6—C5—H5119.2C13—C14—H14120.4
C4—C5—H5119.2C11—C15—H15A109.5
C7—C6—C5117.87 (18)C11—C15—H15B109.5
C7—C6—H6121.1H15A—C15—H15B109.5
C5—C6—H6121.1C11—C15—H15C109.5
C6—C7—C2120.46 (16)H15A—C15—H15C109.5
C6—C7—C8129.93 (16)H15B—C15—H15C109.5
C2—C7—C8109.55 (15)C12—C16—H16A109.5
N1—C8—C7114.58 (17)C12—C16—H16B109.5
N1—C8—O1112.19 (14)H16A—C16—H16B109.5
C7—C8—O1102.49 (13)C12—C16—H16C109.5
N1—C8—H8109.1H16A—C16—H16C109.5
C7—C8—H8109.1H16B—C16—H16C109.5
O1—C8—H8109.1
C8—O1—C1—O2179.85 (17)C2—C7—C8—N1123.94 (17)
C8—O1—C1—C20.2 (2)C6—C7—C8—O1179.40 (19)
O2—C1—C2—C7178.4 (2)C2—C7—C8—O12.2 (2)
O1—C1—C2—C71.6 (2)C1—O1—C8—N1124.55 (17)
O2—C1—C2—C32.8 (4)C1—O1—C8—C71.1 (2)
O1—C1—C2—C3177.13 (18)C8—N1—C9—C1430.1 (3)
C7—C2—C3—C40.4 (3)C8—N1—C9—C10151.93 (17)
C1—C2—C3—C4179.03 (19)C14—C9—C10—C110.0 (3)
C2—C3—C4—C50.2 (3)N1—C9—C10—C11178.05 (16)
C3—C4—C5—C60.2 (3)C9—C10—C11—C120.3 (3)
C4—C5—C6—C70.4 (3)C9—C10—C11—C15179.31 (18)
C5—C6—C7—C21.0 (3)C10—C11—C12—C130.3 (3)
C5—C6—C7—C8176.0 (2)C15—C11—C12—C13179.33 (18)
C3—C2—C7—C61.0 (3)C10—C11—C12—C16178.75 (18)
C1—C2—C7—C6179.92 (18)C15—C11—C12—C160.9 (3)
C3—C2—C7—C8176.51 (17)C11—C12—C13—C140.0 (3)
C1—C2—C7—C82.4 (2)C16—C12—C13—C14178.46 (19)
C9—N1—C8—C7171.10 (16)C10—C9—C14—C130.3 (3)
C9—N1—C8—O172.6 (2)N1—C9—C14—C13177.65 (16)
C6—C7—C8—N158.8 (3)C12—C13—C14—C90.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9—C14
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.313.025 (2)141
C15—H15B···Cg3ii0.962.883.661 (3)139
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C9—C14
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.313.025 (2)141
C15—H15B···Cg3ii0.962.883.661 (3)139
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+2, y, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLi, W., Yin, H., Wen, L., Li, K. & Fan, W. (2009). Acta Cryst. E65, o2579.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006a). Acta Cryst. E62, o2943–o2944.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2006b). Acta Cryst. E62, o4140–o4141.  CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2007a). Acta Cryst. E63, o1999–o2001.  CSD CrossRef IUCr Journals Google Scholar
First citationOdabaşoğlu, M. & Büyükgüngör, O. (2007b). Acta Cryst. E63, o2159–o2161.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds